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Abstract. We define two-parameter generalizations of Andrews’ (k + 1)-marked odd Durfee sym-
bols and 2kth symmetrized odd rank moments, and study the automorphic properties of some of
their generating functions. When k = 0 we obtain families of modular forms and mock modular
forms. When k ≥ 1, we find quasimodular forms and quasimock modular forms.

1. Introduction

The problem of determining whether a given basic hypergeometric series (“q-series”) is modular
is wide open. While there are partial results in some very precise cases [25], often we must rely first
on combinatorial intuition to predict which series will be interesting and then on identities that
directly express those series as modular objects in order to establish the modularity. One useful
way to uncover q-series with interesting modular properties is to generalize the combinatorics of
partitions. An example of this is work of the second two authors relating the rank of an overpartition
to the Hurwitz class numbers [4]. This led to the discovery of q-series which are eigenforms for
the weight 3/2 Hecke operators. Another example is work of Osburn and the second two authors,
where extensions of Andrews’ (k+1)-marked Durfee symbols and 2kth symmetrized rank moments
to overpartition pairs led to many new quasimock modular forms [5].

Quasimock modular forms combine the properties of classical quasimodular forms and mock
modular forms, which themselves generalize Ramanujan’s mock theta functions. Ramanujan’s
mock theta functions are q-hypergeometric series like

f(q) :=
∑
n≥0

qn
2

(1 + q)2 · · · (1 + qn)2

whose behavior is closely related to that of modular forms. To be more precise, Zwegers [27] has
“completed” the mock theta functions to obtain so-called harmonic weak Maass forms, which are
certain non-holomorphic modular forms (see Section 4 for the definition). For this he required
additional (classical) modular forms which are related to each of the mock theta functions and
which we call, following Zagier, the shadow of the mock theta function (again see Section 4 for the
precise definition). All mock theta functions turn out to be holomorphic parts of harmonic Maass
forms, and their shadows are all unary weight 3

2 theta functions. A mock modular form is then more
generally the holomorphic part of any harmonic weak Maass form of weight k, and the associated
shadow is then a modular form of weight 2− k. Recall that a quasi modular form may be defined
as a meromorphic function on the upper half-plane that can be written as a linear combination
of derivatives of modular forms. In analogy, a quasimock modular form is a linear combination of
derivatives of mock modular forms.
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In the present paper we consider generalizations of Andrews’ (k + 1)-marked odd Durfee sym-
bols and the 2kth symmetrized odd rank moments. In Section 2 we describe these generalized
combinatorial objects and derive their generating functions, which turn out to be the series

No(a, b; z; q) :=
∑
n≥0

(
−q/a,−q/b; q2

)
n

(ab)nq2n+1

(zq, q/z; q2)n+1

(1.1)

or some of its derivatives,

N o
2k(a, b; q) :=

1
(2k)!

(
d2k

dz2k
zkNo(a, b; z; q)

) ∣∣∣∣
z=1

. (1.2)

Here we have employed the standard basic hypergeometric series notation,

(a1, a2, . . . , aj ; q)n :=
(a1, a2, . . . , aj ; q)∞

(a1qn, a2qn, . . . , ajqn; q)∞
,

where

(a1, a2, . . . , aj ; q)∞ :=
∞∏
k=0

(
1− a1q

k
)(

1− a2q
k
)
· · ·
(

1− ajqk
)
,

and as is typical we drop the “; q” unless the base is something other than q.
Then we study the automorphic properties of some special cases of the generating functions

No(a, b; z; q) and N o
2k(a, b; q), beginning in Section 3 with the case b = 1/a, where q-series identities

can be used to show that the function No(a, 1/a; z; q) is essentially an infinite product.

Theorem 1.1. We have

No(a, 1/a; z; q) +
1

(z + a) (1 + 1/az)
=

(
−aq,−q/a; q2

)
∞

(z + a) (1 + 1/az) (zq, q/z; q2)∞
. (1.3)

Let q := e2πiτ . Standard facts about Jacobi forms then imply the following two corollaries.

Corollary 1.2. Let z and a be torsion points (i.e. points in the set Qτ + Q) such that the q-series
for No (a, 1/a; z; q) in (1.1) is well-defined. Then

1 + (z + a)(1 + 1/az)No (a, 1/a; z; q)

is a modular form.

Corollary 1.3. Let a 6= 0 be a torsion point and let k ≥ 1. Then N2k(a, 1/a; q) is a quasimodular
form.

Remark 1.4. We point out that the assertions about the modularity of functions in this paper are
in general “up to multiplication by a power of q” and this will only be made precise for the mock
modular forms in Theorem 1.5 (see Theorem 4.5). Moreover, a substitution of the form q 7→ qM is
typically required so that the modularity is with respect to some congruence subgroup Γ1(N). We
shall not determine any of these subgroups explicitly.

In Section 4 we look at mock modular forms arising from No(a, b; z; q), of which there are already
a number of important examples. For instance, q−1No(0, 0; 1; q) is Watson’s third order mock theta
function ω(q) [23],

ω(q) = q−1No(0, 0; 1; q) =
∑
n≥0

q2n
2+2n

(q; q2)2n+1

,
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No(0, 1; 1; q) and q−1No(0, 1/q; 1; q) are McIntosh’s second order mock theta functions A(q) and
B(q) [19] (which were also studied in [7]),

A(q) = No(0, 1; 1; q) =
∑
n≥0

q(n+1)2(−q; q2)n
(q; q2)2n+1

,

B(q) = q−1No(0, 1/q; 1; q) =
∑
n≥0

qn
2+n(−q2; q2)n
(q; q2)2n+1

,

q−1No(1, 1/q; 1; q) is the Hikami-Ramanujan mock theta function h1(q) [16, Eq. (12), corrected],[22,
p. 3, φ(q)],

h1(q) = q−1No(1, 1/q; 1; q) =
∑
n≥0

qn(−q)2n
(q; q2)2n+1

,

No(0, 1; i; q) is the eighth order mock theta function U1(q) of Gordon and McIntosh [15, 19],

U1(q) = No(0, 1; i; q) =
∑
n≥0

q(n+1)2(−q; q2)n
(−q2; q4)n+1

,

and No(1, 1/q; i; q) is the mock theta function λ(q) studied by both Andrews [1] and McIntosh [19]
(which is also equal to the eighth order mock theta function V1(q) [15]),

λ(q) = No(1, 1/q; i; q) =
∑
n≥0

qn+1(−q)2n
(−q2; q4)n+1

.

Additionally, many instances of No(0, 1/q; z; q) and No(0,−1; z; q) have been shown to be mock
theta functions by the second author and Ono and Rhoades [7].

Combining q-series identities with work of Zwegers [28], we shall see that there are many more
mock modular forms among the functions No(a, b; z; q) than just the ones above.

Theorem 1.5. Let (a, b) ∈ {(0, 0), (0, 1/q), (0,−1), (1,−1), (1, 1/q)} and let z be a torsion point.
If (a, b, z) 6∈ {(1,−1,±1), (0,−1, 1), (1, 1/q,−1)}, then the series No(a, b; z; q) is a mock theta func-
tion. If (a, b, z) ∈ {(1,−1,±1), (0,−1, 1), (1, 1/q,−1)}, then the series No(a, b; z; q) is a weight 3/2
mock modular form.

In Section 5 we take up the exceptional triples from Theorem 1.5 and show that in each case
there is a connection with class numbers of binary quadratic forms. Recall that for n > 0 the
Hurwitz class number H(n) denotes the number of equivalence classes of positive definite binary
quadratic forms of discriminant −n and the Kronecker class number F (n) denotes the number
of uneven equivalence classes of positive definite binary quadratic forms of determinant −n. Here
forms equivalent to a(x2+y2) are counted with coefficient 1/2 and forms equivalent to a(x2+xy+y2)
are counted with coefficient 1/3. For more on these class numbers, see [11, Section 5.3], [14, 18].
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Theorem 1.6. We have

No(1,−1; 1; q) = −No(1,−1;−1;−q) =
∑
n≥1

2F (n)qn, (1.4)

No(0,−1; 1; q) =
∑
n≥1

H(8n− 1)qn, (1.5)

No(1, 1/q;−1; q) = −
∑
n≥1

F (4n− 1)(−q)n

= 3
∑
n≥1

H(8n− 5)q2n−1 −
∑
n≥1

H(8n− 1)q2n. (1.6)

These follow from q-series identities together with work of Andrews [2], Humbert [17], Kronecker
[18], and Watson [24].

Finally in Section 6 we prove the following theorem, which depends on certain partial differential
equations involving No(a, b; z; q).

Theorem 1.7. For k ≥ 1 and (a, b) = (0, 0), (0, 1/q), (0,−1), (1,−1), or (1, 1/q), the series
N o

2k(a, b; q) is a quasimock modular form.

2. Generalized odd Durfee symbols and odd rank moments

The notation here and throughout is intended to be reminiscent of that of [3] and [5]. By a
generalized odd Durfee symbol for the positive integer n we mean a two-rowed array with a triple
subscript, (

a1 a2 · · · ai
b1 b2 · · · bj

)
λ,µ,t

,

where t ≥ 0, λ = (λ1, λ2, . . . λh) and µ = (µ1, µ2, . . . , µk) are partitions into distinct odd parts of
size at most 2t− 1, each row is a partition into odd parts of size at most 2t+ 1, and

n = (a1 + a2 · · ·+ ai) + (b1 + b2 + · · · bj) + (λ1 + λ2 + · · ·λh) + (µ1 + µ2 + · · ·µk) + 2t+ 1.

For example, the two-rowed array (
3 1 1
9 7 3 3 3

)
(7,3),(5,3,1),4

is a generalized odd Durfee symbol for 58.
We call these generalized odd Durfee symbols because when λ and µ each contain all of the odd

numbers between 1 and 2t− 1, then we have one of the ordinary odd Durfee symbols of Andrews
[3]. It is natural then to define an odd number 2x − 1 as missing from a partition ν into distinct
odd parts of size at most 2t − 1 if 1 ≤ x ≤ t and 2x − 1 doesn’t occur in ν. For instance, in the
example above t = 4 and so λ = (7, 3) has two missing numbers and µ = (5, 3, 1) has one missing
number. As Andrews did in the case of ordinary odd Durfee symbols, we define the rank of an
odd Durfee symbol to be the number of entries on the top row minus the number of entries on the
bottom row of the generalized odd Durfee symbol.

It is now straightforward, using the elementary theory of partitions, to see that if No(r, s,m, n)
denotes the number of generalized odd Durfee symbols for n, where r is the number of missing
parts in λ, s is the number of missing parts in µ, and m is the rank, then

No(a, b; z; q) =
∑
r,s,n≥0
m∈Z

No(r, s,m, n)arbszmqn.
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Now the reader should have no trouble interpreting any given instance of No(a, b; z; q) combina-
torially. To give an example, No(1,−1; 1; q) is the generating function for generalized odd Durfee
symbols in which λ = µ, each symbol being counted with the weight (−1)r.

To get at the functions N o
2k(a, b; q), we consider the rank moments of generalized odd Durfee

symbols. The kth symmetrized rank moment ηok(r, s, n) is defined by

ηok(r, s, n) :=
∑
m∈Z

(
m+ bk2c

k

)
No(r, s,m, n).

In light of the invariance z ↔ 1/z in (1.1), we have

No(r, s,m, n) = No(r, s,−m,n), (2.1)

and hence ηok(r, s, n) = 0 whenever k is odd. As for k even, we have the following:

Theorem 2.1. For k ≥ 1,∑
r,s,n≥0

ηo2k(r, s, n)arbsqn = N o
2k(a, b; q)

=

(
−aq,−bq; q2

)
∞

(q2, abq2; q2)∞

∑
n∈Z

(
−q/a,−q/b; q2

)
n

(−ab)nqn2+3n+1+k(2n+1)

(1− q2n+1)2k+1 (−aq,−bq; q2)n+1

.

Proof. The first equality is straightforward from the definition (1.2). For the second, we begin with
the identity

No(a, b; z; q) =

(
−aq,−bq; q2

)
∞

2 (q2, abq2; q2)∞

∑
n∈Z

(
1− q4n+2

) (
−q/a,−q/b; q2

)
n

(−ab)nqn2+3n+1

(1− zq2n+1) (1− q2n+1/z) (−aq,−bq; q2)n+1

=

(
−aq,−bq; q2

)
∞

(q2, abq2; q2)∞

∑
n∈Z

(
−q/a,−q/b; q2

)
n

(−ab)nqn2+3n+1

(1− zq2n+1) (−aq,−bq; q2)n+1

.

(2.2)

The first equation follows from the case (a, b, c, d, e, q) → (q2, zq, q/z,−q/a,−q/b, q2) of a limiting
case of the Watson-Whipple transformation [13, p. 242, Eq. (III.18), n→∞],

∞∑
n=0

(aq/bc, d, e)n (aqde )n

(q, aq/b, aq/c)n
=

(aq/d, aq/e)∞
(aq, aq/de)∞

∞∑
n=0

(a,
√
aq,−

√
aq, b, c, d, e)n (aq)2n(−1)nqn(n−1)/2

(q,
√
a,−
√
a, aq/b, aq/c, aq/d, aq/e)n (bcde)n

.

Substituting n 7→ −n− 1 and simplifying using the identity

(a)−n =
(−1)nq

n(n+1)
2

an (a−1q)n
(2.3)

converts the unilateral sum to a bilateral sum. The second equation follows after applying the
partial fraction identity

1− q4n+2

(1− zq2n+1)(1− q2n+1/z)
=

1
1− zq2n+1

+
z−1q2n+1

1− q2n+1/z
,

and again using the substitution n 7→ −n− 1 to simplify one of the two resulting series.
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Next, we differentiate (as in [3, p. 63]) to obtain∑
r,s,n≥0

ηo2k(r, s, n)qn = N o
2k(a, b; q) =

1
(2k)!

d2k

dz2k

(
zkNo(a, b; z; q)

) ∣∣∣∣
z=1

=
1

(2k)!

2k∑
j=0

(
2k
j

)
k(k − 1) · · · (k − j + 1)

d2k−j

dz2k−j (No(a, b; z; q))
∣∣∣∣
z=1

=
k∑
j=0

(
k

j

)(−aq,−bq; q2)∞
(q2, abq2; q2)∞

∑
n∈Z

(
−q/a,−q/b; q2

)
n

(−ab)nqn2+3n+1+(2k−j)(2n+1)

(1− q2n+1)2k−j+1 (−aq,−bq; q2)n+1

=

(
−aq,−bq; q2

)
∞

(q2, abq2; q2)∞

∑
n∈Z

(
−q/a,−q/b; q2

)
n

(−ab)nqn2+3n+1+k(2n+1)

(1− q2n+1)2k+1 (−aq,−bq; q2)n+1

,

as desired. �

Remark 2.2. In addition to the symmetrized rank moment, it is also useful to consider the
ordinary rank moment Ho

k(r, s, n), defined by

Ho
k(r, s, n) :=

∑
m∈Z

mkNo(r, s,m, n).

Let Hok(a, b; q) denote the three-variable generating function for Ho
k(r, s, n), i.e.,

Hok(a, b; q) :=
∑

r,s,n≥0

Ho
k(r, s, n)arbsqn.

While Ho2k(a, b; q) doesn’t have a generating function as elegant as the one for N o
2k(a, b; q) in The-

orem 2.1, it does satisfy

Ho2k(a, b; q) = δ2kz (No(a, b; z; q))
∣∣∣∣
z=1

,

where δz := z d
dz , and so it fits in more naturally with the theory of Jacobi forms. Moreover,

using the fact that Ho2k−1(a, b; q) = 0 (which follows from (2.1)) we have that any N o
2k(a, b; q) may

be written as a linear combination of the Ho2k(a, b; q) (and vice versa). Hence any automorphic
properties are shared by these two generating functions.

By a k-marked generalized odd Durfee symbol for n we mean a generalized odd Durfee symbol
for n where the entries in the array may now occur in k colors (denoted by subscripts 1, . . . , k),
such that:

(1) The sequence of parts and the sequence of subscripts in each row is non-increasing.
(2) Each of the subscripts 1, 2, ..., k − 1 occurs at least once in the top row.
(3) If M1, N2, . . . Vk−2,Wk−1 are the largest parts with their respective subscripts in the top

row, then all parts in the bottom row with subscript 1 lie in the interval [1,M1], with
subscript 2 lie in [M1, N2], . . . , with subscript k − 1 lie in [Vk−2,Wk−1], and with subscript
k lie in [Wk−1, t], where t is the third subscript of the symbol.

If the subscripts λ and µ have no missing numbers, then this is precisely the definition of Andrews’
k-marked odd Durfee symbols.

Let Dok(r, s, n) be the number of generalized k-marked odd Durfee symbols having r missing parts
in the subscript λ and s missing parts in the subscript µ. For such a symbol δ and for each i we
denote the number of entries in the top (resp. bottom) row with subscript i by τi(δ) (resp. βi(δ)).
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We extend the definition of rank by defining the ith rank of a generalized k-marked odd Durfee
symbol δ to be

ρi(δ) :=

{
τi(δ)− βi(δ)− 1 for 1 ≤ i < k,

τi(δ)− βi(δ) for i = k.

Let Dok(r, s,m1,m2, . . . ,mk, n) denote the number of generalized k-marked odd Durfee symbols
counted by Dok(r, s, n) with ith rank equal to mi. We have the following generating function:

Theorem 2.3. For k ≥ 2 we have∑
m1,m2,...,mk∈Z

∑
r,s,n≥0

Dok(r, s,m1,m2, . . . ,mk, n)xm1
1 xm2

2 · · ·x
mk
k dresqn

=
(−aq,−bq; q2)∞
(q2, abq2; q2)∞

∑
n≥0

(1− q4n+2)(−q/a,−q/b; q2)n(−ab)nqn2+(2k+1)n+k

(−aq,−bq; q2)n+1
∏k
i=1(1− xiq2n+1)(1− q2n+1/xi)

.

(2.4)

Proof. Following Andrews [3], we begin by appealing to the k-fold generalization of Watson’s q-
analogue of Whipple’s theorem [3, p. 43, Eq. (2.4)]. In that identity we replace k by k + 1, let
N →∞, replace q by q2, let a = q2, bk+1 = −q/a, ck+1 = −q/b, and for each 1 ≤ i ≤ k, set bi = xiq
and ci = q/xi. After some simplification the result is∑

m1,m2,...,mk≥0

(−q/a,−q/b; q2)m1+···+mk(ab)m1+···+mkq2(m1+···+mk)+1

× q2m1+1

(x1q, q/x1; q2)m1+1
× q2(m1+m2)+1

(x2q2m1+1, q2m1+1/x2; q2)m2+1
× · · ·

× q2(m1+···+mk−1)+1

(xk−1q2(m1+···+mk−2)+1, q2(m1+···+mk−2)+1/xk−1; q2)mk−1+1

× 1
(xkq2(m1+···+mk−1)+1, q2(m1+···+mk−1)+1/xk; q2)mk+1

=
(−aq,−bq; q2)∞
(q2, abq2; q2)∞

∑
n≥0

(1− q4n+2)(−q/a,−q/b; q2)n(−ab)nqn2+(2k+1)n+k

(−aq,−bq; q2)n+1
∏k
i=1(1− xiq2n+1)(1− q2n+1/xi)

.

That the left hand side above is the generating function∑
m1,m2,...,mk∈Z

∑
r,s,n≥0

Dok(r, s,m1,m2, . . . ,mk, n)xm1
1 xm2

2 · · ·x
mk
k dresqn

follows just as in [3]. Indeed, the only difference between this multiple sum and the multiple sum in
[3, p. 64, Eq. (9.1)] is that our (−q/a,−q/b; q2)m1+···+mk(ab)m1+···+mk is replaced by q2(m1+···+mk)2

(corresponding to the subscripts λ and µ of the symbol each having no missing parts). �

Setting xi = 1 in (2.4) we may conclude:

Corollary 2.4. For k ≥ 1 we have ηo2k(r, s, n) = Dok+1(r, s, n).

This ends our discussion of the combinatorics of the functions No(a, b; z; q) and N o
2k(a, b; q). We

are now ready to study their automorphic properties.
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3. Modular forms and quasimodular forms

In this section we prove Theorem 1.1 and Corollaries 1.2 and 1.3.

Proof of Theorem 1.1. We require a 3φ2 transformation [13, p. 241, Eq. (III.9)],∑
n≥0

(a, b, c)n (de/abc)n

(d, e, q)n
=

(e/a, de/bc)∞
(e, de/abc; q)∞

∑
n≥0

(a, d/b, d/c)n (e/a)n

(d, de/bc, q)n
, (3.1)

as well as the q-Gauss summation [13, p. 236, Eq. (II.8)],∑
n≥0

(a, b)n (c/ab)n

(c, q)n
=

(c/a, c/b)∞
(c, c/ab)∞

. (3.2)

Beginning with an application of (3.1) with (a, b, c, d, e, q) = (q2,−q/a,−aq, q3/z, zq3, q2), we com-
pute

1+(z + a)(1 + 1/az)No(1/a, a; z; q)

= 1 + q(z + a)(1 + 1/az)
∑
n≥0

(−aq2/z,−q2/az; q2)n(zq)n

(q/z, q2; q2)n+1

= 1 + (1 + a/z)(1 + 1/az)
∑
n≥1

(−aq2/z,−q2/az; q2)n−1(zq)n

(q/z, q2; q2)n

= 1 +
∑
n≥1

(−aq2/z,−q2/az; q2)n(zq)n

(q/z, q2; q2)n

=
∑
n≥0

(−a/z,−1/az; q2)n(zq)n

(q/z, q2; q2)n

=
(−aq,−q/a; q2)∞

(zq, q/z; q2)∞
,

the last equality following from the case (a, b, c, q) = (−a/z,−1/az, q/z, q2) of (3.2). �

Proof of Corollaries 1.2 and 1.3. The product on the right-hand side of (1.3) is the quotient of two
Jacobi forms (with modular variable τ , where q := e2πiτ , and with different elliptic variables, say
u and v, where z := e2πiu and a := e2πiv). To be more precise, we use the Jacobi theta function as
defined in (4.1) and its modular transformation law as given in Lemma 4.1. Specializing the elliptic
variable of a Jacobi form at torsion points is known to give modular forms by Theorem 1.3 of [12].
This yields Corollary 1.2. By differentiating the transformation formula one directly sees that for
a Jacobi form F (u; τ) it follows that ∂`

∂u`
|u=0 is a quasimodular form for ` ≥ 2 (and a modular form

for ` = 1.) Appealing to Remark 2.2, this gives Corollary 1.3. �

4. Mock theta functions and mock modular forms

The goal of this section is to prove Theorem 4.5, which is a more precise version of Theorem 1.5.
First we present some background, beginning with definitions of harmonic weak Maass forms (of
half-integral weight), mock theta functions, and mock modular forms [10, 26, 28].

If k ∈ 1
2Z \ Z, τ = x+ iy with x, y ∈ R, then the weight k hyperbolic Laplacian is given by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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If v is odd, then define εv by

εv :=

{
1 if v ≡ 1 (mod 4),
i if v ≡ 3 (mod 4).

Moreover we let χ be a Dirichlet character. A harmonic weak Maass form of weight k with Neben-
typus χ on a subgroup Γ ⊂ Γ0(4) is any smooth function M : H→ C satisfying the following:

(1) For all
(
a b
c d

)
∈ Γ and all τ ∈ H, we have

M

(
aτ + b

cτ + d

)
=
(
c

d

)
ε−2k
d χ(d) (cτ + d)k M(τ).

(2) We have that ∆k(M) = 0.
(3) The function M has at most linear exponential growth at all the cusps of Γ.

We let Hk (Γ, χ) denote the space of harmonic weak Maass forms of weight k with Nebentypus
χ on a subgroup Γ. Every harmonic weak Maass form M has a Fourier expansion of the form
M = M+ +M−, where

M+(τ) =
∑

n�−∞
a+(n)qn,

M−(τ) =
∑
n�∞

a−(n)Γ(1− k, 4π |n| y)qn + a−(0)y1−k,

where Γ(α, x) :=
∫∞
x e−ttα−1dt is the incomplete Gamma-function. Here we call M+ the holomor-

phic part and M− the non-holomorphic part of M .
The non-holomorphic part is closely related to classical modular forms and period integrals. To

describe this relationship we define the differential operator ξk := 2iyk ∂
∂τ . It defines a surjective

map
ξk : Hk (Γ, χ)→M !

2−k (Γ, χ) ,
where M !

2−k (Γ, χ) is the space of weight 2 − k weakly holomorphic modular forms (i.e., those
modular forms that may have poles at the cusps of Γ) with Nebentypus χ on Γ. The function
ξk(M) is then given by

ξk(M) = ξk(M−) = g(−τ),
where g ∈M !

2−k (Γ, χ). We call g the shadow of M+.
Furthermore, the non-holomorphic part M− is (up to constants) given by the period integral∫ i∞

−τ

g(w)
(−i(w + τ))k

dw.

(See e.g. Section 7.2 of [21] and section 5 of [26] for more details.) Later we concentrate on those
forms M ∈ Hk(Γ, χ) whose image g under ξk is a cusp form (which is the space H+

k (Γ, χ) in [10]).
In this case the sum for M− reduces to n < 0 and we have that a−(0) = 0.

While Ramanujan presented a rough characterization of mock theta functions, all of the examples
he wrote down are now known to be holomorphic parts of weight 1/2 harmonic weak Maass forms.
Following Zagier [26], the holomorphic part of a harmonic weak Maass form is called a mock modular
form in general, and a mock theta function when k = 1/2.

Next we recall important work of Zwegers [28]. For τ ∈ H, u, v ∈ C \ (Zτ + Z), Zwegers defined
the Lerch sum

µ(u, v) = µ(u, v; τ) :=
z

1
2

ϑ(v)

∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,
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where z := e2πiu, w := e2πiv, q := e2πiτ and the Jacobi theta function is

ϑ(v; τ) = ϑ(v) :=
∑

ν∈Z+ 1
2

eπiνwνqν
2/2. (4.1)

We require the following facts about these functions

Lemma 4.1. Assume the notation above.
(1) We have

ϑ(u+ τ) = −e−πiτ−2πiuϑ(u),

ϑ(−u) = −ϑ(u),

ϑ(u) = −iq
1
8 z−

1
2 (q)∞(z)∞

(
z−1q

)
∞ .

(2) We have
µ(u, v) = µ(v, u),

µ(u+ 1, v) = −µ(u, v),

z−1wq−
1
2µ(u+ τ, v) = −µ(u, v)− iz−

1
2w

1
2 q−

1
8 ,

µ(u+ τ, v + τ) = µ(u, v),

µ(u+ w, v + w)− µ(u, v) =
1

2πi
ϑ′(0)ϑ(u+ v + w)ϑ(w)

ϑ(u)ϑ(v)ϑ(u+ w)ϑ(v + w)
.

Zwegers used µ to construct harmonic weak Maass forms. To make this precise, for τ ∈ H and
u ∈ C, let c := Im(u)/y, and define

R(u) = R(u; τ) :=
∑

ν∈Z+ 1
2

(−1)ν−
1
2

{
sgn(ν)− E

(
(ν + c)

√
2y
)}

e−2πiνuq−ν
2/2,

where E(x) is the odd function

E(x) := 2
∫ x

0
e−πu

2
du = sgn(x)

(
1− β(x2)

)
, (4.2)

where for positive real x we let β(x) :=
∫∞
x u−

1
2 e−πudu.

Using µ and R, Zwegers defined the real analytic function

µ̂(u, v) = µ̂(u, v; τ) := µ(u, v) +
i

2
R(u− v).

This function specializes at torsion points to give weight 1/2 harmonic weak Maass forms. This is
apparent from the following theorem.

Theorem 4.2. Assuming the notation and hypotheses above, we have that for k, `,m, n ∈ Z
µ̂(u, v) = µ̂(v, u),

µ̂ (u+ kτ + `, v +mτ + n) = (−1)k+`+m+neπi(k−m)2τ+2πi(k−m)(u−v) µ̂(u, v).

Moreover, if A =
(
α β
γ δ

)
∈ SL2(Z), then

µ̂

(
u

γτ + δ
,

v

γτ + δ
;
ατ + β

γτ + δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)

2/(γτ+δ) · µ̂(u, v; τ),

where χ(A) := η
(
ατ+β
γτ+δ

)
/
(

(γτ + δ)
1
2 η(τ)

)
.
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Remark 4.3. Note that from Theorem 4.2 one can conclude that for a, b ∈ Q the function

g(u; τ) := za q−
a2

2 µ(u, aτ + b) (4.3)

can be completed to a non-holomorphic Jacobi form of weight 1
2 and index −1

2 for some subgroup
and some multiplier. To be more precise, it turns out, that one obtains by this completion a
so-called harmonic Maass Jacobi form (see [8] for the precise definition).

The function R can also be written as a theta-integral.

Proposition 4.4. For a, b ∈ R we define

ga,b(τ) :=
∑

n∈a+Z
neπin

2τ+2πinb.

Then, for a ∈
(
−1

2 ,
1
2

]
and b ∈ R, we have∫ i∞

−τ

ga+ 1
2
,b+ 1

2
(w)√

−i(τ + w)
dw = −e−πia2τ+2πia(b+ 1

2)R(aτ − b) + iδ 1
2
,a,

where δ 1
2
,a = 0, unless a = 1

2 in which case it equals 1.

We note that the case a ∈
(
−1

2 ,
1
2

)
is Theorem 1.16 (1) of [28] and that the case a = 1

2 can be
proved along the same lines.

We are now ready to prove the main theorem of this section.

Theorem 4.5. Let z be a torsion point.

(1) The function q−
1
3No(0, 0; z; q) is a mock theta function with shadow

− i√
6

∑
n≡1 (mod 3)

(−1)
n−1

3 nq
n2

3 (z−n + zn).

(2) The function q−
1
2No

(
0, 1

q ; z; q
)

is a mock theta function with shadow

− i
2

∑
n≡1 (mod 2)

(−1)
n−1

2 nq
n2

2 z−n.

(3) The function q−
1
8No(0,−1; z; q) is a mock modular form. For z 6= 1 it is a mock theta

function and its shadow is given by

i

4
z

1
2

1− z
∑

n≡1 (mod 4)

nq
n2

8

(
z
n
2 + z−

n
2

)
.

For z = 1 it has weight 3
2 and shadow

i

2π
η2(2τ)
η(τ)

.

(4) The function No(1,−1; z; q) is a mock modular form. For z 6= ±1 it is a mock theta
function. Its shadow is given by

−
√

2iz
1− z2

∑
n∈Z

nqn
2
zn.
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For z = ±1 it is a mock modular form of weight 3
2 . For z = 1 the shadow is

− i

4
√

2π
Θ(τ)

and for z = −1 it has the shadow
i

4
√

2π
Θ
(
τ +

1
2

)
.

(5) The function q−
1
4No

(
1, 1

q ; z; q
)

is a mock modular form. For z 6= −1 it is a mock theta
function and its shadow is given by

− i

2
√

2
z

1
2

1 + z

∑
n≡1 (mod 2)

(−1)
n−1

2 nq
n2

4 z
n
2 .

For z = −1 it is a mock modular form of weight 3
2 with shadow

−1
2
√

2π
η2(4τ)
η(2τ)

.

Remark 4.6. We note that (2) and (3) of Theorem 4.5 (for z 6= 1) could be concluded from [7]
but for the reader’s convenience we give a proof here.

Proof. For the proof, we will again require that if λ, µ ∈ Q and Φ(u; τ) is a Jacobi form of weight k
and index m, then qmλ

2
Φ(λτ + µ; τ) is a modular form (on some congruence subgroup). Moreover

∂
∂u (Φ(u; τ))

∣∣
u=0

is a modular form of weight k + 1 and index m.
(1) We first consider the case (a, b) = (0, 0). We have by (2.2)

No(0, 0; z; q) =
1

(q2; q2)∞

∑
n∈Z

(−1)nq3n
2+3n+1

1− zq2n+1
.

It was shown in [9] that
No(0, 0; z; q) = z−1

(
R∗(zq; q2)− 1

)
,

where R(z; q) is Dyson’s 2-variable rank generating function and

R∗(z; q) :=
R(z; q)
1− z

.

Using the identity (see equation (3.1) of [9])

R∗(z; q) = iz−
3
2 q−

1
8µ(3u,−τ ; 3τ)− iz

1
2 q−

1
8µ(3u, τ ; 3τ)− iz−

1
2 q

1
24

η3(3τ)
η(τ)ϑ(3u; 3τ)

gives that

No(0, 0; z; q) = iz−
5
2 q−

7
4µ(3u+ 3τ,−2τ ; 6τ)− iz−

1
2 q

1
4µ(3u+ 3τ, 2τ ; 6τ)

− iz−
3
2 q−

5
12

η3(6τ)
η(2τ)ϑ(3u+ 3τ ; 6τ)

− z−1.

Combining this with Lemma 4.1, Theorem 4.2, and Remark 4.3 one can show that the function
q−

1
3No(0, 0; z; q) is (up to addition of a constant) the holomorphic part of a harmonic weak Maass

form of weight 1
2 . In particular, its non-holomorphic part is given by

1
2

(
−q−

25
12 z−

5
2R(3u+ 5τ ; 6τ) + q−

1
12 z−

1
2R(3u+ τ ; 6τ)

)
.
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Using Proposition 4.4, the elliptic transformation properties of R(u) and the properties of ga,b(τ)
given in [28] we obtain that this equals

1
2

(
−2q−

1
3 z−1 + q−

1
12 z

1
2R(3u− τ ; 6τ) + q−

1
12 z−

1
2R(3u+ τ ; 6τ)

)
= −q−

1
3 z−1 − e

πi
6

2

∫ i∞

−6τ

(
g 1

3
, 1
2
−3u(w) + g 1

3
, 1
2
+3u(w)

)
√
−i(6τ + w)

dw.

Letting w → 6w we see that the shadow of q−
1
3No(0, 0; z; q) equals

−
√

6e
πi
6

2

(
g 1

3
, 1
2
−3u(6τ) + g 1

3
, 1
2
+3u(6τ)

)
.

Inserting the definition of ga,b now easily gives the claim.

(2) We next consider the case (a, b) =
(

0, 1
q

)
. We have by (2.2)

No

(
0,

1
q

; z; q
)

=

(
−q2; q2

)
∞

(q2; q2)∞

∑
n∈Z

(−1)nq2n
2+2n+1

1− zq2n+1
.

It is not hard to see, proceeding as in the proof of Theorem 3.1 in [9], that

No

(
0,

1
q

; z; q
)

= −i η4(4τ)
zη2(2τ)ϑ(2u+ 2τ ; 4τ)

− iq
1
2µ(2u+ 2τ, 2τ ; 4τ). (4.4)

This easily implies the claim as before. Here, the non-holomorphic part of the completion of
q−

1
2No

(
0, 1

q ; z; q
)

is given by 1
2R(2u; 4τ). Using Proposition 4.4 we obtain

1
2
R(2u; 4τ) = −1

2

∫ i∞

−4τ

g 1
2
, 1
2
−2u(w)√

−i(4τ + w)
dw.

We let w → 4w and see that the shadow of q−
1
2No

(
0, 1

q ; z; q
)

is equal to −g 1
2
, 1
2
−2u(4τ). From this

it is not hard to confirm the claim.
(3) For (a, b) = (0,−1), we have from (2.2)

No (0,−1; z; q) =

(
q; q2

)
∞

(q2; q2)∞

∑
n∈Z

q2n
2+3n+1

(1− zq2n+1) (1− q2n+1)
. (4.5)

We first assume that z 6= 1. Using that in this case we have that

z−1 − 1
(1− zq2n+1) (1− q2n+1)

=
z−1

1− q2n+1
− 1

1− zq2n+1

and ∑
n∈Z

q2n
2+3n+1

1− q2n+1
= 0 (4.6)

yields

No (0,−1; z; q) = −
(
q; q2

)
∞

(z−1 − 1) (q2; q2)∞

∑
n∈Z

q2n
2+3n+1

1− zq2n+1
.
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As in the proof of Theorem 3.3 of [9], we see that

No (0,−1; z; q) = − 1
1− z

(
µ

(
2u+ 2τ, τ +

1
2

; 4τ
)
− zµ

(
2u+ 2τ, 3τ +

3
2

; 4τ
))

.

This easily yields the claim for z 6= 1. In this case, the non-holomorphic part of the completion of
q−

1
8No (0,−1; z; q) is given by

− i
2
q−

1
8

1− z

(
R

(
2u+ τ − 1

2
; 4τ
)

+ zR

(
2u− τ − 1

2
; 4τ
))

.

Using Proposition 4.4 and properties of ga+ 1
2
,b+ 1

2
we find that this equals

i

2
z

1
2

1− z

∫ i∞

−4τ

g 1
4
,2u(w) + g 1

4
,−2u(w)√

−i(4τ + w)
dw.

Again we let w → 4w and we see that the shadow of q−
1
8No (0,−1; z; q) is given by

iz
1
2

1− z

(
g 1

4
,2u(4τ)− g 1

4
,−2u(4τ)

)
.

Again rewriting gives the claim.
We next consider the case z = 1. We have from (4.5)

No (0,−1; 1; q) =

(
q; q2

)
∞

(q2; q2)∞

∑
n∈Z

q2n
2+3n+1

(1− q2n+1)2
.

Following the calculations for z 6= 1, we see that

No (0,−1; 1; q) =
d

dz

(
µ

(
2u+ 2τ, τ +

1
2

; 4τ
)
− zµ

(
2u+ 2τ, 3τ +

3
2

; 4τ
))∣∣∣∣

z=1

= q
1
8
d

dz
(Φ1(u; τ))

∣∣∣∣
z=1

+
1
2
q−

1
8 Φ1(0; τ),

where

Φ1(u; τ) := z−
1
2 q−

1
8

(
µ

(
2u+ 2τ, τ +

1
2

; 4τ
)
− zµ

(
2u+ 2τ, 3τ +

3
2

; 4τ
))

.

Using (4.6), we obtain that

q−
1
8No (0,−1; 1; q) =

d

dz
(Φ1(u; τ))

∣∣∣∣
z=1

.

Using the above, one can show that q−
1
8No (0,−1; 1; q) can be completed to a harmonic weak Maass

form by adding the term

i

2
d

dz

(
q−

1
8 z−

1
2R

(
2u+ τ − 1

2
; 4τ
)

+ q−
1
8 z

1
2R

(
2u− τ − 1

2
; 4τ
))∣∣∣∣

z=1

= i
d

dz

(
q−

1
8 z−

1
2R

(
2u+ τ − 1

2
; 4τ
))∣∣∣∣

z=1

= − d

dz

(∑
n∈Z

(
sgn

(
n− 1

2

)
− E

((
n− 1

4
+

Im(u)
2y

)√
8y
))

q−2(n− 1
4)2

z−2(n− 1
4)
)∣∣∣∣∣

z=1

. (4.7)
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Using the identities (4.2) and

β(x) =
1
π
x−

1
2 e−πx − 1

2
√
π
· Γ
(
−1

2
;πx

)
,

E′(x) = 2e−πx
2
,

where Γ(α;x) :=
∫∞
x tα−1e−tdt is the usual incomplete gamma-function, we compute that (4.7)

equals

− 1√
π

∑
n∈Z

∣∣∣∣n− 1
4

∣∣∣∣Γ
(
−1

2
; 8πy

(
n− 1

4

)2
)
q−2(n− 1

4)2

(4.8)

which does not contribute to the holomorphic part. To rewrite (4.8) as a theta integral, we use the
easily verified identity (α > 0)

e−αiτΓ
(
−1

2
; 2αy

)
= − i√

α

∫ i∞

−τ

eαit

(−i (t+ τ))
3
2

dt. (4.9)

This yields that (4.8) may be written as

i

2π

∫ i∞

−τ

∑
n∈Z e

4πi(n− 1
4)2

t

(−i(t+ τ))
3
2

dt.

This gives that the shadow of q−
1
8No (0,−1; 1; q) equals

i

2π

∑
n∈Z

q
(4n−1)2

8 =
i

2π
η2(2τ)
η(τ)

.

(4) Turning to the case (a, b) = (1,−1), we have from (2.2)

No(1,−1; z; q) =
(q2; q4)∞
(q4; q4)∞

∑
n∈Z

qn
2+3n+1

(1− zq2n+1) (1− q4n+2)
.

We first assume that z 6= ±1. Then we have

1
(1− zq2n+1) (1− q4n+2)

=
−z2

(1− z2) (1− zq2n+1)
+

1
2 (1− z) (1− q2n+1)

+
1

2 (1 + z) (1 + q2n+1)
.

Since ∑
n∈Z

qn
2+3n+1

1− q2n+1
= −1

2

∑
n∈Z

qn
2+n = −(q4; q4)2∞

(q2; q2)∞
, (4.10)

∑
n∈Z

qn
2+3n+1

1 + q2n+1
=

(q4; q4)2∞
(q2; q2)∞

,

we obtain

No(1,−1; z; q) = − z

1− z2
− (q2; q4)∞z2

(1− z2)(q4; q4)∞

∑
n∈Z

qn
2+3n+1

1− zq2n+1
.

A direct computation shows that

No(1,−1; z; q) = − z

1− z2
+ 2z

3
2 q−

1
4

1
1− z2

µ

(
u− τ, 1

2
; 2τ
)
. (4.11)
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From this it is not hard to conclude that for z 6= ±1 the function No(1,−1; z; q) can be completed
to a harmonic weak Maass form of weight 1

2 , by adding the function

− z

1− z2
+ z

1
2 q−

1
4

i

1− z2
R

(
u+ τ − 1

2
; 2τ
)
. (4.12)

Using Proposition 4.4 we find

z
1
2 q−

1
4

i

1− z2
R

(
u+ τ − 1

2
; 2τ
)

=
z

1− z2
− i z

1− z2

∫ i∞

−2τ

g0,u(w)√
−i(2τ + w)

dw.

Thus, the holomorphic contribution to (4.12) is 0 and the shadow of No(1,−1; z; q) equals
√

2iz
1− z2

g0,u(2τ).

We next turn to the case z = 1 (the case z = −1 is obtained by replacing q by −q and then
multiplying by −1). We have by taking the limit of (4.11)

No(1,−1; 1; q) =
1
2
− d

dz

(
z

3
2 q−

1
4µ

(
u− τ, 1

2
; 2τ
))∣∣∣∣

z=1

= − d

dz
(Φ2(u; τ))

∣∣∣∣
z=1

,

where

Φ2(u; τ) := z
1
2 q−

1
4µ

(
u− τ, 1

2
; 2τ
)
.

Here we used that Φ2(0; τ) = 1
2 . From the case z 6= 1 we may conclude that this function can be

completed to a harmonic weak Maass form by adding

− i

2
d

dz

(
z

1
2 q−

1
4R

(
u− τ − 1

2
; 2τ
))∣∣∣∣

z=1

=
1
2
d

dz

(∑
n∈Z

(
sgn

(
n+

1
2

)
− E

((
n+

Im
2y

)
2
√
y

)
q−n

2
z−n

))∣∣∣∣∣
z=1

=
1

4
√
π

∑
n∈Z

Γ
(
−1

2
; 4πn2y

)
|n|q−n2

. (4.13)

We now proceed as in case (3). Using (4.9), we rewrite the correction term as a period integral

− i

4
√

2π

∫ i∞

−τ

∑
n∈Z e

2πin2t

(−i(t+ τ))
3
2

dt.

From this we can directly conclude that the shadow of No(1,−1; 1; q) is given by

− i

4
√

2π
Θ(τ).

(5) Finally we treat the case (a, b) = (1, 1/q). We obtain that

No(1, 1/q; z; q) =
(−q)∞
(q)∞

∑
n∈Z

(−1)nqn
2+2n+1

(1− zq2n+1) (1 + q2n+1)
.

We first assume that z 6= −1. Using the identity

1 + z−1

(1− zq2n+1) (1 + q2n+1)
=

z−1

(1 + q2n+1)
+

1
1− zq2n+1
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and the fact that ∑
n∈Z

(−1)nqn
2+2n+1

1 + q2n+1
= 0 (4.14)

gives that

No(1, 1/q; z; q) =
(−q)∞

(1 + 1/z)(q)∞

∑
n∈Z

(−1)nqn
2+2n+1

1− zq2n+1
.

It is not hard to see that this can be rewritten as

No(1, 1/q; z; q) = − iz
1
2

1 + z
q

1
4µ(u+ τ, τ ; 2τ).

It is now not hard to show that q−
1
4No(1, 1/q; z; q) is the holomorphic part of a harmonic weak

Maass form. Here, the associated non-holomorphic part is 1
2(1+z)z

1
2R(u; 2τ). By Proposition 4.4

we find
z

1
2

2(1 + z)
R(u; 2τ) = − z

1
2

2(1 + z)

∫ i∞

−2τ

g 1
2
, 1
2
−u(w)√

−i(2τ + w)
dw,

which obviously does not have a holomorphic contribution. Hence, the shadow of q−
1
4No(1, 1/q; z; q)

is given by the unary theta function

− 1√
2
z

1
2

1 + z
g 1

2
, 1
2
−u(2τ).

We next deal with the case z = −1 From the case z 6= −1, we may conclude that

No(1, 1/q;−1; q) =
d

dz

(
−iz

1
2 q

1
4µ(u+ τ, τ ; 2τ)

)∣∣∣
z=−1

.

Thus, using (4.14), we obtain

q−
1
4No(1, 1/q;−1; q) = −i d

dz
(Φ3(u; τ))

∣∣∣∣
z=1

− i

2
µ

(
1
2

+ τ, τ ; 2τ
)

= −i d

dz
(Φ3(u; τ))

∣∣∣∣
z=1

,

where

Φ3(u; τ) := µ

(
u+

1
2

+ τ, τ ; 2τ
)
.

Thus q−
1
4No(1, 1/q;−1; q) may be completed to a harmonic weak Maass form by adding the term

1
2
d

dz

(
R

(
u+

1
2

; 2τ
))∣∣∣∣

z=1

= − i

2
d

dz

 ∑
ν∈ 1

2
+Z

(
sgn(ν)− E

((
ν +

Im(u)
2y

)
2
√
y

))
q−ν

2
z−ν


∣∣∣∣∣∣∣
z=1

=
−i

4
√
π

∑
ν∈ 1

2
+Z

|ν|Γ
(
−1

2
; 4πν2y

)
q−ν

2

which does not have a holomorphic contribution. Using (4.9), we rewrite the non-holomorphic part
in terms of a period integral

− 1
4
√

2π

∫ i∞

−τ

∑
n∈ 1

2
+Z e

2πin2t

(−i(t+ τ))
3
2

dt
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and we directly see that the shadow of q−
1
4No(1, 1/q;−1; q) is given by

− 1
4
√

2π

∑
n∈Z

q
(2n+1)2

4 = − 1
2
√

2π
η2(4τ)
η(2τ)

.

�

5. Relation to class numbers

In this section we prove Theorem 1.6. Equations (1.4) and (1.5) follow directly from (2.2) and
identities of Andrews, Humbert, and Kronecker. Equation (1.6) we could not trace directly to the
literature and so we argue using (2.2), an identity of Watson, and Lemma 4.1.

Proof of Theorem 1.6. For (1.4), beginning with (2.2) we have

No(1,−1; 1; q) =
(q2; q4)∞
2(q4; q4)∞

∑
n∈Z

qn
2+3n+1

(1− q2n+1)2

=
(q2; q4)∞
(q4; q4)∞

∑
n≥0

qn
2+3n+1

(1− q2n+1)2
=
∑
n≥1

2F (n)qn,

the last equality being equation (XI) in [18].
For (1.5) we begin with (2.2), obtaining

No(0,−1; 1; q) =
(q; q2)∞
(q2; q2)∞

∑
n∈Z

q2n
2+3n+1

(1− q2n+1)2

=
(−q)2∞
(q)2∞

∑
n≥1

(−1)n+1n2qn(n+1)/2

(1 + qn)
=
∑
n≥1

F (8n− 1)qn,

the penultimate equality being an identity from Ramanujan’s lost notebook proven by Andrews [2,
Eq. (1.1)] and the final equality coming from Humbert [17, p. 368] (or see [24, p. 51]). To finish
we note that H(8n− 1) = F (8n− 1).

For (1.6), we start by noting that from (2.2) we have

No(1, 1/q;−1; q) =
(−q)∞
(q)∞

∑
n∈Z

(−1)nqn
2+2n+1

(1 + q2n+1)2
. (5.1)

Next, the first identity in part (2) of Lemma 4.1 is equivalent to the identity

1
(z, q/z)∞

∑
n∈Z

(−1)nznqn(n+1)/2

(1− aqn)
=

1
(a, q/a)∞

∑
n∈Z

(−1)nanqn(n+1)/2

(1− zqn)
.

In this identity let q → q2, a→ 1/q, and z → −zq and then apply d
dz |z=1 to both sides to obtain

(−q)∞
(q)∞

∑
n∈Z

(−1)nqn
2+2n+1

(1 + q2n+1)2
=

1
(−q,−q, q2; q2)∞

∑
n∈Z

nqn
2+2n−1

(1− q2n−1)
. (5.2)
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Finally an identity of Watson [24, Eq. (3.04), corrected] implies that

∑
n≥1

F (4n− 1)(−q)n =
−1

(−q,−q, q2; q2)∞

∑
n∈Z

(n− 1/2)qn
2

(1− q2n−1)

=
−1

(−q,−q, q2; q2)∞

∑
n∈Z

nqn
2

(1− q2n−1)

=
−1

(−q,−q, q2; q2)∞

∑
n∈Z

nqn
2+2n−1

(1− q2n−1)
.

Now apply (5.1) and (5.2) to obtain the first part of (1.6). To finish we use the fact that F (8n+3) =
3H(8n+ 3) and F (8n+ 7) = H(8n+ 7). �

6. Quasimock modular forms

To prove Theorem 1.7, we will appeal to certain partial differential equations arising from the
application of the heat operator to non-holomorphic Jacobi forms [9].
(1) We begin with the case (a, b) = (0, 0). In equation (4.2) of [9] it is shown that

(
6πi

∂

∂τ
+

∂2

∂u2

)(
q−

1
3No(0, 0; z; q)

)
= −8q−

3
4 z−

3
2π2iη8(2τ)

ϑ3(u+ τ ; 2τ)
.

We operate on both sides by ∂2`

∂u2` |u=0 to obtain

∂2(`+1)

∂u2(`+1)

(
q−

1
3No(0, 0; z; q)

) ∣∣∣∣
u=0

= −6πi
∂

∂τ

(
∂2`

∂u2`

(
q−

1
3No(0, 0; z; q)

)) ∣∣∣∣
u=0

+ g`(τ),

where as in the proof of Colloary 1.3 in Section 3 we have that g` is a quasimodular form. Now
by induction (the fact that q−

1
3No(0, 0; 0; q) is a mock theta function-as was shown in Theorem 4.6

(1)- settling the case ` = 0), the claim follows. The rest of the cases are similar and so we will only
exhibit the required PDE’s.
(2) We next consider the case (a, b) = (0, 1/q). Here we make a change of variables in formula (3.6)
in [9] and can compute, using (4.4),(

4πi
∂

∂τ
+

∂2

∂u2

)(
q−

1
2No (0, 1/q; z; q)

)
= −iq−

1
2 z−1

(
8πi

∂

∂τ
+

∂2

∂u2

)(
η4(2τ)

η2(τ)ϑ(2u; 2τ)
+ q−

1
4 zµ(2u, τ ; 2τ)

)∣∣∣∣
τ→2τ,u→u+τ

= 4iπ2q−
1
2 z−1 η

8(2τ)
η(4τ)

ϑ (u+ τ + 1/2; 2τ)
ϑ3(u+ τ ; 2τ)

.

Then the claim follows as above.
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(3) Turning to the case (a, b) = (0,−1), a change of variables in formula (3.10) of [9] yields the
following PDE(

4πi
∂

∂τ
+

∂2

∂u2

)(
e

3πi
8 (1− z)z−

1
2 q−

1
8No(0,−1; z; q)

)
= z−1q−

1
2

(
4πi

∂

∂τ
+

∂2

∂u2

)(
z

1
2 q−

1
8µ(2u, τ ; 4τ) + z

3
2 q−

9
8µ(2u, 3τ ; 4τ)

)∣∣∣∣
u→u+τ,τ→τ+1/2

= −8π2e
3πi
8 z−

3
2 q−

3
4
η8(2τ)
η(τ)

ϑ(u; 2τ)
ϑ3(u+ τ ; 2τ)

.

As in the proof of Theorem 4.2 of [5] we can conclude a PDE for q−
1
8No(0,−1; z; q).

(4) For the case (a, b) = (1,−1), we use Theorem 1.2 of [9] with α = 0 and β = 1
2 . Making a change

of variables and computing the resulting functions ϑ0, ϑ1, a0, a1 occurring there yields(
2πi

∂

∂τ
+

∂2

∂u2

)(
1
2

(1− z2)z−1

(
No(1,−1; z; q) +

z

1− z2

))
= z

1
2 q−

1
4

(
4πi

∂

∂τ
+

∂2

∂u2

)
(µ (u, 1/2; τ))

∣∣∣∣
u→u−τ,τ→2τ

= −16π2z
3
2 q−

3
4

η6(2τ)η3(4τ)
ϑ3(u− τ ; 2τ)ϑ2(1/2; 2τ)

ϑ(2u; 4τ).

Then we argue as in the preceding case.
(5) Finally, we consider the case (a, b) = (1, 1/q). Making a change of variables in formula (3.8) of
[9] we have (

2πi
∂

∂τ
+

∂2

∂u2

)(
i(1 + z)q−

1
4 z−

1
2No(1, 1/q; z; q)

)
= z−

1
2 q−

1
4

(
2πi

∂

∂τ
+

∂2

∂u2

)(
z

1
2 q−

1
4µ(u, τ ; 2τ)

)∣∣∣∣
u→u+τ

= −4π2z−
3
2 q−

3
4
η8(2τ)
η(τ)

ϑ(u+ 1/2; τ)
ϑ3(u+ τ ; 2τ)

.

The claim follows as before.
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[13] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, Cambridge, 1990.
[14] E. P. Golubeva and O. M. Fomenko, Series

∑
F (m)qm, where F (m) is the number of odd classes of binary

quadratic forms of determinant −m, J. Math. Sci. 17 (1981), 1759-1766.
[15] B. Gordon and R. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. 62 (2000), 321–335.
[16] K. Hikami, Transformation of the “second” order mock theta function, Lett. Math. Phys. 75 (2006), 93–98.
[17] G. Humbert, Formules relatives aux nombres de classes des formes quadratiques binaires et positives, J. Math.

Pures Appl. (6) 3 (1907), 337–449.
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