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Zusammenfassung

In der vorliegenden Dissertation wird gezeigt, dass die Fourier-Koeffizienten gewisser har-
monischer Maaß Formen halb-ganzen Gewichts die getwisteten Spuren von CM-Werten
von harmonischen Maaß Formen ganzen Gewichts sind. Diese Ergebnisse verallgemeinern
Arbeiten von Zagier, Bruinier, Funke und Ono über die Spuren von CM-Werten von har-
monischen Maaß Formen von Gewicht 0 und −2.

Wir betrachten zwei Thetaliftungen, den sogenannten Kudla-Millson und den Bruinier-
Funke Thetalift, um diese Resultate zu erhalten. Beide Liftungen haben interessante An-
wendungen. Insbesondere kann mit Hilfe des Bruinier-Funke Lifts gezeigt werden, dass
das Verschwinden der zentralen Ableitung der Hasse-Weil Zeta-Funktion einer elliptischen
Kurve E über Q mit der Algebraizität der Spur von CM-Werten einer zu E assoziierten
harmonischen Maaß Form zusammenhängt.
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Introduction

In this thesis, we show that the Fourier coefficients of certain half-integral weight harmonic
Maass forms are given as “twisted traces” of CM values of integral weight harmonic Maass
forms. These results generalize work of Zagier, Bruinier, Funke, and Ono on traces of CM
values of harmonic Maass forms of weight 0 and −2 [Zag02, BF04, BO13].

We utilize two theta lifts: one of them is a generalization of the Kudla-Millson theta
lift considered in [BF04, BO13, AE13] and the other one is defined using a theta kernel
recently studied by Hövel [Höv12].

Both of the lifts have interesting applications. For instance, we show that the vanishing
of the central derivative of the Hasse-Weil zeta function of an elliptic curve E over Q is
encoded by the Fourier coefficients of a harmonic Maass form arising from the Weierstrass
ζ-function of E.

Parts of this thesis were published in [Alf14] and in a joint paper with Michael Griffin,
Ken Ono, and Larry Rolen [AGOR].

Harmonic weak Maass forms

We first define the notion of harmonic weak Maass forms. The space of such forms was
introduced by Bruinier and Funke in [BF04]. Here and in the following we let z := x+ iy ∈
H = {z ∈ C : =(z) > 0}, where x, y ∈ R, and we let q := e2πiz. For an integer N ≥ 1
we have the congruence subgroup Γ0(N) := {( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N)}. We let
k ∈ Z.

A twice continuously differentiable function f : H→ C is called a harmonic weak Maass
form of weight k for Γ0(N) if the following conditions are satisfied:

(i) f
(
az+b
cz+d

)
= (cz + d)kf(z) for all γ = ( a bc d ) ∈ Γ0(N).

(ii) ∆kf = 0, where ∆k = −y2
(
∂2

∂x2 + ∂2

∂y2

)
+ iky

(
∂
∂x

+ i ∂
∂y

)
is the weight k Laplace

operator.

(iii) There is a polynomial Pf =
∑

n≤0 c
+(n)qn ∈ C[q−1] such that f(z)−Pf (z) = O(e−εy),

as y →∞ for some ε > 0. Analogous conditions are required at all cusps.

We denote the space of such forms by H+
k (N). If k ∈ 1

2
Z \Z we require a slightly modified

transformation behavior in (i). In the body of this thesis we will consider vector valued
analogs of these spaces.
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Introduction

We let k 6= 1. A weight k harmonic Maass form1 f(z) has a Fourier expansion of the
form

f(z) = f+(z) + f−(z) =
∑

n�−∞

c+(n)qn +
∑
n<0

c−(n)Γ(1− k, 4π|n|y)qn, (0.1)

at the cusp ∞ and similar Fourier expansions at the other cusps. Here, Γ(α, x) is the
incomplete Gamma-function. The function f+(z) =

∑
n�−∞ c

+(n)qn is the holomorphic
part of f(z), and f−(z) the non-holomorphic part. If f− is nonzero, then f+ is also called
a mock modular form. This is due to the connection between harmonic Maass forms and
Ramanujan’s mock theta functions: thanks to work of Zwegers [Zwe02] we know that every
such mock theta function is the holomorphic part of a weight 1/2 harmonic Maass form.

If f− vanishes at the cusp ∞, then f = f+ is a weakly holomorphic modular form of
weight k. We denote the space of such forms by M !

k(N). The subspace of modular forms
Mk(N) of M !

k(N) consists of those functions that are holomorphic at all cusps and the
subspace of cusp forms Sk(N) consists of the forms that vanish at all cusps.

Bruinier and Funke [BF04] showed that harmonic Maass forms are intimately connected
to cusp forms via the differential operator

ξk(f) := 2iyk
∂

∂z̄
f(z).

Every weight k cusp form is the image of infinitely many weight 2 − k harmonic Maass
forms under ξ2−k. If the cusp form ξk(f) carries arithmetic information it is an interesting
question whether there are “canonical” preimages of ξk(f) that also encode arithmetic
information.

Throughout the introduction, we will use the variable z = x+ iy ∈ H for integer weight
forms and τ = u+ iv ∈ H for half-integer weight forms. We denote both e2πiz and e2πiτ by
q. It will be clear from the context whether q = e2πiz or q = e2πiτ .

Traces of singular moduli

A classical result states that the values of the modular j-invariant at quadratic irrational-
ities, called “singular moduli”, are algebraic integers. Their properties have been inten-
sively studied since the 19th century. In an influential paper [Zag02], Zagier showed that
the (twisted) traces of these values occur as the Fourier coefficients of weakly holomorphic
modular forms of weight 1/2 and 3/2.

To be more precise we let p be a prime or p = 1 and D be a negative integer congruent to
a square modulo 4p. We consider the set QD,p of positive definite integral binary quadratic
forms [a, b, c] = ax2 + bxy + cy2 of discriminant D = b2 − 4ac such that c is divisible by p.
If p = 1, we simply write QD. For each form Q = [a, b, c] ∈ QD,p there is an associated CM

point αQ = −b+
√
D

2a
in H. These points are called CM points, since the associated elliptic

curve has complex multiplication. The group Γ0(p) acts on QD,p with finitely many orbits.

1For convenience we shall refer to harmonic weak Maass forms as harmonic Maass forms.
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Let ∆ ∈ Z be a positive fundamental discriminant (possibly 1) and d be a positive
integer such that −d and ∆ are squares modulo 4p. To ease the exposition we assume that
−d is a fundamental discriminant throughout the introduction.

For a weakly holomorphic modular form F of weight 0 for Γ0(p), we consider the modular
trace function

t∆(F ; d) =
1√
∆

∑
Q∈Γ0(p)\Q−d∆,p

χ∆(Q)

|Γ0(p)Q|
F (αQ), (0.2)

where Γ0(p)Q denotes the stabilizer of Q in Γ0(p), the image of Γ0(p) in PSL2(Z). The
function χ∆ is a genus character, defined for Q = [a, b, c] ∈ Q−d∆,p by

χ∆(Q) =

{(
∆
n

)
, if (a, b, c/p,∆) = 1, ∆ | (b2 − 4ac), and b2−4ac

∆
is a square mod 4p,

0, otherwise.

Here, n is any integer prime to ∆ and represented by one of the quadratic forms [a, b, c]
or [pa, b, c/p]. It is known that χ∆(Q) is Γ0(p)-invariant [GKZ87]. Note that for ∆ = 1 we
have χ∆(Q) = 1 for all Q ∈ Q−d,p.

Let J(z) = j(z)− 744 = q−1 + 196884q+ 21493760q2 + · · · , q := e2πiz, be the normalized
Hauptmodul for the group PSL2(Z). By the theory of complex multiplication it is known
that t∆(J ; d) is a rational integer [Shi94, Section 5.4].

Zagier [Zag02, Theorem 6] proved that for p = 1 and ∆ > 0 the “generating series” of
these traces,

g∆(τ) = q−∆ −
∑
d≥0

d≡0,3(4)

t∆(J ; d)qd,

is a weakly holomorphic modular form of weight 3/2 for Γ0(4). Here, we set t∆(J ; 0) = 2, if
∆ = 1 and t∆(J ; 0) = 0, otherwise. At the same time, these traces occur as the coefficients
of weight 1/2 weakly holomorphic modular forms. We have that

fd(τ) = q−d +
∑
∆>0

∆≡0,1(4)

t∆(J ; d)q∆

is a weakly holomorphic modular form of weight 1/2.

Twisted traces of CM values of harmonic Maass forms

Zagier’s results were generalized in various directions, mostly for modular curves of genus
zero [BO07, DJ08, Kim09, MP10]. Building upon previous work of Funke [Fun02], Bruinier
and Funke [BF06] showed that Zagier’s function g1 can be obtained as a special case of
a theta lift using a kernel function constructed by Kudla and Millson [KM86]. This lift,
called Kudla-Millson theta lift, maps a harmonic weak Maass form F of weight 0 on a
modular curve of arbitrary genus to a harmonic Maass form IKM(τ, F ) of weight 3/2. It

3



Introduction

is given by the following theta integral

IKM(τ, F ) =

∫
Γ0(N)\H

F (z)Θ(τ, z, ϕKM).

Here, the theta series Θ(τ, z, ϕKM) is associated to a certain even lattice L of signature
(1, 2) and a certain Schwartz function ϕKM first defined in [KM86]. It has weight 3/2 in
the variable τ ∈ H (for SL2(Z) resp. a suitable generalization), is invariant under the action
of Γ0(N) ⊂ SO(1, 2) in the variable z ∈ H, and is valued in the differential forms of Hodge
type (1, 1). The Fourier coefficients of positive index of IKM(τ, F ) are given by the traces
of the CM values of F [BF06, Theorem 7.8].

Theta functions of this kind can be used to lift modular forms from one group to another.
This phenomenon is explained by the fact that the two groups SL2(R) and SO(1, 2) form a
reductive dual pair in the sense of Howe. Such theta lifts are a rich source of information
on modular forms and their generalizations (for example in the work by Shimura, Shintani,
Borcherds, Kudla, and Bruinier just to name a few).

The results of Bruinier and Funke were later generalized to the case ∆ 6= 1 by Ehlen and
the author [AE13]. We developed a systematic approach to twist vector valued modular
forms that transform with a certain Weil representation of Mp2(Z). With this method
and the results of Bruinier and Funke we studied the generating series of twisted traces of
harmonic Maass forms and recovered Zagier’s functions g∆ as special cases of the twisted
Kudla-Millson lift.

Recently, Bruinier and Ono [BO13] obtained a result similar to that of Bruinier and
Funke for the coefficients of weight −1/2 harmonic Maass forms. Using the Maass raising
and lowering operators they modified the Kudla-Millson lift such that it lifts from weight
−2 to weight −1/2. In this way, they obtained a finite algebraic formula for the partition
function p(n) in terms of traces of the CM values of the derivative of a weakly holomorphic
modular form F of weight −2 on Γ0(6).

In this thesis, we generalize the Kudla-Millson lift in two ways. Firstly, we extend the
lift to other weights (as suggested by Bruinier and Ono) and secondly, we include twisted
traces. Moreover, we show that there is another theta lift, the Bruinier-Funke theta lift,
that generalizes Zagier’s functions fd in the same way as the Kudla-Millson lift generalizes
the g∆’s.

To make this more precise recall that p is a prime and that ∆ is a positive fundamental
discriminant. Moreover, −d is a negative fundamental discriminant such that −d and ∆
are squares modulo 4p. By Q−d∆,p we denote the set of positive and negative definite
integral binary quadratic forms [a, b, c] = ax2 + bxy + cy2 of discriminant −d∆ such that
c ≡ 0 (mod p). We assume that (∆, 2p) = 1 if p 6= 1.

Let k ∈ 1
2
Z. We will modify the Kudla-Millson theta lift using the Maass raising and

lowering operators Rk and Lk. These are differential operators that raise respectively lower
the weight by 2. By Rn

k := Rk+2(n−1)◦· · ·◦Rk+2◦Rk we denote the iterated raising operator
and by Lnk = Lk−2(n−1) ◦ · · ·Lk−2 ◦Lk the iterated lowering operator. Note that Rk

−2kF has
weight 0 for a harmonic Maass form F of weight −2k < 0 for Γ0(p) but does not inherit

4



the analytic properties of F .
The generalization of the Kudla-Millson lift of weight −2k < 0 harmonic Maass forms

F is defined by

IKM
∆ (τ, F ) = R

k/2
3/2,τ

∫
Γ0(p)\H

(Rk
−2k,zF )(z)Θ∆(τ, z, ϕKM), for k even,

and by

IKM
∆ (τ, F ) = L

(k+1)/2
3/2,τ

∫
Γ0(p)\H

(Rk
−2k,zF )(z)Θ∆(τ, z, ϕKM), for k odd,

where Θ∆(τ, z, ϕKM) is a twisted version of Θ(τ, z, ϕKM).
Moreover, we define the twisted modular trace function for F ∈ H−2k(p) by

t∆(F ; d) =
∑

Q∈Γ0(p)\Q−d∆,p

χ∆(Q)

|Γ0(p)Q|
Rk
−2kF (αQ).

We have the following theorem.

Theorem 1. Let p,∆, d be as above and let F ∈ H+
−2k(p) be a harmonic Maass form of

negative weight −2k for Γ0(p) that is invariant under the Fricke involution z 7→ − 1
pz

.

(i) If k is even, the Kudla-Millson lift of F is a weakly holomorphic modular form of
weight 3/2 + k for Γ0(4p). The d-th coefficient of the holomorphic part of the lift is
given by (

−4πd

|∆|

)k/2
t∆(F ; d).

(ii) If k is odd, the Kudla-Millson lift of F is a harmonic Maass form of weight 1/2− k
for Γ0(4p). The d-th coefficient of the holomorphic part of the lift is given by(

|∆|
4πd

)(k+1)/2 (k−1)/2∏
j=0

(
k

2
+ j

)(
j − k + 1

2

)
t∆(F ; d).

The Kudla-Millson lift is weakly holomorphic if and only if the twisted L-function of
ξ−2k(F ) vanishes at k + 1, that is

L(ξ−2k(F ),∆, k + 1) = 0.

In particular, this is the case when F is weakly holomorphic.

Remark 2. The theorem also gives an interesting new criterion on the nonvanishing of
the twisted central L-values (see [Gol79, OS98, Ono01] for more information on this topic).
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Remark 3. The theorem generalizes the functions g∆ to higher weight as indicated in
Section 9 of [Zag02].

We now explain a similar framework for the generalization of the weight 1/2 forms fd
via a theta lift. Recall that −d is a negative fundamental discriminant. We use the Millson
theta function Θ−d(τ, z, ψKM) as an integration kernel. The theta series Θ−d(τ, z, ψKM) is
associated to a certain even lattice of signature (1, 2) and a certain Schwartz function ψKM

first defined in [KM90]. It has weight 1/2 in the variable τ and is invariant under the
action of Γ0(N) in the variable z.

The theta function Θ−d(τ, z, ψKM) was recently studied by Hövel in his PhD thesis
[Höv12]. He lifted harmonic Maass forms of weight 1/2 to obtain locally harmonic Maass
forms of weight 0, i.e. going to the direction “opposite” to ours.

For a harmonic Maass form F of weight −2k < 0 for Γ0(p) we define the Bruinier-Funke
theta lift of F by

IBF
−d (τ, F ) = L

k/2
1/2,τ

∫
Γ0(p)\H

(Rk
−2k,zF )(z)Θ−d(τ, z, ψKM)dµ(z), for k even,

IBF
−d (τ, F ) = R

(k+1)/2
1/2,τ

∫
Γ0(p)\H

(Rk
−2k,zF )(z)Θ−d(τ, z, ψKM)dµ(z), for k odd,

where dµ(z) = dxdy
y2 .

To describe the Fourier expansion of the holomorphic part we need to refine the definition
of the modular trace function. Recall that ∆ 6= 1 is a positive fundamental discriminant
and that ∆ and −d are squares modulo 4p. We define two subsets Q+

−d∆,p and Q−−d∆,p of

Q−d∆,p depending on the sign of a (where Q = [a, b, c]): for a > 0, the form is in Q+
−d∆,p

and for a < 0 it is contained in Q−−d∆,p. We define the modular trace functions t+
−d(f ; ∆)

and t−−d(f ; ∆) accordingly.

Theorem 4. Let the hypothesis be as in Theorem 1.

(i) If k > 0 is even the Bruinier-Funke lift of F is a harmonic Maass form of weight
1/2− k for Γ0(4p). The lift is a weakly holomorphic modular form if and only if the
twisted L-function L(ξ−2k(F ),−d, s) of ξ−2k(F ) ∈ S3/2+k(N) at s = k + 1 vanishes.
The ∆-th coefficient of its holomorphic part is given by

√
d

2
√

∆

(
d

4π∆

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

) (
t+
−d(F ; ∆)− t−−d(F ; ∆)

)
.

(ii) If k is odd the Bruinier-Funke lift of F is a weakly holomorphic modular form of
weight 3/2 + k for Γ0(4p). The ∆-th coefficient of its holomorphic part is given by

√
d

2
√

∆

(
−4π∆

d

)(k+1)/2 (
t+
−d(F ; ∆)− t−−d(F ; ∆)

)
.

6



(iii) If k = 0 the Bruinier-Funke lift of F is a harmonic Maass form of weight 1/2 for
Γ0(4p). The ∆-th coefficient of its holomorphic part is given by

√
d

2
√

∆

(
t+
−d(F ; ∆)− t−−d(F ; ∆)

)
.

Remark 5. If k = 0 and the constant coefficients of the input function F do not vanish
at all cusps, the Bruinier-Funke lift of F is a harmonic Maass form that maps to a linear
combination of unary theta functions of weight 1/2 under ξ0. We show this by computing
the lift of the non-holomorphic Eisenstein series of weight 0.

Example 6. We obtain

IBF
−3 (τ, J) = f3 = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 + · · · .

The two theta lifts satisfy a duality similar to Zagier’s functions fd and g∆. Let κ =
3/2 + k if k is odd and κ = 1/2 − k if k is even. We can realize the Fourier coefficients
of harmonic Maass forms f of weight κ as traces of CM values of weight −2k harmonic
weak Maass forms F by showing that the Kudla-Millson lift is orthogonal to cusp forms
and then using a pairing defined by Bruinier and Funke [BF04]. Analogous formulas hold
for the Bruinier-Funke theta lift when κ is replaced by κ̃ which is 3/2 + k if k is even and
1/2− k if k is odd.

Remark 7. By considering IKM
∆ (τ, J) and f = fd or IBF

−d (τ, J) and f = g∆ as above we
recover the relation of the coefficients of g∆ and fd. Note that our assumptions on ∆ and
d imply the equality of the two trace functions in this case.

We now describe how these results lead to nonvanishing conditions for the twisted central
derivatives of L-functions of elliptic curves.

Elliptic curves and modular forms

Let E be an elliptic curve over Q given by the equation

E : y2 = 4x3 − 60G4(ΛE)x− 140G6(ΛE),

where G2k(ΛE) :=
∑

w∈ΛE\{0}w
−2k is the classical weight 2k Eisenstein series.

The elliptic curve E is isomorphic (over C) to C/ΛE, where ΛE is a lattice in C. The
corresponding isomorphism is called the analytic parametrization of E and is given by the
map t 7→ Pt = (℘(ΛE; t), ℘′(ΛE; t)) for t ∈ C \ ΛE, where

℘(ΛE; t) :=
1

t2
+

∑
w∈ΛE\{0}

(
1

(t− w)2
− 1

w2

)

is the usual Weierstrass ℘-function for ΛE.
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Introduction

By a theorem of Mordell it is known that the group E(Q) of rational points of E is a
finitely generated abelian group, i.e. E(Q) = E(Q)tors⊕Zr with r ∈ Z≥0 and E(Q)tors finite.
The Birch and Swinnerton-Dyer Conjecture relates the rank r to the analytic properties of
the L-function L(E, s) of E. More precisely, Birch and Swinnerton-Dyer conjectured that

L(E, s) = c · (s− 1)r + higher order terms

with c 6= 0 and r = rank(E).

The conjecture is true in the case that the analytic rank is equal to 0 or 1 by the work of
Gross–Zagier, Kolyvagin and Wiles [GZ86, Kol88, Wil95]. Wiles et al. proved that for every
elliptic curve E/Q of conductor NE there is a weight 2 cusp form GE(z) =

∑∞
n=1 aE(n)qn ∈

S2(NE) that satisfies
L(GE, s) = L(E, s).

Here, L(GE, s) =
∑∞

n=1 aE(n)n−s is the L-function of GE.

Thus, results on L-functions of weight 2 cusp forms, which are often easier to obtain,
apply to the corresponding L-functions of elliptic curves. This was also used by Gross and
Zagier in their work on the Birch and Swinnerton-Dyer Conjecture.

A different connection was established by Waldspurger [Wal81] and Kohnen–Zagier
[KZ81] who proved that half-integer weight modular forms serve as “generating series”
for the central values of quadratic twists of modular L-functions. They showed that there
is a weight 3/2 cusp form whose coefficients are essentially the square roots of L(GE, D, 1),
where L(GE, D, s) =

∑∞
n=1 χD(n)aE(n)n−s for a negative fundamental discriminant D and

the associated Kronecker character χD =
(
D
·

)
. This twisted modular L-function corre-

sponds to the D-quadratic twist of the elliptic curve E : y2 = x3 + ax + b given by
ED : Dy2 = x3 + ax+ b.

Elliptic curves and harmonic Maass forms

Let G ∈ S2(N) be a cusp form of weight 2 and D be a fundamental discriminant. Bru-
inier and Ono [BO10] recently observed that the vanishing of L(G,D, 1) and L′(G,D, 1)
is related to the vanishing and the algebraicity of the Fourier coefficients of weight 1/2
harmonic Maass forms.

In their work, Bruinier and Ono consider weight 1/2 harmonic Maass forms f whose
image under ξ1/2 is equal to a real multiple of a weight 3/2 cusp form g that maps to G
under the Shimura correspondence. That is, we have the following picture

G ∈ S2(N)

f ∈ H+
1/2(4N)

ξ1/2 //g ∈ S3/2(4N).

Shimura

OO (0.3)

Employing deep work of Shimura and Waldspurger they proved that the Fourier coefficients
of the non-holomorphic part of f as above give exact formulas for L(G,D, 1). Using the
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theory of Borcherds products and the Gross-Zagier Theorem they show that at the same
time the coefficients of the holomorphic part of f encode the vanishing of the central
derivatives L′(G,D, 1).

An interesting question is if there is a canonical preimage under ξ0 of G ∈ S2(N) in the
diagram (0.3) and a lifting map I such that the completed diagram is commutative, i.e.

F ∈ H+
0 (N)

I
��

ξ0 //ξ0(F ) ∈ S2(N)

I(F ) ∈ H+
1/2(4N)

ξ1/2 //ξ1/2(I(F )) ∈ S3/2(4N).

Shimura

OO (0.4)

We answer this question in the affirmative. We construct such canonical preimages F
under ξ0 of weight 2 cusp forms that correspond to an elliptic curve and show that ξ1/2

of the Bruinier-Funke lift of F is equal to the Shintani lift of ξ0(F ) (up to a constant).
Moreover, we show that the coefficients of IBF

−d (τ, F ) encode the vanishing of L(GE,∆, 1)
and L′(GE,∆, 1), where ∆ > 1 is a fundamental discriminant. In this special setting we
obtain the corresponding results for the L-function of the elliptic curve E.

Weierstrass harmonic Maass forms

In the case of a weight 2 cusp form GE ∈ S2(NE) corresponding to an elliptic curve E
of conductor NE over Q there is a canonical preimage of GE arising from the analytic
parametrization of E. This was first observed by Guerzhoy [Gue13, Gue] and later worked
out explicitly in [AGOR] by Griffin, Ono and Rolen. Let ΛE be the lattice associated to E
via the analytic parametrization. The canonical preimage of GE arises from the Weierstrass
ζ-function

ζ(ΛE; t) :=
1

t
+

∑
w∈ΛE\{0}

(
1

t− w
+

1

w
+

t

w2

)
,

that is essentially the antiderivative of the Weierstrass ℘-function

℘(ΛE; t) = −ζ ′(ΛE; t).

Furthermore, we make use of the modular parametrization. We let EE(t) be the Eichler
integral of a cusp form GE defined as

EE(z) := −2πi

∫ i∞

z

GE(τ)dτ =
∞∑
n=1

aE(n)

n
· qn.

Moreover, we let S(ΛE) := lims→0+

∑
w∈ΛE\{0}

1
w2|w|2s . Eisenstein observed that the func-

tion
ζ∗(ΛE; t) = ζ(ΛE; t)− S(Λ)t− π

a(ΛE)
t

9



Introduction

is lattice invariant, where a(ΛE) is the area of the fundamental parallelogram for ΛE. This
implies that

W∗E(z) := ζ∗(ΛE, EE(z))

is modular of weight 0. We have the following theorem.

Theorem 8. There is a modular function ME(z) on Γ0(NE) with algebraic Fourier coef-
ficients for which W∗E(z)−ME(z) is a harmonic Maass form of weight 0 on Γ0(NE). We
call the function WE(z) =W∗E(z)−ME(z) a Weierstrass harmonic Maass form.

Elliptic curves and Weierstrass harmonic Maass forms

For simplicity, we now let NE = pE be a prime. In the body of this thesis we will also
consider the general case. We let E be an elliptic curve of conductor pE over Q and
GE ∈ S2(pE) be the associated cusp form. Moreover, let gE ∈ S3/2(4pE) be a cusp form that
maps to GE under the Shimura correspondence. Recall that −d is a negative fundamental
discriminant that is congruent to a square modulo 4pE.

Using the Bruinier-Funke theta lift of the harmonic Maass form WE associated to the
cusp form GE ∈ S2(NE) we construct a weight 1/2 harmonic Maass form

fE(τ) = IBF
−d (τ,WE).

Here, we chose the function ME(z) such that the principal parts of WE at all cusps other
than ∞ and the constant coefficient at ∞ vanish. For ease of exposition, we also as-
sume that WE is invariant under the Fricke involution and that it is normalized such that
ξ0(WE) = GE/||GE||2.

Then the sign of the functional equation of L(GE, s) = L(E, s) is ε(E) = −1. Therefore,
L(E, 1) = 0. For the Fourier expansion of fE we write

fE(z) = f+
E (z) + f−E (z) =

∑
n�−∞

c+
E(n)qn +

∑
n<0

c−E(n)Γ

(
1

2
, 4π |n| y

)
qn.

Let ∆ > 1 be a fundamental discriminant. By Theorem 4, we have that the ∆-th coefficient
of fE is given by

√
d

2
√

∆

(
t+
−d(F ; ∆)− t−−d(F ; ∆)

)
=

√
d

2
√

∆

∑
z∈Z−d(∆)

F (z),

for the twisted Heegner divisor

Z−d(∆) =
∑

Q∈Γ0(p)\Q+
−d∆,pE

χ∆(Q)

|Γ0(p)Q|
αQ −

∑
Q∈Γ0(p)\Q−−d∆,pE

χ∆(Q)

|Γ0(p)Q|
αQ.

We relate this modular trace to a certain differential of the third kind associated to Z−d(∆).
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Using results by Scholl [Sch86] on the algebraicity of such differentials and the action of
the Hecke algebra, we show the following theorem.

Theorem 9. We assume the notation above. Then the following are equivalent:

(i)
√
d

2
√

∆

∑
z∈Z−d(∆) F (z) is rational.

(ii) Some non-zero multiple of the projection of the image of Z−d(∆) in the Jacobian to
the GE-isotypical component is the divisor of a rational function.

Recall that L(GE,∆, s) denotes the twisted L-function of GE and that for the elliptic
curve E : y2 = x3 + ax+ b we have L(GE,∆, s) = L(E∆, s), where E∆ : ∆y2 = x3 + ax+ b.

Combining Theorem 9 with the Gross–Zagier formula we obtain part (ii) of the following
theorem.

Theorem 10. With the same notation as above the following are true:

(i) If ∆ < 0 is a fundamental discriminant for which
(

∆
pE

)
= 1, then

L(E∆, 1) = 0 if and only if c−E(∆) = 0.

(ii) If ∆ > 0 is a fundamental discriminant for which
(

∆
pE

)
= 1, then

L′(E∆, 1) = 0 if and only if c+
E(∆) is in Q.

Part (i) follows from the fact that ξ1/2(fE) ∈ RgE by diagram (0.4) and by work of
Kohnen [Koh85] that relates the coefficients of gE to the twisted L-function of GE.

Remark 11. Theorem 10 above gives a more intrinsic version of Bruinier’s and Ono’s main
theorem [BO10, Theorem 7.8] since we directly relate the cusp form GE to the half-integer
weight form fE. Moreover, the proof for the relation between the algebraicity of c+

E(∆) and
the vanishing of L′(E∆, 1) = 0 is independent of Bruinier’s and Ono’s work. In particular,
it does not rely on the construction of a Borcherds product and might therefore be easier
to generalize to higher weights.

Remark 12. Note that we could also phrase part (ii) of Theorem 10 in terms of the
coefficients of the Kudla-Millson lift. Our proof of this part only relies on the property
that the coefficients are given as twisted traces and the fact that these predict the vanishing
of the associated Heegner divisor. However, we could not prove part (i) since there we rely
on the commutative diagram (0.4). The fact that the coefficients of the holomorphic parts
of the two lifts encode the same arithmetic information is also reflected in their duality as
explained before.

Remark 13. Part (ii) of Theorem 10 also gives conditions for the algebraicity of periods of
differentials of the first and second kind associated toWE and the Heegner divisor Z−d(∆).
We explain this at the end of Chapter 6.
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For elliptic curves E that satisfy the assumptions in Theorem 10 we then have by work
of Kolyvagin [Kol88] and Gross and Zagier [GZ86] on the Birch and Swinnerton-Dyer
Conjecture, that for fundamental discriminants ∆:

(i) If ∆ < 0,
(

∆
pE

)
= 1, and c−E(∆) 6= 0, then the rank of E∆(Q) is 0.

(ii) If ∆ > 0,
(

∆
pE

)
= 1, and c+

E(∆) is not rational, then the rank of E∆(Q) is 1.

We now present an example illustrating our results.

The elliptic curve of conductor 37

We consider the elliptic curve of conductor 37 given by the equation

E : y2 = 4x3 − 4x+ 1.

The sign of the functional equation of the L-function of E is −1 and E(Q) has rank 1 (see
for example [LMF13]). The q-expansion of GE ∈ S2(37) is given by

GE(z) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 + · · · ∈ Snew2 (Γ0(37))

and using Sage [S+14] we find that the q-expansion of the Weierstrass harmonic Maass
form WE(z) is given by

W+
E (z) = q−1 + 1 + 2.1132...q+ 2.3867...q2 + 4.2201...q3 + 5.5566...q4 + 8.3547...q5 +O(q6).

We write
fE = I−3(τ,WE(z)) =

∑
n�−∞

c+
E(n)qn + f−(τ).

The table below illustrates Theorem 10, and its implications for ranks of elliptic curves.
It was computed by Strömberg [BS12].

∆ c+
E(∆) L′(E∆, 1) rank(E∆(Q))

1 −0.2817617849 . . . 0.3059997738 . . . 1
12 −0.4885272382 . . . 4.2986147986 . . . 1
21 −0.1727392572 . . . 9.0023868003 . . . 1

...
...

...
...

1489 9 0 3
...

...
...

...
4393 66 0 3

Stephan Ehlen numerically confirmed that

c+
E(∆) =

1

2
√

∆

(
t+
−3(WE(z); ∆)− t−−3(WE(z); ∆)

)
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for ∆ as in the table using Sage [S+14].

The structure of this thesis

In the first two chapters, we introduce the setting and the important objects of this thesis.
In particular, we define the notion of vector valued harmonic Maass forms. The third and
fourth chapter are the technical heart of the thesis: here we investigate the analytic and
automorphic properties of the Kudla-Millson and the Bruinier-Funke theta lift and compute
their Fourier expansion of the holomorphic part. In the fifth chapter, we investigate the
relation of the lifts to their dual spaces. The sixth chapter is devoted to the connection
between elliptic curves, their L-functions, the Weierstrass harmonic Maass forms and the
coefficients of their Bruinier-Funke theta lifts. In the seventh chapter, we consider various
applications of the results and derive the theorems presented in the introduction. In the
eighth chapter, we present some future projects building upon the results in this thesis.
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1. Basic notation

In the first part of this chapter we introduce quadratic forms, quadratic spaces and lattices
which are the basic objects underlying the setting in this thesis. In the second part we
describe the special situation we will work in. The exposition in this chapter is brief and the
statements are presented without proofs, but we give references where a detailed exposition
can be found.

1.1. Quadratic forms and lattices

We start with a short introduction to the theory of quadratic forms, quadratic spaces
and lattices. The standard references for these topics are [Kit93, Kne02, Ser73]. A good
overview is also given in Bruinier’s part of [BvdGHZ08].

Let R be a ring with unity 1 and let M be a finitely generated R-module.

Definition 1.1.1. A quadratic form on M is a map Q : M → R such that:

(i) Q(rx) = r2Q(x) for all r ∈ R and x ∈M .

(ii) (x, y) := Q(x+ y)−Q(x)−Q(y) is a bilinear form.

We say that (x, y) is the bilinear form associated to Q. We call the pair (M,Q) a quadratic
module over R. If R = K is a field, then (M,Q) is called a quadratic space over K.

Note that in the case that 2 is invertible in R, the second condition implies the first one
in Definition 1.1.1.

Example 1.1.2. We will later consider binary quadratic forms, i.e. quadratic forms in two
variables. For a binary quadratic form Q of the form

Q(x, y) = ax2 + bxy + cy2, a, b, c ∈ R,

we write Q = [a, b, c]. If a, b, c are integers, we call [a, b, c] an integral binary quadratic
form.

In the following let (M,Q) be a quadratic module over R.

Definition 1.1.3. (i) Let x, y ∈ M . If (x, y) = 0, we say that x and y are orthogonal
to each other.
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1. Basic notation

(ii) Let U ⊂M be a subset of M . We define the orthogonal complement of U by

U⊥ := {x ∈M : (x, u) = 0 for all u ∈ U} .

(iii) A quadratic module M is called non-degenerate if M⊥ = {0}.

(iv) A non-zero vector x ∈M is called isotropic if Q(x) = 0, and anisotropic if Q(x) 6= 0.

Definition 1.1.4. Let (M̃, Q̃) be another quadratic module over R. An R-linear map
σ : M → M̃ is called an isometry if σ is injective and

Q̃(σ(x)) = Q(x) for all x ∈M.

If σ is also surjective, M and M̃ are called isometric.

Definition 1.1.5. The orthogonal group O(M) ofM is defined as the group of all isometries
from M onto itself

O(M) := {σ : M →M : σ isometry}.

The special orthogonal group SO(M) is the subgroup

SO(M) := {σ ∈ O(M) : det(σ) = 1}.

Example 1.1.6. Let r, s be non-negative integers. By Rr,s we denote the quadratic space
over Rr+s with the quadratic form

Q(x) = x2
1 + . . .+ x2

r − x2
r+1 − . . .− x2

r+s

for x = (x1, . . . , xr+s). We denote the orthogonal group of Rr,s by Or,s(R).

Definition 1.1.7. Suppose that M has a basis B = (b1, . . . , bn). The Gram matrix of Q
corresponding to B is the matrix G = GQ = (gij)1≤i,j≤n, where gij := (bi, bj).

We define the determinant of M by

det(Q) = det(M) = det((M,Q)) := det(GQ).

The determinant det(Q) (if non-zero) is well defined as an element of R∗/(R∗)2, where
R∗ denotes the group of units of R.

Proposition 1.1.8. Let (V,Q) be an n-dimensional non-degenerate quadratic space over
R. There exist non-negative integers r, s, with n = r + s, such that (V,Q) is isometric to
Rr,s. The pair (r, s) is called the signature of V .

Definition 1.1.9. A lattice L is a finitely generated non-degenerate quadratic module
over Z. A lattice L is called integral if the bilinear form (λ, µ) takes values in Z for all
λ, µ ∈ L. It is called even if Q(λ) ∈ Z for all λ ∈ L and unimodular if |disc(L)|, the class
of | det(GL)| in Z∗/(Z∗)2, is equal to 1. A lattice element λ ∈ L \ {0} is called primitive if
it satisfies Qλ ∩ L = Zλ.
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1.2. A rational quadratic space of signature (1, 2)

Definition 1.1.10. For a lattice L we define its dual lattice L′ as

L′ := {λ ∈ L⊗Z Q : (λ, µ) ∈ Z for all µ ∈ L}.

In the following let (L,Q) be a lattice. The quadratic form Q on L induces a well-defined
map Q : V (R) := L⊗Z R→ R via the assignment

Q(λ⊗ r) := r2Q(λ), λ ∈ L, r ∈ R.

Then, (V (R), Q) is a quadratic space that contains L as a discrete subgroup.

Definition 1.1.11. Let V (R) = L ⊗Z R as above and let B = (b1, . . . , bn) be a basis of
V (R) with L =

∑n
i=1 Zbi. Then n is called the rank of L. The signature of L is given by

the signature of V (R).

Remark 1.1.12. Let L− denote the lattice L equipped with the quadratic form −Q. Then
L− has signature (s, r) if L has signature (r, s).

From now on let L be an even lattice.

Definition 1.1.13. The level of L is defined as

min{N ∈ Z>0 : NQ(λ) ∈ Z for all λ ∈ L′}.

Lemma 1.1.14. Let G be the Gram matrix of L. Then we have

|L′/L| = | det(G)|.

Moreover, L′/L is a finite abelian group which is called the discriminant group of L.

Lemma 1.1.15. The quadratic form induces a well-defined map

Q : L′/L→ Q/Z
λ+ L 7→ Q(λ+ L) := Q(λ) (mod 1).

Such a tuple (L′/L,Q) is called the discriminant form of L.

Definition 1.1.16. The orthogonal group O(L′/L) consists of all group homomorphisms
σ : L′/L→ L′/L satisfying Q(σ(x)) = Q(x) for all x ∈ L′/L.

1.2. A rational quadratic space of signature (1, 2)

In this thesis we consider a 3-dimensional rational quadratic space of signature (1, 2) that
is isotropic over Q. This is the same setting as in [BF06] and [BO13] (the general setting
for higher dimensional spaces can be found in Bruinier’s chapter of [BvdGHZ08]).
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Let N > 0 be an integer. We let V be the rational quadratic space

V :=

{
λ =

(
λ1 λ2

λ3 −λ1

)
∈ Q2×2 : tr(λ) = 0

}
with the quadratic form Q(λ) = N det(λ). The associated bilinear form is given by (λ, µ) =
−N tr(λ · µ)for λ, µ ∈ V . The quadratic space V has signature (1, 2).

1.2.1. A special lattice

We consider the lattice

L :=

{(
b −a/N
c −b

)
: a, b, c ∈ Z

}
.

The dual lattice corresponding to the bilinear form as above is given by

L′ :=

{(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z

}
.

We identify the discriminant group L′/L =: D with Z/2NZ, together with the Q/Z-valued
quadratic form x 7→ −x2/4N . The level of L is 4N .

For a fundamental discriminant ∆ ∈ Z we will later consider the rescaled lattice ∆L
together with the quadratic form Q∆(λ) := Q(λ)

|∆| . The corresponding bilinear form is given

by (·, ·)∆ = 1
|∆|(·, ·). The dual lattice of ∆L corresponding to (·, ·)∆ is equal to L′ as

above, independent of ∆. We denote the discriminant group L′/∆L by D(∆). Note that
D(1) = D and |D(∆)| = |∆|3 |D| = 2N |∆|3.

The lattice L is intimately related to binary quadratic forms and the congruence sub-
group Γ0(N) of SL2(Z) as we are going to explain now following [BO10]. Recall that
SL2(Z) = {( a bc d ) ∈ Z2×2 : ad− bc = 1} and that Γ0(N) is defined as

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

In general, Γ0(N) acts on the space V via conjugation

g.λ = gλg−1, for g ∈ Γ0(N), λ ∈ V.

The natural homomorphism SO(L) → O(L′/L) is surjective (here, SO(L) is defined as in
Definition 1.1.5). We denote its kernel by Γ(L). Let SO+(L) be the intersection of SO(L)
and the connected component of the identity of SO(V (R)). The group Γ0(N) takes L to
itself and acts trivially on the discriminant group D. However, in general it does not act
trivially on D(∆).

Proposition 1.2.1 (Proposition 2.2 in [BO10]). The image of Γ0(N) in SO(L) is equal
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to Γ(L) ∩ SO+(L). The image in SO(L) of the extension of Γ0(N) by all Atkin-Lehner
involutions is equal to SO+(L). (The Atkin-Lehner involutions are defined in Section 1.2.3.)

For m ∈ Q and h ∈ L′/L, we consider the set

Lm,h = {λ ∈ L+ h : Q(λ) = m} . (1.2.1)

We can identify lattice elements of Lm,h with integral binary quadratic forms as follows.

For λ =
(
b/2N −a/N
c −b/2N

)
∈ Lm,h we consider the matrix

M(λ) :=

(
a b/2
b/2 Nc

)
= λ ·

(
0 N
−N 0

)
.

Then M(λ) defines an integral binary quadratic form [a, b,Nc] of discriminant D = b2 −
4Nac = 4NQ(λ) satisfying b ≡ h (mod 2N). Conversely, every integral binary quadratic
form [a, b,Nc] of discriminant D = b2 − 4Nac = 4NQ(λ) that satisfies b ≡ h (mod 2N)

defines an element λ =
(
b/2N −a/N
c −b/2N

)
∈ Lm,h. The group Γ0(N) acts on elements M(λ) via

g.M(λ) = gM(λ)gt, for g ∈ Γ0(N) and M(λ) as above. The actions of Γ0(N) on L and on
quadratic forms are compatible.

Using this correspondence one can show that, by reduction theory, if m 6= 0, the group
Γ0(N) acts on Lm,h with finitely many orbits.

1.2.2. The associated symmetric space

Let G = Spin(V ) ' SL2 viewed as an algebraic group over Q and write Γ for its image in
SO(V ) ' PSL2. We let D be the associated symmetric space.

The group SL2(Q) acts on V by conjugation

g.λ := gλg−1, λ ∈ V, g ∈ SL2(Q).

The space D can be realized as the Grassmannian of lines in V (R) on which the quadratic
form Q is positive definite,

D ' {z ⊂ V (R) : dim z = 1 and Q|z > 0}.

We can identify the Grassmannian D with the upper half plane H = {z ∈ C : =(z) > 0}
as follows. We write z = x + iy, with x, y ∈ R, and obtain an isomorphism between D
and H by

z 7→ Rλ(z), (1.2.2)

where we pick as a generator for the associated positive line

λ(z) :=
1√
Ny

(
−x |z|2
−1 x

)
. (1.2.3)
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1. Basic notation

The group G(R) acts on H by linear fractional transformations. For ( a bc d ) ∈ G(R) these
are given by z 7→ az+b

cz+d
. The isomorphism in (1.2.2) above is then G(R)-equivariant. In

particular, Q(λ(z)) = 1 and g.λ(z) = λ(gz) for g ∈ G(R).

1.2.3. Cusps

We let M be the modular curve Γ0(N) \ D. Via the isomorphism between H and D as
in (1.2.2) it can be identified with the usual modular curve Y0(N) = Γ0(N) \ H. The
curve Y0(N) is not compact, but can be completed to a compact Riemann surface X0(N)
by adding finitely many points, the cusps, to Y0(N). The cusps are given as the Γ0(N)-
equivalence classes of P1(Q) = Q ∪ {∞}, i.e. X0(N) = Y0(N) ∪ (Γ0(N) \ P1(Q)).

For square-free N we can describe the cusps of the modular curve X0(N) in an explicit
and convenient way (see [Sch, BO13]). In order to do so we define the Atkin-Lehner
involutions. A good reference for this topic is also [DS05].

Definition 1.2.2. Let Q be an exact divisor of N , i.e. Q|N and (Q,N/Q) = 1. Then we
define the Atkin-Lehner involution WN

Q by any matrix

WN
Q =

(
Qα β
Nγ Qδ

)
, α, β, γ, δ ∈ Z,

with determinant Q.
Moreover, we define the Fricke involution WN by

WN =

(
0 −1
N 0

)
.

Remark 1.2.3. The matrices WN
Q are uniquely determined up to left multiplication by

elements of Γ0(N).

For exact divisors Q, Q′ of N we define

Q ∗Q′ = Q ·Q′

(Q,Q′)2
. (1.2.4)

In the case of square-free N the cusps are represented by 1
Q

, where Q runs through the

divisors of N . Note that two cusps (a : c) and (a′ : c′) are equivalent under Γ0(N) if and
only if (c,N) = (c′, N). In particular, a complete set of representatives for the cusps of
Γ0(N) is given by WN

Q∞, where Q runs through the divisors of N , i.e. the Atkin-Lehner
involutions act transitively in this case.

We now describe how we can identify the set of isotropic lines Iso(V ) in V (Q) with P1(Q)
following the exposition in [Fun02, BF06]. The identification is given by the map

ψ : P1(Q)→ Iso(V ), ψ((α : β)) = span

((
αβ α2

−β2 −αβ

))
.
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1.2. A rational quadratic space of signature (1, 2)

The map ψ is a bijection and ψ(g(α : β)) = g.ψ((α : β)) for g ∈ Γ0(N). So the cusps of
M can be identified with the Γ0(N)-classes of Iso(V ).

If we set `∞ := ψ(∞), then `∞ is spanned by λ∞ = ( 0 1
0 0 ). For ` ∈ Iso(V ) we pick

σ` ∈ SL2(Z) such that σ``∞ = `. Furthermore, we orient all lines ` by requiring that
λ` := σ`λ∞ is a positively oriented basis vector of `.

Let Γ` be the stabilizer of the line `. Then

σ−1
` Γ`σ` =

{
±
(

1 kα`
0 1

)
: k ∈ Z

}
,

where α` ∈ Q>0 is the width of the cusp ` [Fun02]. In our case it does not depend on
the choice of σ`. For each ` there is a β` ∈ Q>0 such that

(
0 β`
0 0

)
is a primitive element of

`∞ ∩ σ`L. We write ε` = α`/β`.

1.2.4. Heegner divisors

We define a divisor on the modular curve M = Γ0(N)\D as follows. For a vector λ ∈ V (Q)
of positive norm, we let

Dλ = span(λ) ∈ D.

For example, if λ =
(
b/2N −a/N
c −b/2N

)
∈ L′/L, the corresponding point in H is given by the

solution of ((
b/2N −a/N
c −b/2N

)
,

(
z −z2

1 −z

))
= 0

that lies in the upper half plane, i.e. the point z = b+
√
b2−4acN
2cN

. (Here we used that H
may be identified with the projective model of the symmetric space D, see for example
[BvdGHZ08, Chapter 2.4].)

We denote the image of Dλ in M by Z(λ). Then Z(λ) is called Heegner point. We define
a Heegner divisor Z(m,h) by

Z(m,h) =
∑

λ∈Γ0(N)\Lm,h

1

|Γλ|
Z(λ).

Here, Γλ denotes the stabilizer of λ in Γ0(N), the image of Γ0(N) in PSL2(Z).

1.2.5. Geodesics

If Q(λ) < 0, we obtain a geodesic cλ in D via

cλ = {z ∈ D : z ⊥ λ} .

We denote Γλ\cλ in M by c(λ).
There are two cases (see [Fun02]):
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1. Basic notation

(i) We have Q(λ) 6∈ − 1
4N

(Q∗)2.

(ii) We have Q(λ) ∈ − 1
4N

(Q∗)2.

In the first case Z(λ) is a closed geodesic in Y0(N) and in the second case it is an infinite
geodesic in Y0(N) (see [Fun02] or [Höv12, Section 1.9] for more details).

Thus, if c(λ) is an infinite geodesic, λ is orthogonal to two isotropic lines `λ = span(µ)
and ˜̀

λ = span(µ̃), with µ and µ̃ positively oriented. We fix an orientation of V and we say
that `λ is the line associated to λ if the triple (λ, µ, µ̃) is a positively oriented basis for V .
In this case, we write λ ∼ `λ.

These geodesics will be important when we describe the Fourier expansion of the Kudla-
Millson theta lift in Chapter 3.
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2. Automorphic Forms

In this chapter we recall the theory of scalar valued and vector valued modular forms.
We introduce the notion harmonic weak Maass forms that was developed by Bruinier and
Funke in [BF04] and we present various aspects of the theory of (vector valued) harmonic
weak Maass forms. Moreover, we recall results of the author and Ehlen [AE13] on a method
for twisting automorphic forms with a certain genus character related to the lattice L we
defined in the previous chapter. We also define Poincaré series and Whittaker functions
as well as the theta functions, that we will use as kernel functions for the lifts of harmonic
weak forms in the upcoming chapters.

Throughout this thesis, we will use z and τ as variables in the upper half plane H.
We will use z when talking about integer weight forms, since these will later correspond
to automorphic forms on the Grassmannian D. We will use τ as the symplectic variable
corresponding to half-integer weight forms. We write q for e2πiz and for e2πiτ . It will be
clear from the context whether q = e2πiz or q = e2πiτ .

2.1. Scalar valued modular forms

We briefly introduce the notion of scalar valued modular forms following the classical
references for the theory [DS05, Kob93, KK07]. The books of Ono [Ono04] and Zagier
[BvdGHZ08] also give a good overview and provide many interesting applications of the
theory of modular forms.

Let N be a positive integer. Recall that the level N congruence subgroup Γ0 (N) ⊂
SL2(Z) is defined by

Γ0 (N) :=

{(
a b
c d

)
∈ SL2 (Z) : c ≡ 0 (mod N)

}
.

We define the Petersson slash operator for an integer k ∈ Z and a matrix γ = ( a bc d ) ∈
GL2(R) on functions f : H→ C by

(f |kγ) (z) := (cz + d)−k det(γ)k/2f (γz) . (2.1.1)

Definition 2.1.1. Let k ∈ Z. A holomorphic function f : H→ C is called a modular form
of weight k for Γ0(N) if the following hold:

(i) (f |kγ) (z) = f(z) for all γ ∈ Γ0(N).

(ii) f is holomorphic at the cusps of Γ0(N).
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2. Automorphic Forms

If f vanishes at all cusps, it is called a cusp form and if it is only meromorphic at the cusps
it is called a weakly holomorphic modular form.

By Mk(N), Sk(N), respectively M !
k(N) we denote the spaces of modular forms, cusp

forms, respectively weakly holomorphic modular forms of weight k for Γ0(N).
Condition (i) implies that f is invariant under the transformation z 7→ z + 1, so f has a

Fourier expansion of the form (by Condition (ii))

f(z) =
∞∑
n=0

af (n)qn,

at the cusp∞. Here, q = e2πiz = e(z). The function f has a Fourier expansion of a similar
form at the other cusps of X0(N). If f is a cusp form, we require af (0) = 0. If f is weakly
holomorphic, then finitely many coefficients of negative index occur, i.e. af (n) might be 0
for finitely many n < 0.

2.1.1. Hecke operators and Atkin-Lehner involutions

We introduce Hecke operators, natural linear operators that act on spaces of modular
forms.

Definition 2.1.2. Let p be a prime and p - N . If f(z) =
∑∞

n=0 a(n)qn ∈Mk(N), then we
define the action of the Hecke operator T (p) on f(z) for p by

(f |kT (p))(z) :=
∞∑
n=0

(
a(pn) + pk−1a(n/p)

)
qn.

If p - n, then a(n/p) = 0.

Remark 2.1.3. For the definition of T (l) for any integer l see [DS05, Kob93].

Proposition 2.1.4. Let f ∈ Mk(N). For p ≥ 2 we have (f |kT (p))(z) ∈ Mk(N). The
Hecke operators take cusp forms to cusp forms.

We recall some facts from the Atkin-Lehner theory of newforms.
Let d > 1. A cusp form f ∈ Sk(N) is easily seen to be contained in Sk(dN). A second

way to embed Sk(N) into Sk(dN) is the so-called V –operator V (d) defined on the Fourier
expansion of a form g(z) =

∑∞
n=n0

a(n)qn which lies in Mk(N) by(
∞∑

n=n0

a(n)qn

)
|kV (d) :=

∞∑
n=n0

a(n)qdn.

Then it is
F (dz) = (f |kV (d))(z) ∈ Sk(Γ0(dN)).
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2.1. Scalar valued modular forms

We now describe how to distinguish “old” forms in Sk(dN) from forms that are “new” at
this level, i.e. whose minimal level is dN .

We first define the subspace Sold
k (N) of forms whose minimal level is not dN by

Sold
k (N) :=

∑
dM |N

Sk(M)|kV (d),

where we sum over pairs of positive integers (d,M) for which dM |N and M 6= N .
There is an inner product on the space of modular forms, called the Petersson inner

product. For cusp forms f, g ∈ Sk(N) the Petersson inner product is defined by

(f, g)k :=
1

[SL2 (Z) : Γ0 (N)]
·
∫
FN

f(z)g(z)ykdµ(z),

where FN denotes a fundamental domain for the action of Γ0(N) on H and dµ(z) = dxdy
y2

denotes the invariant measure on H.
Recall the definition of the Atkin-Lehner involution WN

Q as in Definition 1.2.2. Then

WN
Q =

(
Qα β
Nγ Qδ

)
∈ Z2×2,

where Q is an exact divisor of N and det(WN
Q ) = Q.

If f ∈Mk(N), then f 7→ f |kWN
Q is independent of the choices α, β, γ, δ and defines an

involution of Mk(N).

Definition 2.1.5. The subspace of newforms Snew
k (N) is defined to be the orthogonal

complement of Sold
k (N) in Sk(N) with respect to the Petersson inner product.

A newform is a normalized eigenform in Snew
k (N) with respect to the Hecke operators

and all of the Atkin-Lehner involutions |kWN
Q , where Q runs through the exact divisors of

N , and |kWN
N .

Remark 2.1.6. Using the theory of Hecke operators one can show that every space
of newforms has a basis of newforms. Furthermore, newforms determine distinct Hecke
eigenspaces. This is known as the “multiplicity one” phenomenon.

2.1.2. L-functions of modular forms

For a cusp form f(z) =
∑∞

n=1 af (n)qn ∈ S2k(N) of weight 2k for Γ0(N) we define its
L-function by

L(f, s) =
∞∑
n=1

af (n)

ns
,

where s ∈ C.
These functions satisfy the following properties.
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2. Automorphic Forms

Proposition 2.1.7. Let f =
∑∞

n=1 af (n)qn ∈ S2k(N). Then the following hold:

(i) L(f, s) is holomorphic for s ∈ C with <(s) > k + 1.

(ii) L(f, s) has an analytic continuation to all of C.

(iii) Let Λ(f, s) = (2π)−sΓ(s)L(f, s), where Γ(s) denotes the usual Γ-function. Then

Λ(f, 2k − s) = (−1)kwNΛ(f, s)

for all s ∈ C. Here, wN is the eigenvalue of f under the Fricke involution, that is
f
(
− 1
Nz

)
= wNN

kz2kf(z).

Let D be a fundamental discriminant and χD =
(
D
·

)
be the associated Kronecker char-

acter . Then we define the twisted L-function of f by

L(f,D, s) =
∞∑
n=1

χD(n)
af (n)

ns
.

Remark 2.1.8. The twisted L-function satisfies similar properties as L(f, s). Especially,
it has an analytic continuation to all of C. Moreover, the completed twisted L-function
Λ(f,D, s) := (2π)−s(ND2)s/2Γ(s)L(f,D, s) satisfies

Λ(f,D, s) = (−1)k
(
D

−N

)
wN Λ(f,D, 2k − s),

where wN is as before.

2.2. The Weil representation

Here, we give an overview of the Weil representation attached to an even lattice L. The
exposition follows the one in [Bru02] and [Bor98].

We let H = {τ ∈ C : =(τ) > 0} be the upper half plane. Recall that we will let τ ∈ H,
and write τ = u + iv with u, v ∈ R, throughout this thesis. We denote by

√
w = w1/2

the principal branch of the square root, such that arg(w) ∈
(
−π

2
, π

2

]
. Moreover, we put

wα := eαLog(w) for α ∈ C, where Log(·) denotes the principal branch of the logarithm. We
set e(w) := e2πiw.

Recall that the special linear group SL2(R) = {( a bc d ) ∈ R2×2 : det(A) = 1} acts on H
via fractional linear transformations

γτ =
aτ + b

cτ + d
, γ ∈ SL2(R).

We let Mp2(R) be the metaplectic group. It is the double cover of SL2(R). For an element
γ = ( a bc d ) ∈ SL2(R) we have two choices of the holomorphic square root of τ 7→ cτ + d.
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2.2. The Weil representation

The elements of Mp2(R) are therefore given by pairs (γ, φ), where γ = ( a bc d ) ∈ SL2(R) and
φ : H→ C is a holomorphic function satisfying φ(τ)2 = cτ + d. The multiplication of two
elements in Mp2(R) is given by

(γ, φ(τ))(γ′, φ′(τ)) = (γγ′, φ(γ′τ)φ′(τ)).

The map (
a b
c d

)
7→
(̃
a b
c d

)
=

((
a b
c d

)
,
√
cτ + d

)
defines a locally isomorphic embedding of SL2(R) into Mp2(R).

Let Mp2(Z) be the inverse image of SL2(Z) under the covering map Mp2(R)→ SL2(R).
We recall the following well-known lemma.

Lemma 2.2.1. The group Mp2(Z) is generated by

T :=

((
1 1
0 1

)
, 1

)
and S :=

((
0 −1
1 0

)
,
√
τ

)
.

The center of Mp2(Z) is given by

Z :=

((
−1 0
0 −1

)
, i

)
.

We have S2 = (ST )3 = Z.

We let Γ∞ := {( 1 n
0 1 ) : n ∈ Z} and set

Γ̃∞ := 〈T 〉 =

{((
1 n
0 1

)
, 1

)
: n ∈ Z

}
.

From now on we let (L,Q) be an even lattice of signature (b+, b−) with dual lattice L′.
Recall that L′/L is a finite abelian group.

Definition 2.2.2. The finite dimensional group algebra C[L′/L] of L is defined as the set
of formal linear combinations

∑
h∈L′/L aheh with ah ∈ C. Here, the symbols eh are called

standard basis vectors of the group algebra C[L′/L].

We define an inner product on C[L′/L] by〈 ∑
h∈L′/L

aheh,
∑

h∈L′/L

bheh

〉
:=

∑
h∈L′/L

ahbh.

Proposition 2.2.3. There is a unitary representation ρL of Mp2(Z) on the group algebra
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2. Automorphic Forms

C[L′/L] which is defined by the action of the generators S, T ∈ Mp2(Z) by

ρL(T )eh = e(Q(h))eh

ρL(S)eh =

√
i
(b−−b+)√
|L′/L|

∑
h′∈L′/L

e(−(h, h′))eh′ .

The representation ρL is called the Weil representation attached to L.

Remark 2.2.4. We denote by ρ∗L the dual representation of ρL and by ρL its complex
conjugate. Then we have ρ∗L = ρL = ρL− with L− as in Remark 1.1.12 [Shi75].

Using orthogonality relations between characters it is not hard to show the following
lemma.

Lemma 2.2.5. The standard generator Z of the center of Mp2(Z) acts on eh as follows

ρL(Z)eh = e

(
b− − b+

4

)
e−h.

Remark 2.2.6. The Weil representation ρL factors through the finite group SL2(Z/NZ)
if b+ − b− is even, where N is the level of L. If b+ − b− is odd, it factors through a double
cover of SL2(Z/NZ).

Let h, h′ ∈ L′/L and (γ, φ) ∈ Mp2(Z). We define the coefficient ρhh′(γ, φ) of the repre-
sentation ρL by

ρhh′(γ, φ) = 〈ρL(γ, φ)eh′ , eh〉.

The following proposition of Shintani [Shi75, Proposition 1.6] gives a formula for ρhh′(γ, φ).
(Here, δi,j denotes the usual Kronecker delta.)

Proposition 2.2.7. Let h, h′ ∈ L′/L and γ = ( a bc d ) ∈ SL2(Z). Then the coefficient
ρhh′(γ, φ) is given by

√
i
(b−−b+)(1−sgn(d))

δh,ah′(abQ(h)),

if c = 0, and by

√
i
(b−−b+) sgn(c)

|c| b
−+b+

2

√
|L′/L|

∑
r∈L/cL

e

(
a(h+ r, h+ r)− 2(h′, h+ r) + d(h′, h′)

2c

)
,

if c 6= 0.

2.3. Vector valued harmonic Maass forms

In this section we define vector valued automorphic forms. In particular, we introduce har-
monic weak Maass forms, a new type of automorphic form introduced in the fundamental
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2.3. Vector valued harmonic Maass forms

article [BF04] by Bruinier and Funke. In contrast to the forms studied by Maaß these are
allowed to have linear exponential growth at the cusps.

Let (V,Q) be a rational quadratic space of signature (b+, b−) and let L be an even lattice.

We define the Petersson slash operator for k ∈ 1
2
Z and (γ, φ) ∈ Mp2(Z) on functions

f : H→ C[L′/L] by

(f |k,ρL(γ, φ)) (τ) = φ(τ)−2kρL(γ, φ)−1f(γτ).

Definition 2.3.1. A twice continuously differentiable function f : H→ C[L′/L] is called a
harmonic weak Maass form of weight k with respect to the representation ρL and the group
Mp2(Z) if

(i) (f |k,ρL(γ, φ))(τ) = f(τ) for all (γ, φ) ∈ Mp2(Z).

(ii) ∆kf = 0, where

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
is the weight k hyperbolic Laplace operator.

(iii) There is a C > 0 such that f(τ) = O(eCv) as v →∞ uniformly in u, where τ = u+iv.

We denote the space of these forms by Hk,ρL and define a subspace H+
k,ρL
⊂ Hk,ρL by

replacing condition (iii) by

(iii’) There is a Fourier polynomial

Pf (τ) :=
∑

h∈L′/L

∑
n∈Z+Q(h)
−∞�n≤0

c+
f (n, h)qneh,

such that
f(τ)− Pf (τ) = O(e−εv) as v →∞,

for some constant ε > 0. Here, q = e2πiτ . Then Pf (τ) is called the principal part of
f .

From now on we will frequently omit the word “weak” from the definition. It will also
be clear from the context if a harmonic Maass form is in H+

k,ρL
or Hk,ρL .

We write fh for the h-th component of a function f : H→ C[L′/L], i.e.

f =
∑

h∈L′/L

fheh.
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2. Automorphic Forms

Remark 2.3.2. We denote the spaces of weakly holomorphic modular forms, modular
forms, and cusp forms by M !

k,ρL
, Mk,ρL , respectively Sk,ρL . Holomorphic functions f :

H→ C[L′/L] are annihilated by the weight k Laplace operator, so we have the inclusions

Hk,ρL ⊃ H+
k,ρL
⊃M !

k,ρL
⊃Mk,ρL ⊃ Sk,ρL .

By Ak,ρL we denote the space of functions that transform of weight k with respect to the
representation ρL (without requiring any analytic properties). We call this the space of
automorphic forms (note that some authors require not only the correct transformation
behavior but also some analytic conditions in the definition of automorphic forms).

Remark 2.3.3. For a unimodular, even lattice we recover the definition of scalar valued
modular forms (for SL2(Z)) as in Section 2.1. By adjusting the analytic properties appro-
priately in Definition 2.1.1 we can also define scalar valued harmonic Maass forms for the
group Γ0(N). We denote the space of such forms by Hk(N), respectively H+

k (N).

Remark 2.3.4. Let N be the level of L. Using Remark 2.2.6 it is not hard to show
that the components of f ∈ Mk,ρL are scalar valued modular forms. If b+ + b− is even,
then the components fh are modular forms for Γ(N) = {( a bc d ) ∈ SL2(Z) : a ≡ d ≡ 1
(mod N), b ≡ c ≡ 0 (mod N)}. If b+ + b− is odd, then k ∈ 1

2
Z \Z and the components fh

transform with respect to slightly more complicated multiplier systems (see for example
[Kob93]).

As in the scalar valued case, a function f ∈ Hk,ρL has a Fourier expansion of the form

f(τ) =
∑

h∈L′/L

∑
n∈Q

cf (n, h, v)qn.

Since ∆kf = 0, the coefficients c(n, h, v) satisfy the differential equation ∆kc(n, h, v) = 0
as functions in v. Computing the space of solutions to this differential equation gives rise
to the following proposition.

Proposition 2.3.5. Let f ∈ Hk,ρL with k 6= 1. Then f uniquely decomposes as f =
f+ + f−, with

f+(τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)
n�−∞

c+
f (n, h)qneh (2.3.1)

and

f−(τ) =
∑

h∈L′/L

c−f (0, h)v1−k +
∑

n∈Z+Q(h)
n6=0

c−f (n, h)W (2πnv)qn

 eh, (2.3.2)
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2.3. Vector valued harmonic Maass forms

where

W (x) := Wk(x) =

∫ ∞
−2x

e−tt−kdt.

If x < 0, then W (x) = Γ(1 − k, 2|x|), where Γ(a, x) is the incomplete Γ-function. The
function f+ is called the holomorphic and f− the non-holomorphic part of f .

If f ∈ H+
k,ρL

, the Fourier expansion of f− is given by

f−(τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)

n<0

c−f (n, h)W (2πnv)qneh. (2.3.3)

Remark 2.3.6. In the setting of this thesis as described in Section 1.2, we obtain a
C[Z/2NZ]-valued function with Fourier expansion (assuming that f ∈ H+

k,ρL
and k < 1)

f+(τ) =
∑
h (2N)

∑
n∈Z

n�−∞

c+
f (n, h)q

n
4N eh,

and
f−(τ) =

∑
h (2N)

∑
n∈Z
n<0

c−f (n, h)Γ
(

1− k, 4π
∣∣∣ n
4N

∣∣∣ v) q n
4N eh.

The operation of Z as in Lemma 2.2.5 implies that the Fourier coefficients of f ∈ Hk,ρL

satisfy

c±f (n, h) = (−1)k+ b−−b+
2 c±f (n,−h).

From this we directly deduce the following corollary.

Corollary 2.3.7. The space Hk,ρL is trivial if

2k 6≡ b+ − b− (mod 2).

2.3.1. Differential operators acting on automorphic forms

We introduce some differential operators acting on the space of harmonic Maass forms.
The basic reference here is [Bum98]. We define the differential operators ∂

∂τ
and ∂

∂τ̄
by

∂

∂τ
:=

1

2

(
∂

∂u
− i ∂

∂v

)
and

∂

∂τ̄
:=

1

2

(
∂

∂u
+ i

∂

∂v

)
.

Definition 2.3.8. Let k ∈ 1
2
Z. We define the Maass raising and lowering operators on

smooth functions f : H→ C[L′/L] by

Rk := 2i
∂

∂τ
+ kv−1 and Lk := −2iv2 ∂

∂τ̄
.
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2. Automorphic Forms

The lowering operator Lk takes automorphic forms of weight k to automorphic forms of
weight k− 2 and the raising operator Rk takes automorphic forms of weight k to automor-
phic forms of weight k + 2. Moreover, these operators commute with the slash operator
[Bum98, Lemma 2.1.1].

We can write ∆k in terms of Lk and Rk as follows

−∆k = Lk+2Rk + k = Rk−2Lk.

The Maass raising and lowering operators satisfy the following relations with the weighted
Laplace operator

Rk∆k = (∆k+2 − k)Rk, (2.3.4)

Lk∆k = (∆k−2 + 2− k)Lk. (2.3.5)

We also define iterated versions of the raising and lowering operators

Rn
k := Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk, Lnk := Lk−2(n−1) ◦ · · ·Lk−2 ◦ Lk.

For n = 0 we set R0
k = L0

k = id.
Using (2.3.4) and (2.3.5) we can show that the iterated versions of the Maass raising and

lowering operators satisfy relations similar to the ones that Rk and Lk satisfy.

Lemma 2.3.9. For k ∈ Z we have

∆0R
k
−2k = Rk

−2k (∆−2k − k(k + 1)) .

If k is even, then

∆3/2+kR
k/2
3/2 = R

k/2
3/2

(
∆3/2 +

k

4
(k + 1)

)
,

∆1/2−kL
k/2
1/2 = L

k/2
1/2

(
∆1/2 +

k

4
(k + 1)

)
,

and if k is odd we have

∆1/2−kL
(k+1)/2
3/2 = L

(k+1)/2
3/2

(
∆3/2 +

k

4
(k + 1)

)
,

∆3/2+kR
(k+1)/2
1/2 = R

(k+1)/2
1/2

(
∆1/2 +

k

4
(k + 1)

)
.

Following Bruinier and Funke [BF04] we consider another important differential operator
whose most important features will be discussed in the next section.

Definition 2.3.10. Let f ∈ Hk,ρL be a harmonic Maass form. We define the antilinear
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2.3. Vector valued harmonic Maass forms

differential operator ξk by

ξk(f)(τ) := vk−2Lkf(τ) = R−kv
kf(τ) = 2ivk

∂

∂τ̄
f(τ)

and the usual Dolbeault operators ∂ and ∂̄ on 1-forms, by requiring

∂(fdτ + gdτ̄) =

(
∂

∂τ
g

)
dτ ∧ dτ̄

∂̄(fdτ + gdτ̄) =

(
∂

∂τ̄
f

)
dτ̄ ∧ dτ.

We denote by Ek the space of C∞-differential k-forms. Then d = ∂ + ∂̄ for the exterior
derivative d : E1 → E2.

We summarize some useful identities between the various differential operators in the
following lemma.

Lemma 2.3.11. We have

∂̄(fdτ) = −v2−kξk(f)dµ(τ) = −Lkfdµ(τ).

We introduce another differential operator

D :=
1

2πi

∂

∂τ
.

Then we have the following lemma.

Lemma 2.3.12 (Lemma 2.1 in [BOR08]). We have

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

Moreover, Bruinier, Ono and Rhoades proved the following theorem.

Theorem 2.3.13 (Theorem 1.1 in [BOR08]). Let 2 ≤ k ∈ Z and f ∈ H+
−2k(N) with

Fourier expansion as in (2.3.3). Then we have

Dk−1(f) ∈M !
k(N)

and
Dk−1f = Dk−1f+ =

∑
n�−∞

c+
f (n)nk−1qn.

Moreover, the constant terms of Dk−1(f) at all cusps of Γ0(N) vanish.

A short calculation yields the following lemma.
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2. Automorphic Forms

Lemma 2.3.14. For a C∞-function F on X0(N) we have

dF = − 1

2i
ξ0(F )dτ̄ + 2πiD(F )dτ. (2.3.6)

2.3.2. Harmonic Maass forms and the ξ-operator

In [BF04] Bruinier and Funke show that the ξ-operator relates harmonic Maass forms to
modular forms.

Proposition 2.3.15 (Proposition 3.2 and Theorem 3.7 in [BF04]). The operator ξk defines
a surjective mapping

ξk : Hk,ρL →M !
2−k,ρL .

The kernel of this map is given by M !
k,ρL

.

Remark 2.3.16. The space H+
k,ρL

can alternatively be defined as

H+
k,ρL

:=
{
f ∈ Hk,ρL : ξk(f) ∈ S2−k,ρL

}
.

A direct consequence of Proposition 2.3.15 is the following corollary.

Corollary 2.3.17. The following sequences are exact

0 //M !
k,ρL

//Hk,ρL

ξk //M !
2−k,ρL

//0 , (2.3.7)

0 //M !
k,ρL

//H+
k,ρL

ξk //S2−k,ρL
//0 . (2.3.8)

Via a direct computation we obtain the following lemma.

Lemma 2.3.18. Let k 6= 1. For f ∈ Hk,ρL the Fourier expansion of ξk(f) ∈ M !
2−k,ρL is

given by

ξk(f) = −
∑

h∈L′/L

c−f (0, h)(k − 1) +
∑

n∈Z+Q(h)

c−f (−n, h)(4πn)1−kqn

 eh.

Let f and g be automorphic forms of weight k transforming with respect to the repre-
sentation ρL. We define the regularized Petersson inner product of f and g as

(f, g)reg
k,ρL

= lim
t→∞

∫
Ft
〈f(τ), g(τ)〉vkdµ(τ),

whenever this expression exists. Here, Ft = {τ ∈ F : =(τ) ≤ t} denotes the truncated
fundamental domain.
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2.3. Vector valued harmonic Maass forms

In [BF04] Bruinier and Funke define a bilinear pairing between the spaces M2−k,ρL and
H+
k,ρL

by
{g, f} = (g, ξk(f))reg

2−k,ρL
, (2.3.9)

where g ∈M2−k,ρL and f ∈ H+
k,ρL

. They obtain the following duality result.

Proposition 2.3.19 (Proposition 3.5, [BF04]). Let g ∈ M2−k,ρL with Fourier expansion
g =

∑
h,n bg(n, h)qneh, and f ∈ H+

k,ρL
with Fourier expansion as in (2.3.1) and (2.3.3).

Then the above defined pairing of g and f is determined by the principal part of f . It is
equal to

{g, f} =
∑

h∈L′/L

∑
n≥0

c+
f (n, h)bg(−n, h).

We extend the pairing between M2−k,ρL and H+
k,ρL

to include not only holomorphic
modular forms but also weakly holomorphic modular forms.

Proposition 2.3.20. For g(τ) =
∑

h∈L′/L
∑∞

j�−∞ bg(j, h)qjeh ∈ M !
2−k,ρL and f ∈ H+

k,ρL

with Fourier expansion as in (2.3.1) and (2.3.3) we have

{g, f} =
∑

h∈L′/L

(∑
n≥0

c+
f (n, h)bg(−n, h) +

∑
n>0

c+
f (−n, h)bg(n, h)

)
.

Proof. We follow the argument of Bruinier and Funke [BF04, Proposition 3.5].

First, we note that 〈g, f̄〉dτ is a Mp2(Z)-invariant 1-form on H. By Lemma 2.3.11 we
have

d
(
〈g, f̄〉dτ

)
= ∂̄

(
〈g, f̄〉dτ

)
= −〈g, Lkf〉dµ(τ)

and obtain using Stoke’s theorem∫
Ft
〈g, Lkf〉dµ(τ) = −

∫
∂Ft
〈g, f̄〉dτ.

Since the integrand is SL2(Z)-invariant the equivalent pieces of the boundary of the fun-
damental domain cancel and we obtain

−
∫
∂Ft
〈g, f̄〉dτ =

∫ 1/2

−1/2

〈g(u+ it), f(u+ it)〉du.

If we insert the Fourier expansions of g and f , we observe that the integral picks out the
0-th Fourier coefficient of 〈g, f〉. Therefore∫

Ft
〈g, Lkf〉dµ =

∑
h∈L′/L

∑
n∈Z+Q(h)

c+
f (n, h)bg(−n, h) +O(e−εt)
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2. Automorphic Forms

for some ε > 0. Taking the limit as t→∞ we obtain

{g, f} = lim
t→∞

∫
Ft
〈g, Lkf〉dµ =

∑
h∈L′/L

∑
n∈Z+Q(h)

c+
f (n, h)bg(−n, h).

Proposition 2.3.21 (Proposition 3.11 in [BF04]). For every Fourier polynomial of the
form

P (τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)

n<0

c+(n, h)qneh

with c+(n, h) = (−1)k+ b−−b+
2 c+(n,−h), there is an f ∈ H+

k,ρL
with principal part Pf (τ) =

P (τ) + c for some T -invariant constant c ∈ C[L′/L]. If k < 0, then f is uniquely deter-
mined.

From the non-degeneracy of the bilinear pairing (2.3.9) and the formula in Proposi-
tion 2.3.19 we deduce the following corollary.

Corollary 2.3.22. A harmonic Maass form f ∈ H+
k,ρL

with constant principal part must
satisfy f− ≡ 0. In this case f is a modular form in Mk,ρL.

This implies that f, f̃ ∈ H+
k,ρL

with the same principal part actually have the same

non-holomorphic part as well, i.e. f− = f̃−. Therefore, the non-holomorphic part f− of a
harmonic Maass form f ∈ H+

k,ρL
is determined by the principal part Pf of f . Obviously,

the converse is wrong, since ξk is surjective.

2.3.3. Jacobi forms and Hecke operators

We briefly introduce Jacobi forms. These forms were first investigated by Eichler and
Zagier in [EZ85]. There is a natural isomorphism from the space of Jacobi forms to the
space of vector valued modular forms. Using this isomorphism we are able to define Hecke
operators on vector valued modular forms.

Definition 2.3.23. Let k,m ∈ Z. A holomorphic function φ : H × C → C is called a
holomorphic Jacobi form of weight k and index m if

(i) φ
(
γτ, z

cτ+d

)
= (cτ + d)k e(mcz2/(cτ + d))φ(τ, z) for all γ = ( a bc d ) ∈ SL2(Z).

(ii) φ(τ, z + rτ + s) = e(−m(r2τ + 2rz))φ(τ, z) for all r, s ∈ Z.

(iii) φ(τ, z) is holomorphic at the cusp ∞.
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2.3. Vector valued harmonic Maass forms

We denote the space of holomorphic Jacobi forms of weight k and index m by Jk,m. Such
a function φ ∈ Jk,m has a Fourier expansion of the form

φ(τ, z) =
∑
n,r∈Z

c(n, r)qnζr,

where q = e2πiτ and ζ = e2πiz. If φ(τ, z) is holomorphic at ∞, then c(n, r) = 0 if the
discriminant r2 − 4nm is positive.

Proposition 2.3.24. Let φ ∈ Jk,m. Then φ(τ, z) has a theta expansion of the form

φ(τ, z) =
∑

r∈Z/2mZ

φr(τ)θr(τ, z),

where

θr(τ, z) =
∑
n∈Z

n≡r(2m)

q
n2

4m ζn

for r ∈ Z/2mZ.
If L = Z is the lattice with the quadratic form Q(x) = mx2, then

Ψ(τ) =
∑

r∈Z/2mZ

φr(τ)er

is a vector valued modular form contained in Mk−1/2,ρL. This correspondence gives an
isomorphism

Mk−1/2,ρL ' Jk,m.

Remark 2.3.25. If L is the lattice defined in Section 1.2.1 and k ∈ 1
2
Z \ Z, then we have

Mk,ρL ' Jk+1/2,N .

Remark 2.3.26. The space Mk,ρL is isomorphic to the space of skew-holomorphic Jacobi
forms of weight k + 1/2 and index N as defined in [Sko90a].

Remark 2.3.27. The space Snew
k,ρL

is isomorphic as a module over the Hecke algebra to

Snew,−
2k−1 (N). This is the space of newforms on which the Fricke involution acts by multipli-

cation with (−1)k+1/2. The isomorphism is given by the Shimura correspondence. Analo-
gously, we can relate Snew

k,ρL
to Snew,+

2k−1 (N). Here, the Fricke involution acts by multiplication

with (−1)k−1/2.

Using these isomorphisms we can introduce the operation of the Hecke algebra that was
introduced for the space of Jacobi forms in [EZ85]. For any positive integer ` we have
a Hecke operator T (`) on Mk,ρL that is self adjoint with respect to the Petersson inner
product (note that here ρL can be either ρL or ρL). The action on the Fourier expansion of
a vector valued modular form g(τ) =

∑
h,n b(n, h)qneh ∈Mk,ρL can be described explicitly.

Moreover, this action extends to harmonic weak Maass forms.
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2. Automorphic Forms

If p is a prime that is coprime to N , we have g|kT (p) =
∑

h,n b
∗(n, h)qneh, where

b∗(n, h) = b(p2n, ph) + pk−3/2

(
4Nσn

p

)
b(n, h) + p2k−2b(n/p2, h/p), (2.3.10)

and where σ = 1 if ∆ < 0 and σ = −1 if ∆ > 0.
Bruinier and Ono proved a series of useful results regarding the action of Hecke operators

on the bilinear pairing which we recall now.

Proposition 2.3.28 (Proposition 7.1, [BO10]). The action of the Hecke operator is self
adjoint with respect to the pairing {·, ·} (up to a scalar factor). In particular, we have

{g, f |kT (l)} = l2k−2 {g|2−kT (l), f}

for g ∈ S2−k,ρL and f ∈ H+
k,ρL

.

Lemma 2.3.29 (Lemma 7.2, [BO10]). Let g ∈ S2−k,ρL and assume that f ∈ H+
k,ρL

satisfies

{g, f} = 1, and {g′, f} = 0 for all g′ ∈ S2−k,ρL orthogonal to g. Then ξk(f) = ||g||−2g.

Let F be a number field. Denote by S2−k,ρL(F ) the F -vector space of cusp forms having
coefficients in F . Moreover, we write H+

k,ρL
(F ) for the space of harmonic weak Maass forms

whose principal part has coefficients in F .

Lemma 2.3.30 (Lemma 7.3, [BO10]). Let g ∈ S2−k,ρL(F ). Then there is an f ∈ H+
k,ρL

(F )
such that

ξk(f) = ||g||−2g.

Lemma 2.3.31 (Lemma, 7.4, [BO10]). Let f ∈ H+
k,ρL

and assume that ξk(f)|2−kT (l) =
λlξk(f) with λl ∈ F . Then

f |kT (l)− l2k−2λlf ∈M !
k,ρL

(F ).

2.4. Twisting automorphic forms

In this section we recall work of Ehlen and the author [AE13] on twisting automorphic
forms with a genus character related to the lattice L defined in Section 1.2. We let the
setting be as in Section 1.2. Since the lattice L is fixed from now on, we write ρ for ρL
(here and in the following).

We first define a generalized genus character for δ =
(
b/2N −a/N
c −b/2N

)
∈ L′ as in [GKZ87].

From now on we let ∆ ∈ Z be a fundamental discriminant and r an integer such that
∆ ≡ r2 (mod 4N).

Then

χ∆(δ) = χ∆([a, b,Nc]) :=


(

∆
n

)
, if ∆|b2 − 4Nac, (b2 − 4Nac)/∆ is a

square mod 4N and gcd(a, b, c,∆) = 1,

0, otherwise.
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2.5. Poincaré series and Whittaker functions

Here, [a, b,Nc] is the integral binary quadratic form corresponding to δ, and n is any
integer prime to ∆ represented by one of the quadratic forms [N1a, b,N2c] with N1N2 = N
and N1, N2 > 0.

The function χ∆ is invariant under the action of Γ0(N) and under the action of all
Atkin-Lehner involutions. It can be computed via the following formula [GKZ87, Section
I.2, Proposition 1]: If ∆ = ∆1∆2 is a factorization of ∆ into discriminants and N = N1N2

is a factorization of N into positive factors such that (∆1, N1a) = (∆2, N2c) = 1, then

χ∆([a, b,Nc]) =

(
∆1

N1a

)(
∆2

N2c

)
.

If no such factorizations of ∆ and N exist, we have χ∆([a, b,Nc]) = 0.
Since χ∆(δ) depends only on δ ∈ L′ modulo ∆L, we can view it as a function on the

discriminant group D(∆). Let ρ∆ be the representation corresponding to the discriminant
group D(∆).

In [AE13] it was shown that we obtain an intertwiner of the Weil representations corre-
sponding to D = L′/L and D(∆) via χ∆. This idea was due to Stephan Ehlen.

Proposition 2.4.1 (Proposition 3.2,[AE13]). We denote by π : D(∆)→ D the canonical
projection. For h ∈ D, we define

ψ∆,r(eh) :=
∑

δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)eδ. (2.4.1)

Then ψ∆,r : D → D(∆) defines an intertwining linear map between the representations ρ̃
and ρ∆, where

ρ̃ =

{
ρ if ∆ > 0,

ρ if ∆ < 0.

Remark 2.4.2. For a function f ∈ Ak,ρ∆
Proposition 2.4.1 directly implies that the func-

tion g : H→ C[D], g =
∑

h∈D gheh with gh := 〈ψ∆,r(eh), f〉, is contained in Ak,ρ̃.

2.5. Poincaré series and Whittaker functions

We recall some facts on Poincaré series with exponential growth at the cusps following
Section 2.6 of [BO13]. Again we work in the setting that we introduced in Section 1.2.

We let k ∈ 1
2
Z, and Mν,µ(z) and Wν,µ(z) denote the usual Whittaker functions (see p. 190

of [AS84]). For s ∈ C and y ∈ R>0 we put

Ms,k(y) = y−k/2M− k
2
,s− 1

2
(y).

We let Γ∞ be the subgroup of Γ0(N) generated by ( 1 1
0 1 ). For an integer k ∈ Z, m ∈ Z>0,
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2. Automorphic Forms

z = x+ iy ∈ H and s ∈ C with <(s) > 1, we define

Fm(z, s, k) =
1

2Γ(2s)

∑
γ∈Γ∞\Γ0(N)

[Ms,k(4πmy)e(−mx)] |k γ. (2.5.1)

This Poincaré series converges for <(s) > 1, and it is an eigenfunction of ∆k with eigenvalue
s(1− s) + (k2− 2k)/4. Its specialization at s0 = 1− k/2 is a harmonic Maass form [Bru02,
Proposition 1.10]. The principal part at the cusp∞ is given by q−m +C for some constant
C ∈ C. The principal parts at the other cusps are constant.

The Poincaré series behave nicely under the Maass raising and lowering operator.

Proposition 2.5.1 (Proposition 2.2, [BO13]). We have that

RkFm(z, s, k) = 4πm

(
s+

k

2

)
Fm(z, s, k + 2).

Proposition 2.5.2. We have that

LkFm(z, s, k) =
1

4πm

(
s− k

2

)
Fm(z, s, k − 2).

Proof. Since Lk commutes with the slash operator, it suffices to show the identity on the
corresponding Whittaker functions. We employ equations (13.4.11) and (13.1.32) in [AS84]
which imply the desired identity.

We now define C[L′/L]-valued analogs of these series. Let h ∈ L′/L and m ∈ Z−Q(h)
be positive. For k ∈

(
Z− 1

2

)
<1

we let

Fm,h(τ, s, k) =
1

2Γ(2s)

∑
γ∈Γ̃∞\Mp2(Z)

[Ms,k(4πmy)e(−mx)eh]|k,ρ γ,

and for k ∈
(
Z− 1

2

)
≥1

we let

Fm,h(τ, s, k) =
1

2

∑
γ∈Γ̃∞\Mp2(Z)

[Ms,k(4πmy)e(−mx)eh]|k,ρ γ.

The series Fm,h(τ, s, k) converges for <(s) > 1 and it defines a harmonic Maass form of
weight k for the group Mp2(Z) with representation ρ. The special value at s = 1 − k/2
if k ∈

(
Z− 1

2

)
<1

, respectively s = k/2 if k ∈
(
Z− 1

2

)
≥1

, is harmonic [Bru02, Proposition

1.10]. For k ∈ Z− 1
2

the principal part is given by q−meh + q−me−h + c for some constant
c ∈ C[L′/L].

Remark 2.5.3. For k < 0 these Poincaré series span the space H+
k,ρ [Bru02, Proposition

1.12]. For k = 0 we have to add the constants to obtain a basis for H+
0,ρ.
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2.6. Theta Functions

We will also consider the W-Whittaker function

Ws,k(y) = y−k/2Wk/2,s−1/2(y), y > 0. (2.5.2)

It behaves as follows under the Maass raising and lowering operator.

Proposition 2.5.4. For m > 0 and y > 0 we have that

LkWs,k(4πmy)e(−mx) =
1

4πm

(
s− k

2

)(
1− s− k

2

)
Ws,k−2(4πmy)e(−mx)

and
RkWs,k(4πmy)e(−mx) = (−4πm)Ws,k+2(4πmy)e(−mx).

Proof. For the first equation we use (13.1.33) and (13.4.23) and for the second one (13.1.33)
and (13.4.26) in [AS84].

2.6. Theta Functions

In this section we introduce the theta functions that we will employ as kernel functions
for the lifts we investigate in the upcoming chapters. We start with the definition of the
usual Siegel theta function in a slightly more general setting than the one explained in
Section 1.2. Apart from the Siegel theta function, we will define the relevant theta kernels
only in the setting of this thesis as presented in Section 1.2. More general constructions
can be found in [Bor98, KM86] or [BF04].

2.6.1. The Siegel theta function

Let (V,Q) be a rational quadratic space of signature (b+, b−) and let L ⊆ V be an even
lattice of full rank with dual lattice L′. We let Gr(L) be the space of b+-dimensional
positive definite subspaces of L⊗ R, i.e.

Gr(L) := {z ⊂ V (R) : dim z = b+, Q|z > 0}.

For z ∈ Gr(L) we let z⊥ be its orthogonal complement in V (R). Then z⊥ is a b−-
dimensional negative definite subspace of V (R) and V (R) = z ⊕ z⊥. Therefore, we can
uniquely decompose any λ ∈ V (R) as λ = λz +λz⊥ , where λz, respectively λz⊥ denotes the
orthogonal projection of λ to z respectively z⊥. We let

Qz(λ) := Q(λz)−Q(λz⊥)

be the majorant associated to z ∈ Gr(L). Then Qz(λ) is a positive definite quadratic
form on V (R) for all z ∈ Gr(L). Using this quadratic form we can employ the classical
construction of theta functions for positive definite quadratic forms as in [FB93, KK07,
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BvdGHZ08] (this construction does not work for an indefinite lattice L since the resulting
series does not converge).

Definition 2.6.1. The Siegel theta function ϑL(τ, z) associated with the lattice L is defined
as

ϑL(τ, z) := v
b−
2

∑
λ∈L

e

(
λ2
z

2
τ +

λ2
z⊥

2
τ̄

)
= v

b−
2

∑
λ∈L

e (Q(λ)u+Qz(λ)iv) ,

where τ = u+ iv ∈ H and z ∈ Gr(L).

Now let V be the rational quadratic space of signature (1, 2) as in Section 1.2. Then the
majorant is given by

Qz(λ) =
1

2

(
(λ, λ(z))2 − (λ, λ)

)
,

where λ(z) is as in (1.2.3). Note that for λ =
(
b/2N −a/N
c −b/2N

)
∈ L′/L we have

(λ, λ(z)) = − 1√
Ny

(cN |z|2 − bx+ a) (2.6.1)

and

(λ, λ) = − b2

2N
+ 2ac. (2.6.2)

Furthermore, we define

R(λ, z) :=
1

2
(λ, λ(z))2 − (λ, λ).

We then let
ϕ0

S(λ, z) := e−2πR(λ,z) (2.6.3)

and
ϕS(λ, τ, z) := ϕ0

S(
√
vλ, z)e2πiQ(λ)τ . (2.6.4)

Then the Siegel theta function for the lattice L is given by

ΘL(τ, z, ϕS) = v
∑

h∈L′/L

∑
λ∈L+h

ϕS(λ, τ, z)eh =: v
∑

h∈L′/L

∑
λ∈L+h

θh(τ, z, ϕS)eh.

It satisfies the following transformation properties (see for example [Bor98, Bru02]).

Theorem 2.6.2. The Siegel theta function ΘL(τ, z, ϕS) is a non-holomorphic automorphic
form of weight −1/2 transforming with respect to the representation ρ for Mp2(Z) in the
variable τ and a Γ0(N)-invariant function in the variable z.

We now explain the construction of the twisted theta function Θ∆,r(τ, z, ϕS) using the
methods of Section 2.4. Let ρ∆ be the representation corresponding to the discriminant
group D(∆). We define by

ϕ0
S,∆(λ, z) := e−2πR(λ,z)/|∆|
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and
ϕS,∆(λ, τ, z) := ϕ0

S,∆(
√
vλ, z)e2πiQ∆(λ)τ

the twisted versions of (2.6.3) and (2.6.4). We let δ ∈ D(∆) and define a theta function
Θδ(τ, z, ϕS) for τ, z ∈ H via

Θδ(τ, z, ϕS) =
∑

λ∈∆L+δ

ϕS,∆(λ, τ, z).

By Theorem 2.6.2 the vector valued theta series

ΘD(∆)(τ, z, ϕS) =
∑

δ∈D(∆)

Θδ(τ, z, ϕS)eδ

is a non-holomorphic automorphic form of weight −1/2 which transforms with respect to
the representation ρ∆ in the variable τ .

We obtain a C[L′/L]-valued twisted theta function by setting

Θ∆,r(τ, z, ϕS) :=
∑

h∈L′/L

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)Θδ(τ, z, ϕS)eh.

Recall that

ρ̃ =

{
ρ if ∆ > 0,

ρ if ∆ < 0.

Proposition 2.4.1 then directly implies the following theorem.

Theorem 2.6.3. The theta function Θ∆,r(τ, z, ϕS) is a non-holomorphic C[D]-valued mod-
ular form of weight −1/2 for the representation ρ̃ in the variable τ . Furthermore, it is
Γ0(N)-invariant in the variable z ∈ D.

2.6.2. The Millson theta function

We define a Schwartz function

ψKM(λ, τ, z) = pz(λ)e−2πQ(λz),

where pz(λ) = (λ, λ(z)).
This function was recently studied extensively by Hövel in his PhD thesis [Höv12]. It

can be understood in the context of Borcherds’ definition of Siegel theta functions as in
[Bor98]. Kudla and Millson were the first that considered this function [KM90]. We call
it Millson Schwartz function throughout this thesis.

We let
ψ0

KM,∆(λ, z) = pz(λ)e−2πR(λ,z)/|∆|, (2.6.5)
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and
ψKM,∆(λ, τ, z) = ψ0

KM,∆(
√
vλ, z)e2πiQ∆(λ)τ .

The associated theta function, that we call Millson theta function, has the following auto-
morphic and analytic properties.

Theorem 2.6.4. The theta function

Θ∆,r(τ, z, ψKM) := v1/2
∑
h∈D

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)
∑

λ∈∆L+δ

ψKM,∆(λ, τ, z)eh (2.6.6)

is a non-holomorphic C[D]-valued modular form of weight 1/2 for the representation ρ̃ in
the variable τ . Furthermore, it is Γ0(N)-invariant in the variable z ∈ D.

Proof. This is Satz 2.6 and Satz 2.8 in [Höv12]. Alternatively it can be deduced from
the automorphic properties of the theta functions Borcherds defined and investigated in
[Bor98] using the methods of Section 2.4.

Moreover, we have
ψKM,∆(g.λ, gz) = ψKM,∆(λ, z)

for g ∈ SL2(R).
The components of the Millson theta function are denoted by Θ∆,r,h(τ, z, ψKM). We

investigate the growth of the Millson theta function at the cusps of Γ0(N).

Proposition 2.6.5. For h ∈ L′/L and for each cusp `, we have

Θ∆,r,h(τ, σ`z, ψKM) = O(e−Cy
2

), as y →∞,

uniformly in x, for some constant C > 0.

Proof. We proceed as Funke in [Fun02] when investigating the growth properties of the
Kudla-Millson theta function ϕKM. For simplicity we let ∆ = N = 1 (note that the theta
function vanishes in that case, nevertheless the argument we apply here works as in the
more general cases). Then L = Z3 and h =

(
h′ 0
0 h′

)
with h′ = 0 or h′ = 1/2. So we consider

θh(τ, z, ψKM) =
∑
a,c∈Z
b∈Z+h′

−v
y

(c|z|2 − bx+ a)e−
πv
y

(c|z|2−bx+a)2

e2πiτ̄(−b2/4+ac).

We apply Poisson summation on the sum over a. We consider the summands as a function
of a and compute the Fourier transform, i.e.

−
∫ ∞
−∞

v

y
(c|z|2 − bx+ a)e−

πv
y

(c|z|2−bx+a)2

e2πiτ̄(−b2/4+ac)e2πiwada

= −ye−πiτ̄b2/2e2πi(cτ̄+w)(bx−c|z|2)

∫ ∞
−∞

te−πt
2

e
2πit y√

v
(cτ̄+w)

dt,
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where we set t =
√
v
y

(c|z|2 − bx + a). Since the Fourier transform of xe−πx
2

is ixe−πx
2

this
equals

− i y
2

√
v
e−πiτ̄b

2/2e2πi(cτ̄+w)(bx−c|z|2)(cτ̄ + w)e−
πy2

v
(cτ̄+w)2

= −i y
2

√
v

(cτ̄ + w)e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)e−
πy2

v
|cτ+w|2 .

We obtain that

θh(τ, z, ψKM) = − y2

√
v

∑
w,c∈Z
b∈Z+h′

(cτ̄ + w)e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)e−
πy2

v
|cτ+w|2 .

If c and w are non-zero this decays exponentially, and if c = w = 0 it vanishes.
In general we obtain for h ∈ L′/L and at each cusp `

θh(τ, σ`z, ψKM) = O(e−Cy
2

), as y →∞,

uniformly in x, for some constant C > 0.

Hövel investigated the behavior of Θ∆,r(τ, z, ψKM) under the operation of the Atkin-
Lehner involutions.

Proposition 2.6.6 (Proposition 2.7 in [Höv12]). Let Q be an exact divisor of N . Then
we have

Θ∆,r(τ,W
N
Q z, ψKM) =

∑
h∈L′/L

Θ∆,r,WN
Q .h

(τ, z, ψKM)eh.

By ` and `′ we denote the primitive isotropic vectors

` =

(
0 1/N
0 0

)
, `′ =

(
0 0
−1 0

)
in L. We write K for the 1-dimensional lattice Z ( 1 0

0 −1 ) ⊂ L. We have L = K + Z` + Z`′
and L′/L ' K ′/K. Then we can rewrite the Millson theta function in terms of the smaller
lattice K. The following is Satz 2.22 in [Höv12].

Proposition 2.6.7. Let ε = 1 if ∆ > 0 and ε = i if ∆ < 0. We have

Θ∆,r(τ, z, ψKM) = −Ny
2ε̄

2i

∞∑
n=1

n

(
∆

n

)

×
∑

γ∈Γ̃∞\Mp2(Z)

[
1

v1/2
e

(
−Nn

2y2

2i |∆| v

)∑
λ∈K′

e

(
λ2

2
|∆| τ̄ − 2nNλx

)
erλ

] ∣∣∣∣∣
1/2,ρ̃K

γ.
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2.6.3. The Kudla-Millson theta function

Following Kudla and Millson [KM86] we define a Schwartz function valued in the differential
forms of Hodge type (1, 1). We let

ϕKM(λ, z) :=

(
(λ, λ(z))2 − 1

2π

)
e−2πQ(λ)zΩ,

where Ω = i
2
dz∧dz̄
y2 .

Mimicking the construction in the previous sections, we let

ϕ0
KM,∆(λ, z) :=

(
1

|∆|
(λ, λ(z))2 − 1

2π

)
e−2πR(λ,z)/|∆|Ω,

and
ϕKM,∆(λ, τ, z) = e2πiQ∆(λ)τϕ0

KM,∆(
√
vλ, z).

Using the transformation properties of the untwisted Kudla-Millson theta function (see
[KM86, BF04, BF06]) and the method presented in Section 2.4 we obtain the following
theorem.

Theorem 2.6.8 (Proposition 4.1 in [AE13]). The Kudla-Millson theta function

Θ∆,r(τ, z, ϕKM) =
∑
h∈D

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)
∑

λ∈∆L+δ

ϕKM,∆(λ, τ, z)eh

is a non-holomorphic C[D]-valued modular form of weight 3/2 for the representation ρ̃ in
the variable τ . Furthermore, it is Γ0(N)-invariant in the variable z ∈ D.

Moreover, we have
ϕKM,∆(g.λ, gz) = ϕKM,∆(λ, z) (2.6.7)

for g ∈ SL2(R) (see [KM86, BF06]).

Funke [Fun02] already investigated the growth of the Kudla-Millson theta function.

Proposition 2.6.9 (Proposition 4.1 in [Fun02], Proposition 4.1 in [BF06]). For h ∈ L′/L
and for each cusp `, we have

Θ∆,r,h(τ, σ`z, ϕKM) = O(e−Cy
2

), as y →∞,

uniformly in x, for some constant C > 0.

Using the same arguments as Hövel in his thesis for the Millson theta function (see
Proposition 2.6.6) we can show the following proposition regarding the operation of the
Atkin-Lehner involutions on Θ∆,r(τ, z, ϕKM).
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Proposition 2.6.10. Let Q be an exact divisor of N . Then we have

Θ∆,r(τ,W
N
Q z, ϕKM) =

∑
h∈L′/L

θ∆,r,WN
Q .h

(τ, z, ϕKM)eh.

Again, we rewrite the theta function with respect to the smaller lattice K. We can
either use the usual method of Poisson summation or twist the corresponding untwisted
expression which is derived in [BF06]. An unpublished preprint of Ehlen [Ehl] explains
how to twist the reduction of Θ∆,r(τ, z, ϕKM) to the smaller lattice K.

Proposition 2.6.11. We have

Θ∆,r(τ, z, ϕKM) = −y N
3/2

2 |∆|
ε̄

∞∑
n=1

∑
γ∈Γ̃∞\Mp2(Z)

n2

(
∆

n

)

×

[
exp

(
−πy

2Nn2

v |∆|

)
v−3/2

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ

] ∣∣∣∣∣
3/2,ρ̃K

γ dxdy.

2.6.4. The Shintani theta function

Now we define the theta kernel of the Shintani lift. Recall that for a lattice element
λ ∈ L′/L we write λ =

(
b/2N −a/N
c −b/2N

)
. Let

ϕSh,∆(λ, τ, z) = −cNz̄
2 − bz̄ + a

4Ny2
e−2πvR(λ,z)/|∆|e2πiQ∆(λ)τ .

The Shintani theta function transforms as follows.

Theorem 2.6.12. The Shintani theta function

Θ∆,r(τ, z, ϕSh) = v1/2
∑
h∈D

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)
∑

λ∈∆L+δ

ϕSh,∆(λ, τ, z)eh (2.6.8)

is a non-holomorphic automorphic form of weight 2 for Γ0(N) in the variable z ∈ D.
Moreover, Θ∆,r,h(τ, z, ϕSh) is a non-holomorphic C[D]-valued modular form of weight 3/2
for the representation ρ̃ in the variable τ .

Proof. The automorphic and analytic properties of the untwisted function are stated in

[BvdGHZ08] on p. 142. Note that we already explicitly evaluated the function (λ,Z̄)

(Z̄,Z)
in

our definition above. Using the methods described in Section 2.4 we obtain the desired
result.
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2.6.5. Differential equations for theta functions

The theta functions we just defined satisfy some interesting differential equations. These
were already investigated in [AGOR, Bru02, BF04, Höv12, BKV13].

The Kudla-Millson theta function and the Siegel theta function are related by the identity
[BF04, Theorem 4.4]

L3/2,τΘ∆,r(τ, z, ϕKM) =
1

4π
∆0,zΘ∆,r(τ, z, ϕS) · Ω. (2.6.9)

For the Kudla-Millson theta kernel we have [BO13, Equation (2.18)]

∆3/2,τΘ∆,r(τ, z, ϕKM) =
1

4
∆0,zΘ∆,r(τ, z, ϕKM). (2.6.10)

The Millson theta function satisfies [Höv12, Proposition 3.10]

∆1/2,τΘ∆,r(τ, z, ψKM) =
1

4
∆0,zΘ∆,r(τ, z, ψKM). (2.6.11)

The Millson and the Shintani theta function are related by the following identity [AGOR,
Lemma 3.4]

ξ1/2,τΘ∆,r(τ, z, ψKM) = −4i
√
Ny2 ∂

∂z
Θ∆,r(τ, z, ϕSh). (2.6.12)

All of these identities can be checked by a direct computation. The following identities are
essential

∂

∂z
y−2(cNz2 − bz + a) = −i

√
Ny−2pz(λ),

∂

∂z
R(λ, z) = − i

2
√
N
y−2pz(λ)(cNz̄2 − bz̄ + a),

y−2(cNz2 − bz + a)(cNz̄2 − bz̄ + a) = 2NR(λ, z).

2.7. Twisted Heegner divisors and the modular trace
function

Recall that we defined Lm,h for m ∈ Q and h ∈ L′/L by

Lm,h = {λ ∈ L+ h : Q(λ) = m} .

Moreover, we considered the Heegner divisor Z(m,h) in Section 1.2.4 given by

Z(m,h) =
∑

λ∈Γ0(N)\Lm,h

1

|Γλ|
Z(λ) ∈ Div(M)Q,
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where ∆ ∈ Z is a fundamental discriminant and r ∈ Z is such that r2 ≡ ∆ (mod 4N).

We define a twisted Heegner divisor Z∆,r(m,h) by

Z∆,r(m,h) =
∑

λ∈Γ0(N)\Lm|∆|,rh

χ∆(λ)∣∣Γλ∣∣ Z(λ) ∈ Div(M)Q.

Here, χ∆ is the genus character defined in Section 2.4. By Lemma 5.1 of [BO10] Z∆,r(m,h)
is defined over Q(

√
∆).

Moreover, we let

L+
|∆|m,rh =

{
λ =

(
b/2N −a/N
c −b/2N

)
∈ L|∆|m,rh : a ≥ 0

}
,

and similarly

L−|∆|m,rh =

{
λ =

(
b/2N −a/N
c −b/2N

)
∈ L|∆|m,rh : a < 0

}
.

Obviously, we have L|∆|m,rh = L+
|∆|m,rh ∪ L

−
|∆|m,rh.

We define Z+
∆,r(m,h) and Z−∆,r(m,h) correspondingly. Similarly as in Lemma 5.1 of

[BO10] one can show that Z̃∆,r(m,h) = Z+
∆,r(m,h)−Z−∆,r(m,h) is defined over Q(

√
∆,
√
m).

Let k ≥ 0 and let F be a harmonic Maass form of weight −2k for Γ0(N) in H+
−2k(N).

We set ∂F := Rk
−2k(F ) which is automorphic of weight 0.

Definition 2.7.1. If m ∈ Q>0 with m ≡ sgn(∆)Q(h) (Z) and h ∈ D we define the
following modular trace functions

t+
∆,r(F ;m,h) =

∑
z∈Z+

∆,r(m,h)

F (z) =
∑

λ∈Γ0(N)\L+
|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ)

t−∆,r(F ;m,h) =
∑

λ∈Γ0(N)\L−|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ),

t∆,r(F ;m,h) =
∑

λ∈Γ0(N)\L|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ).

Now let F be a harmonic Maass form of weight 0 in H+
0 (N). We define the “traces” of

negative index.
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Definition 2.7.2. If m = 0 or m ∈ Q<0 is not of the form −Nk2

|∆| with k ∈ Q>0 we let

t∆,r(F ;m,h) =

{
− δh,0

2π

∫ reg

Γ0(N)\H F (z)dxdy
y2 , if ∆ = 1

0, if ∆ 6= 1.

Here the integral has to be regularized [BF04, Equation (4.6)].
Now let m = −Nk2/ |∆| with k ∈ Q>0 and λ ∈ Lm|∆|,rh. We have Q(λ) = −Nk2, which
implies that λ⊥ is split over Q and c(λ) is an infinite geodesic. Choose an orientation of V
such that

σ−1
`λ
λ =

(
m s
0 −m

)
for some s ∈ Q. Then cλ is explicitly given by

cλ = σ`λ {z ∈ H : <(z) = −s/2m} .

Define the real part of c(λ) by <(c(λ)) = −s/2m. For a cusp `λ let

〈F, c(λ)〉 = −
∑
n∈Q<0

a+
`λ

(n)e2πi<(c(λ))n −
∑
n∈Q<0

a+
`−λ

(n)e2πi<(c(−λ))n,

where a+
`λ

(n) denotes the corresponding Fourier coefficient of F at the cusp `. Then we
define

t∆,r(F ;m,h) =
∑

λ∈Γ0(N)\Lrh,|∆|m

χ∆(λ)〈F, c(λ)〉. (2.7.1)

The modular trace functions and the traces for the geodesics will appear in the Fourier
expansion of the theta lifts that we compute in the following chapters.

50



3. The Kudla-Millson theta lift

In this chapter we define the Kudla-Millson theta lift. We use the twisted Kudla-Millson
theta function defined in the previous chapter as an integration kernel to lift harmonic
Maass forms of integer weight −2k < 0 to harmonic Maass forms of half-integer weight.

This lift was first considered by Bruinier and Funke in [BF04, BF06]. In [BF06] they
showed that the holomorphic part of the lift of a harmonic Maass form F of weight 0 is
the generating series for the traces of CM values of F . Ehlen and the author [AE13] later
considered a twisted version of this lift which is then a generating series for the twisted
traces of CM values of F . Using the Maass lowering and raising operators Bruinier and
Ono [BO13] explained a modification of the lift that takes harmonic weak Maass forms of
negative weight −2k as an input. They explicitly worked out the lift of weight −2 harmonic
Maass forms to obtain algebraic formulas for the partition function p(n). Here, we extend
the Kudla-Millson lift to other weights and we include twisted traces.

In the first part of the chapter, we investigate the automorphic and analytic properties
of the Kudla-Millson lift. Let F ∈ H+

−2k(N) be a harmonic Maass form of negative weight
−2k for Γ0(N). Recall that ρ̃ = ρ if ∆ > 0 and ρ̃ = ρ if ∆ < 0. In the case that k is even,
the lift of F is a weakly holomorphic modular form of weight 3/2 + k for ρ̃. In the case
that k is odd, the lift of F is a harmonic Maass form of weight 1/2 − k for ρ̃ in H+

1/2−k,ρ̃.

In this case, the lift is weakly holomorphic if and only if the twisted L-function of ξ−2k(F )
vanishes at s = k + 1. This gives an interesting new criterion for the vanishing of the
L-function in the critical point.

In the second part of the chapter we compute the Fourier expansion of the holomorphic
part of the Kudla-Millson lift using a method developed by Katok and Sarnak [KS93]. It
turns out that the coefficients of positive index of the holomorphic part are given by the
traces of the input function as defined in Section 2.7. We will present applications of this
result in Chapter 7.

Throughout the chapter we assume the notation of Section 1.2. In particular, V is a
rational quadratic space of signature (1, 2) that we identify with the 2 × 2 matrices in Q
with trace 0. Recall that M is the modular curve Y0(N) = Γ0(N) \H. We frequently use
the identification between the symmetric space D and the complex upper half plane H as
in (1.2.2). As before, z is used as a variable for integer weight forms (corresponding to
automorphic forms on the Grassmannian D), and τ is the symplectic variable that is used
for half-integer weight forms. Recall that we write q = e2πiz and q = e2πiτ . Let L be the
lattice defined in Section 1.2.1, let ∆ ∈ Z be a fundamental discriminant, and r ∈ Z such
that ∆ ≡ r2 (mod 4N). By ρ we denote the Weil representation associated to the lattice
L.
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3.1. Definition of the Kudla-Millson theta lift

We let Θ∆,r(τ, z, ϕKM) be the twisted Kudla-Millson function of Section 2.6.3. Recall that
it is a non-holomorphic C[L′/L]-valued modular form of weight 3/2 for the representation
ρ̃ in the variable τ and is Γ0(N)-invariant in the variable z ∈ D.

Following Bruinier and Ono [BO13] we define the Kudla-Millson lift of a harmonic Maass
form as follows.

Definition 3.1.1. Let k ≥ 0 be an integer and let F be a harmonic weak Maass form in
H+
−2k(N). For even k we define the Kudla-Millson theta lift by

IKM
∆,r (τ, F ) = R

k/2
3/2,τ

∫
M

(Rk
−2k,zF )(z)Θ∆,r(τ, z, ϕKM) (3.1.1)

and for k odd by

IKM
∆,r (τ, F ) = L

(k+1)/2
3/2,τ

∫
M

(Rk
−2k,zF )(z)Θ∆,r(τ, z, ϕKM). (3.1.2)

Note that the rapid decay of the Kudla-Millson function (Proposition 2.6.9) implies
that the integrals in (3.1.1) and (3.1.2) exist. In the following section we investigate the
automorphic and analytic properties of the lift.

3.2. Automorphic and analytic properties

In this section we investigate the growth of IKM
∆,r (τ, F ) at the cusps and its behavior under

the Petersson slash operator and the Laplace operator. We obtain the following result.

Theorem 3.2.1. Let k > 0 be an integer and let N be square-free. Let F ∈ H+
−2k(N) be

a harmonic Maass form of weight −2k for Γ0(N). The Kudla-Millson theta lift of F has
the following properties:

(i) If k is odd, the Kudla-Millson theta lift IKM
∆,r (τ, F ) of F is a harmonic weak Maass

form of weight 1/2− k transforming with respect to the representation ρ̃. Moreover,
the lift IKM

∆,r (τ, F ) is a weakly holomorphic modular form if and only if the twisted
L-function of ξ−2k(F ) ∈ S3/2+k(N) vanishes at s = k + 1.

(ii) If k is even, the Kudla-Millson theta lift IKM
∆,r (τ, F ) of F is a weakly holomorphic

modular form of weight 3/2 + k transforming with respect to the representation ρ̃.

The case k = 0 was treated by Bruinier and Funke [BF06] for ∆ = 1. Using the methods
presented in Section 2.4 Stephan Ehlen and the author generalized this result to arbitrary
fundamental discriminants.

Theorem 3.2.2 (Theorem 4.5, Corollary 4.8 in [BF06], Theorem 5.5, Corollary 5.6 in
[AE13]). Let F be a harmonic Maass form of weight 0 for Γ0(N) with vanishing constant

52



3.2. Automorphic and analytic properties

coefficient at all cusps. The Kudla-Millson theta lift IKM
∆,r (τ, F ) of F is a weakly holomor-

phic modular form of weight 3/2 transforming with respect to the representation ρ̃. If the
constant coefficients of F at all cusps do not vanish, the lift IKM

∆,r (τ, F ) lies in the space
H3/2,ρ̃.

To prove Theorem 3.2.1 we establish a series of results. Note that the transformation
properties of the twisted Kudla-Millson theta function Θ∆,r(τ, z, ϕKM) directly imply that
the lift transforms with respect to the representation ρ̃. We first consider the behavior of
the lift IKM

∆,r (τ, F ) regarding the weighted Laplace operator. After that we show that the
lift also satisfies the correct growth conditions at the cusps under the assumption that N is
square-free. We do this by computing the lift of Poincaré series and using the equivariance
of the lift with respect to the action of the Atkin-Lehner involutions. Then we investigate
under which assumptions the lift is weakly holomorphic.

Proposition 3.2.3. Let F be an eigenform of ∆−2k,z with eigenvalue λ. Then IKM
∆,r (τ, F )

is an eigenform of ∆1/2−k,τ with eigenvalue λ
4

if k is odd, and IKM
∆,r (τ, F ) is an eigenform

of ∆3/2+k,τ with eigenvalue λ
4

if k is even.

Proof. We prove the proposition for odd k. The proof for even k follows analogously. Using
Lemma 2.3.9 we see that

∆1/2−k,τIKM
∆,r (τ, F )

= L
(k+1)/2
3/2,τ

∫
M

(Rk
−2k,zF )(z)∆3/2,τΘ∆,r(τ, z, ϕKM) +

k

4
(k + 1)IKM

∆,r (τ, F ). (3.2.1)

By equation (2.6.10) we have ∆3/2,τΘ∆,r(τ, z, ϕKM) = 1
4
∆0,zΘ∆,r(τ, z, ϕKM), which implies

that (3.2.1) equals

1

4
L

(k+1)/2
3/2,τ

∫
M

(Rk
−2k,zF )(z)∆0,zΘ∆,r(τ, z, ϕKM) +

k

4
(k + 1)IKM

∆,r (τ, F ).

By the rapid decay of the Kudla-Millson theta function (Proposition 2.6.9) we may move
the Laplacian. Using Lemma 2.3.9 we then obtain that

∆1/2−k,τIKM
∆,r (τ, F ) =

1

4
L

(k+1)/2
3/2,τ

∫
M

(Rk
−2k,z∆−2k,zF )(z)Θ∆,r(τ, z, ϕKM).

Since F is an eigenform of ∆−2k,z with eigenvalue λ this equals λ
4
IKM

∆,r (τ, F ).

We now compute the lift of the Poincaré series Fm(z, s,−2k). Recall that ε = 1 if ∆ > 0
and ε = i if ∆ < 0.
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3. The Kudla-Millson theta lift

Theorem 3.2.4. For k ≥ 0 even we have

IKM
∆,r (τ, Fm(z, s,−2k))

= Ce ·
∑
n|m

(
∆

n

)
n−(k+1)F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
3

2
+ k

)
,

where

Ce = −22s+2k−1m2k+1π(3k−1)/2 |∆|(k+1)/2 ε̄

Nk/2

Γ
(
s
2

+ 1
)

Γ(2s)

×
k−1∏
j=0

(s+ j − k)

k/2−1∏
j=0

(s
2

+ 1 + j
)
,

and for k > 0 odd we have that

IKM
∆,r (τ, Fm(z, s,−2k)) = Co ·

∑
n|m

(
∆

n

)
nkF m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2
− k
)
,

where

Co = −22k−s |∆|−k/2 ε̄
Γ
(
s
2

+ 1
2

) N (k+1)/2πk/2s
k−1∏
j=0

(s+ j − k)

(k−1)/2∏
j=0

(
s

2
− 1

2
− j
)
.

Proof. For the explicit evaluation of the lift of Poincaré series we generalize the proof of
Bruinier and Ono [BO13]. Repeatedly applying Proposition 2.5.1 implies by induction∫

M

(Rk
−2k,zFm(z, s,−2k))Θ∆,r(τ, z, ϕKM) (3.2.2)

= (4πm)k
k−1∏
j=0

(s+ j − k)

∫
M

Fm(z, s, 0)Θ∆,r(τ, z, ϕKM).

Using the definition of the Poincaré series (2.5.1) and an unfolding argument we obtain

1

Γ(2s)
(4πm)k

k−1∏
j=0

(s+ j − k)

∫
Γ∞\H

Ms,0(4πmy)e(−mx)Θ∆,r(τ, z, ϕKM).

By Proposition 2.6.11 this equals

−N
3/2ε̄

2 |∆|
(4πm)k

Γ(2s)

k−1∏
j=0

(s+ j − k)
∞∑
n=1

(
∆

n

)
n2

∑
γ∈Γ̃∞\Mp2(Z)

I(τ, s,m, n)|3/2,ρ̃K γ,
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3.2. Automorphic and analytic properties

where

I(τ, s,m, n) =

∫ ∞
y=0

∫ 1

x=0

yMs,0(4πmy)e(−mx) exp

(
−πn

2Ny2

|∆| v

)
× v−3/2

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλdxdy.

Identifying K ′ = Z
(

1/2N 0
0 −1/2N

)
we find that

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ =
∑
b∈Z

e

(
− |∆| b

2

4N
τ̄ − nbx

)
erb.

Inserting this in the formula for I(τ, s,m, n) and integrating over x, we see that I(τ, s,m, n)
vanishes whenever n - m and the only summand occurs for b = −m/n when n | m. Thus,
I(τ, s,m, n) equals

v−3/2e

(
− |∆| m2

4Nn2
τ̄

)
·
∫ ∞
y=0

yMs,0(4πmy) exp

(
−πn

2Ny2

|∆| v

)
dy e−rm/n. (3.2.3)

To evaluate the integral in (3.2.3) note that (see for example (13.6.3) in [AS84])

Ms,0(4πmy) = 22s−1Γ

(
s+

1

2

)√
4πmy · Is−1/2(2πmy).

Substituting t = y2 yields∫ ∞
y=0

yMs,0(4πmy) exp

(
−πn

2Ny2

|∆| v

)
dy

= 22s−1Γ

(
s+

1

2

)∫ ∞
y=0

y
√

4πmy Is−1/2(2πmy) exp

(
−πn

2Ny2

|∆| v

)
dy

= 22s−1Γ

(
s+

1

2

)√
mπ

∫ ∞
t=0

t1/4Is−1/2(2πmt1/2) exp

(
−πn

2Nt

|∆| v

)
dt.

The last integral is a Laplace transform and is computed in [EMOT54] (see (20) on p. 197).
It equals

Γ
(
s
2

+ 1
)

Γ
(
s+ 1

2

)(πm)−1

(
πn2N

|∆| v

)−3/4

exp

(
πm2 |∆| v

2n2N

)
M− 3

4
, s
2
− 1

4

(
πm2 |∆| v
n2N

)
.
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3. The Kudla-Millson theta lift

Inserting this and using that Ms,k(y) = y−k/2M− k
2
,s− 1

2
(y) we obtain that

I(τ, s,m, n) = 22s−1Γ
(s

2
+ 1
)

(πm)−2

(
πm2 |∆|
n2N

)3/2

×M s
2

+ 1
4
, 3
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4n2N

)
e−rm/n.

Therefore, we have that (3.2.2) equals

− N3/2

2 |∆|
ε̄

1

Γ(2s)
(4πm)k

k−1∏
j=0

(s+ j − k)
∑
n|m

(
∆

n

)
n2

∑
γ∈Γ̃∞\Mp2(Z)

I(τ, s,m, n)|3/2,ρ̃Kγ. (3.2.4)

For k ≥ 0 even we write for equation (3.2.4)

C · 1

2

∑
n|m

(
∆

n

)
n−1

∑
γ∈Γ̃∞\Mp2(Z)

[
M s

2
+ 1

4
, 3
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4n2N

)
e−rm/n

]∣∣∣∣
3/2,ρ̃K

γ

with

C = −22s+2k−1mk+1 πk−1/2
√
|∆| ε̄

Γ
(
s
2

+ 1
)

Γ(2s)

k−1∏
j=0

(s+ j − k).

We now apply the differential operator R
k/2
3/2,τ to this expression. By the commutativity

of the raising and the slash operator, Proposition 2.5.1 implies

R
k/2
3/2,τ

(
M s

2
+ 1

4
, 3
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4n2N

))
=

(
4π
m2 |∆|
4Nn2

)k/2 k/2−1∏
j=0

(
s

2
+

1

4
+

3/2 + 2j

2

)
M s

2
+ 1

4
, 3
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4n2N

)
.

We collect terms to obtain Ce as in the statement of the theorem.

For odd k we rewrite (3.2.4) as follows

C ′ · 1

2Γ
(
s+ 1

2

)∑
n|m

(
∆

n

)
n−1

×
∑

γ∈Γ̃∞\Mp2(Z)

[
M s

2
+ 1

4
, 3
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4n2N

)
e−rm/n

]∣∣∣∣
3/2,ρ̃K

γ

where

C ′ := −
22k−s

√
|∆| ε̄

Γ
(
s
2

+ 1
2

) mk+1 πk+1/2s
k−1∏
j=0

(s+ j − k).
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3.2. Automorphic and analytic properties

A repeated application of the lowering operator on M s
2

+ 1
4
, 3
2

(
πm2|∆|v
n2N

)
e
(
−m2|∆|u

4n2N

)
as in

Lemma 2.5.2 yields the statement in the theorem since the lowering and slash operator
commute.

We now investigate the operation of the Atkin-Lehner involutions on the Kudla-Millson
lift.

Proposition 3.2.5. For an Atkin-Lehner involution WN
Q as in Definition 1.2.2, h ∈ L′/L

and F ∈ H−2k(N), we have

IKM
∆,r,WN

Q .h
(τ, F ) = IKM

∆,r,h

(
τ, F |−2k(W

N
Q )−1

)
.

Proof. This follows from Proposition 2.6.10.

Using the action of the Atkin-Lehner involutions and the fact that the Poincaré series
generate the space of harmonic Maass forms of weight less than zero, we are able to prove
that the Kudla-Millson lifts of harmonic Maass forms are again harmonic Maass forms.

Corollary 3.2.6. Let N be square-free and k > 0. If F ∈ H+
−2k(N) is a harmonic

Maass form of weight −2k for Γ0(N), then IKM
∆,r (τ, F ) belongs to M !

3/2+k,ρ̃ if k is even

and IKM
∆,r (τ, F ) belongs to H+

1/2−k,ρ̃ if k is odd.

Proof. For f ∈ H+
3/2+k,ρ̃, where k > 0, we have ξ3/2+k(f) ∈ S1/2−k,ρ̃. Since dim(S1/2−k,ρ̃) = 0

for k > 0, this implies that f ∈M !
3/2+k,ρ̃.

For odd k the proof is similar to the proof of [BO13, Corollary 3.4]: For m ∈ Z>0

the Poincaré series span the subspace H+,∞
−2k (N) of harmonic Maass forms whose principal

parts at all cusps other than ∞ are constant. By Theorem 3.2.4 we find that the image of
H+,∞
−2k (N) is contained in M !

3/2+k,ρ̃ for even k, and H+
1/2−k,ρ̃ for odd k. Let W denote the

group of Atkin-Lehner involutions. Then,

H+
−2k(N) =

∑
γ∈W

γH+,∞
−2k (N),

since the group W acts transitively on the cusps of Γ0(N) for square-free N . Applying
Proposition 3.2.5 now implies the result.

A natural question is under which conditions the Kudla-Millson lift of F ∈ H+
−2k(N) with

k odd is weakly holomorphic. We obtain the following interesting criterion that relates the
weak holomorphicity of the lift to the vanishing of the twisted L-function of ξ−2k(F ) at the
critical point.

Theorem 3.2.7. If k is odd, N is square-free, and F ∈ H+
−2k(N), then IKM

∆,r (τ, F ) is weakly
holomorphic if and only if we have

L(ξ−2k(F ),∆, k + 1) = 0.

In particular, this is true when F is weakly holomorphic.
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3. The Kudla-Millson theta lift

Proof. Here we partly follow the proof of Bruinier and Ono in [BO13]. Since the Atkin-
Lehner involutions act transitively on the cusps, it suffices to consider the case when the
principal parts of F at all cusps other than ∞ are constant. Again, we obtain the result
for the entire space H+

−2k(N) by using Proposition 3.2.5. For F ∈ H+,∞
−2k (N) we denote the

Fourier expansion of the holomorphic part at the cusp ∞ by

F (z) =
∑
m∈Z

aF (m)e(mz).

Then we can write F as a linear combination of Poincaré series

F (z) =
∑
m>0

aF (−m)Fm(z, 1 + k,−2k).

By Theorem 3.2.4 the principal part of IKM
∆,r (τ, F ) is given by

Co ·
∑
m>0

aF (−m)
∑
n|m

(
∆

n

)
nke

(
−m

2 |∆|
4Nn2

z

)
(erm/n + e−rm/n),

where Co is as in Theorem 3.2.4.

We use the pairing between the spaces H+
1/2−k,ρ̃ and S3/2+k,ρ̃ (see Equation (2.3.9)). To

prove that the lift is weakly holomorphic we have to show that
{
g, IKM

∆,r (τ, F )
}

= 0 for
every cusp form g ∈ S3/2+k,ρ̃. Denoting the Fourier coefficients of g by b(n, h), we have

{
g, IKM

∆,r (τ, F )
}

= 2Co
∑
m>0

aF (−m)
∑
n|m

nk
(

∆

n

)
b

(
m2 |∆|
4Nn2

,
m

n
r

)
= 2Co {F,S∆,r(g)} = 2Co(ξ−2k(F ),S∆,r(g))2k+2,

where S∆,r(g) ∈ S2k+2(N) denotes the Shimura lift of g as in [Sko90a]. If F is weakly
holomorphic this expression vanishes, since ξ−2k(F ) = 0.

If F ∈ H+
−2k(N) \M !

−2k(N), we have by the adjointness of the Shintani and Shimura
lift (see for example Section II.3 of [GKZ87], and [Sko90a, Sko90b] for the case of skew-
holomorphic Jacobi forms)

(ξ−2k(F ),S∆,r(g))2k+2 = (S∗∆,r(ξ−2k(F )), g)3/2+k,

where S∗∆,r denotes the Shintani lift (this notation differs from the one we will use in the
next chapter, but is consistent with the notation in [GKZ87]). This equals zero for all cusp
forms g if and only if the Shintani lift of ξ−2k(F ) vanishes. In terms of Jacobi forms we
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3.3. Fourier coefficients of the holomorphic part

have that

S∗∆,r(ξ−2k(F )) =

(
i

2N

)k ∑
n,r0∈Z
r2
0<4nN

rk+1,N,∆(r2
0−4nN),rr0,∆(ξ−2k(F ))qnζr0 , (3.2.5)

where rk+1,N,∆(r2
0−4nN),rr0,∆ is a certain cycle integral defined in [GKZ87].

Now by the Theorem and Corollary in Section II.4 in [GKZ87] we have∣∣∣rk+1,N,∆(r2
0−4nN),rr0,∆(ξ−2k(F ))

∣∣∣2 = |∆|k+1/2
∣∣r2

0 − 4nN
∣∣k+1/2

(k!)2N−k

× 2−3k−2π−2(k+1)L(ξ−2k(F ),∆, k + 1) · L(ξ−2k(F ), r2
0 − 4nN, k + 1).

From Theorem B of [LR97] we know that L(ξ−2k(F ), r2
0 − 4nN, k + 1) = 0 for all r0 and

n implies that ξ−2k(F ) vanishes. Therefore, since r0 and n vary in (3.2.5) the Shintani lift
S∗∆,r(ξ−2k(F )) vanishes if and only if L(ξ−2k(F ),∆, k + 1) vanishes.

3.3. Fourier coefficients of the holomorphic part

Now we turn to the computation of the Fourier coefficients of positive index of the holo-
morphic part of the theta lift. Recall that the modular trace function is defined as

t∆,r(F ;m,h) =
∑

λ∈Γ0(N)\L|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ),

where ∂F := Rk
−2k(F ) for F ∈ H+

−2k(N) with k ≥ 0, h ∈ L′/L and m ∈ Q>0 with
m ≡ sgn(∆)Q(h) (Z) (see also Section 2.7).

Theorem 3.3.1. We let k ≥ 0 be an integer, F ∈ H+
−2k(N), h ∈ L′/L, and let m ∈ Q>0

with m ≡ sgn(∆)Q(h) (Z). We obtain the following results:

(i) Let k be even. The (m,h)-th Fourier coefficient of the holomorphic part of IKM
∆,r (τ, F )

equals (
−4πm

|∆|

)k/2
t∆,r(F ;m,h).

(ii) Let k be odd. The (m,h)-th Fourier coefficient of the holomorphic part of IKM
∆,r (τ, F )

equals (
|∆|

4πm

)(k+1)/2 (k−1)/2∏
j=0

(
k

2
+ j

)(
j − k + 1

2

)
t∆,r(F ;m,h).
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3. The Kudla-Millson theta lift

Remark 3.3.2. As described in Section 1.2.1 we can identify the elements of L′/L with
binary quadratic forms. Combining work of Miller and Pixton [MP10] and of Bruinier and
Ono [BO13] one can show algebraicity results for the numbers (Rk

−2k,zF )(αQ) occurring in
the traces above.

To be more precise, let N be square-free and D be a positive discriminant that is coprime
to N . Moreover, let r ∈ Z with r2 ≡ −D (mod 4N). By QD,r,N we denote the set of
positive definite integral binary quadratic forms [a, b, c] of discriminant −D with N |a and

b ≡ r (mod 2N). Then we let αQ = −b+
√
−D

2a
be the Heegner point corresponding to

Q ∈ QD,r,N . We write OD for the order of discriminant −D in Q(
√
−D).

Using the work of Miller and Pixton [MP10] and of Bruinier and Ono [BO13] it is shown
in [Alf14, Theorem 6.1]) that for F ∈ M !

−2k(N) with integral coefficients at all cusps and
primitive Q ∈ QD,r,N the number 3kDk( 1

π
)k(Rk

−2k,zF )(αQ) is an algebraic integer in the

ring class field for the order OD ⊂ Q(
√
−D). The multiset of values Rk

−2kf(αQ) is a union
of Galois orbits.

Proof of Theorem 3.3.1. We first prove the result for ∆ = 1. Using the methods developed
in [AE13] we then deduce the general result.

Proof for ∆ = 1: We consider the Fourier expansion of
∫
M
∂F (z)Θ(τ, z, ϕKM), namely

∑
h∈L′/L

∑
m∈Q

 ∑
λ∈Lm,h

∫
M

∂F (z)ϕ0
KM(
√
vλ, z)

 e2πimτ . (3.3.1)

We denote the (m,h)-th coefficient of the holomorphic part of (3.3.1) by C(m,h). Using
the usual unfolding argument we find

C(m,h) =
∑

λ∈Γ0(N)\Lm,h

1∣∣Γλ∣∣
∫
M

∂F (z)ϕ0
KM(
√
vλ, z).

Following Bruinier and Ono [BO13, Proof of Theorem 3.6] we employ an argument of
Katok and Sarnak [KS93]. We rewrite the integral over M as an integral over G(R) =
SL2(R). Here, we normalize the Haar measure such that the maximal compact open
subgroup has volume 1. Then we have

C(m,h) =
∑

λ∈Γ0(N)\Lm,h

1∣∣Γλ∣∣
∫
G(R)

∂F (gi)ϕ0
KM(
√
vλ, gi)dg.

Note that SL2(R) does not act transitively on elements of the same norm as it is assumed

in [KS93]. But when splitting the elements λ =
(
b/2N −a/N
c −b/2N

)
into two subsets, depending

on whether a ≥ 0 or a < 0 as described in Section 2.7, we see that SL2(R) acts transitively
on these subsets. There is a g1 ∈ SL2(R) such that g1.λ =

√
mλ(i) if a ≥ 0. If a < 0, we

have g1.(−λ) =
√
mλ(i) and use that ϕ0

KM is an even function in the first variable. For the

60



3.3. Fourier coefficients of the holomorphic part

element g1 ∈ SL2(R) we find

g1 =


(√

4NQ(λ)

2cN

)1/2
b

2cN

(√
4NQ(λ)

2cN

)−1/2

0

(√
4NQ(λ)

2cN

)−1/2

 .

Then, g1gi is the Heegner point corresponding to Dλ.

By the invariance of the Haar measure we obtain

C(m,h) =
∑

λ∈Γ0(N)\Lm,h

1∣∣Γλ∣∣
∫
G(R)

∂F (g1gi)ϕ
0
KM

(√
v
√
mg−1.λ(i), i

)
dg.

We set

I(λ) :=

∫
G(R)

∂F (g1gi)ϕ
0
KM

(√
v
√
mg−1.λ(i), i

)
dg,

and
f(g) := ∂F (g1gi).

Using the Cartan decomposition KA+K of SL2(R) and the K-invariance of the function
ϕ0

KM (
√
v
√
mg−1.λ(i), i), we then find as in [KS93] that

I(λ) = 4π

∫ ∞
1

ϕ0
KM(
√
mvα(a)−1λ(i), i)

×
(∫

K

∫
K

f(k1α(a)k2)dk1dk2

)
a2 − a−2

2

da

a
.

The function

f̃(g) :=

∫
K

∫
K

f(k1α(a)k2)dk1dk2

has the same eigenvalues as ∂F (gi) under the action of the Laplace operator and is right
and left K-invariant. By using the uniqueness of spherical functions we obtain

f̃(g) = f̃(1) · ωc(g) = ∂F (Dλ) · ωc(g)

where ωc(g) is the standard spherical function of eigenvalue c = −k(k + 1). We find

I(λ) = ∂F (Dλ) · Yc(t),

where

Yc(t) = 4π

∫ ∞
1

ϕ0
KM(tα(a)−1.λ(i), i)ωc(α(a))

a2 − a−2

2

da

a
, (3.3.2)

and α(a) =
(
a 0
0 a−1

)
. Note that ωc(α(a)) = ωc

(
a2+a−2

2

)
.
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3. The Kudla-Millson theta lift

By evaluating ϕ0
KM(tα(a)−1.λ(i), i) using (2.6.1) and (2.6.2) and substituting a = er/2

we obtain that (3.3.2) equals

2π

∫ ∞
0

(
4t2 cosh(r)2 − 1

2π

)
ωc(cosh(r)) sinh(r)e−4πt2 sinh(r)2

dr. (3.3.3)

In this case the standard spherical function is given by the Legendre polynomial Pk(x) =
1

2kk!
dk

dxk
(x2 − 1)k [Iwa02, Chapter 1]. By substituting x = sinh(r)2 we obtain that (3.3.3)

equals

4πt2
∫ ∞

0

√
1 + xPk(

√
1 + x)e−4πt2xdx− 1

2

∫ ∞
0

1√
1 + x

Pk(
√

1 + x)e−4πt2xdx. (3.3.4)

To evaluate the first integral in (3.3.4) we use the following recursion formula for the
Legendre polynomial (see for example equation (8.5.3) in [AS84])

√
1 + xPk(

√
1 + x) =

1

2k + 1

(
(k + 1)Pk+1(

√
1 + x) + kPk−1(

√
1 + x)

)
.

Thus, we are left with

4πt2
∫ ∞

0

(
k + 1

2k + 1
Pk+1(

√
1 + x) +

k

2k + 1
Pk−1(

√
1 + x)

)
e−4πt2xdx, (3.3.5)

which is a Laplace transform computed in [EMOT54] (see equation (7) on page 180). It
equals

(4πt2)−1/4e2πt2
(
k + 1

2k + 1
W 1

4
, k
2

+ 3
4
(4πt2) +

k

2k + 1
W 1

4
, k
2
− 1

4
(4πt2)

)
. (3.3.6)

The second integral in (3.3.4) can be evaluated in the same way (see equation (8) on page
180 of [EMOT54]) and equals

− 1

2
(4πt2)−3/4e2πt2W− 1

4
, k
2

+ 1
4
(4πt2). (3.3.7)

Using (13.1.33), (13.4.17), and (13.4.20) in [AS84] together with Equation (2.5.2) it is not
hard to show that the sum of the expressions in (3.3.6) and (3.3.7) is equal to

e2πt2W k
2

+ 3
4
, 3
2
(4πt2).

Thus, C(m,h) is given by

C(m,h) =
∑

λ∈Lm,h

1

|Γλ|
∂F (Dλ)e

2πmvW k
2

+ 3
4
, 3
2
(4πmv).

We now have to apply the iterated raising respectively lowering operator to the Fourier
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3.3. Fourier coefficients of the holomorphic part

expansion in (3.3.1), which boils down to evaluating it on

qme2πmvW k
2

+ 3
4
, 3
2
(4πmv) =W k

2
+ 3

4
, 3
2
(4πmv)e(mx).

By Proposition 2.5.4 we obtain

R
k/2
3/2,τ

(
W k

2
+ 3

4
, 3
2
(4πmv)e(mx)

)
= (−4πm)k/2W k

2
+ 3

4
, 3
2

+k(4πmv)e(mx) = (−4πm)k/2qm,

since Wν,µ(y) = yk/2e−y/2 for y > 0, ν = k/2, and µ = k/2− 1/2 [AS84, Chapter 13].

For the lowering operator a repeated application of Proposition 2.5.4 yields

L
(k+1)/2
3/2,τ

(
W k

2
+ 3

4
, 3
2
(4πmv)e(mx)

)
=

(
1

4πm

)(k+1)/2 (k−1)/2∏
j=0

(
k

2
+ j

)(
j − k + 1

2

)
W k

2
+ 3

4
, 1
2
−k(4πmv).

Again the Whittaker function simplifies, namely W k
2

+ 3
4
, 1
2
−k(4πmv) = e−2πmv.

Thus, we obtain that C(m,h) is given by

C(m,h) = (−4πm)k/2
∑

λ∈Lm,h

1

|Γλ|
∂F (Dλ) = (−4πm)k/2t(F ;m,h), (3.3.8)

in the case that the input function F has weight −2k with k even. In the case that k is
odd, we obtain

C(m,h) =

(
1

4πm

)(k+1)/2
k−1

2∏
j=0

(
k

2
+ j

)(
j − k + 1

2

)
t(F ;m,h). (3.3.9)

Proof for ∆ 6= 1: Replacing the theta function Θ(τ, z, ϕKM) by Θ∆,r(τ, z, ϕKM) we can
write

IKM
∆,r (τ, F ) =

∑
h∈D

〈
ψ∆,r(eh),

∫
M

∂F (z)ΘD(∆)(τ, z, ϕKM)

〉
.

In general the group Γ0(N) does not act trivially on D(∆). However, the Kudla-Millson
theta function ΘD(∆)(τ, z, ϕKM) is always invariant under the discriminant kernel Γ∆ =
{γ ∈ Γ0(N) : γδ = δ for all δ ∈ D(∆)} ⊂ Γ0(N). Since ∂F (z)ΘD(∆)(τ, z, ϕKM) is Γ0(N)-
invariant by (2.6.7) we obtain by a standard argument

IKM
∆,r (τ, F ) =

1

[Γ0(N) : Γ∆]

∑
h∈D

〈
ψ∆,r(eh),

∫
Γ∆\H

∂F (z)ΘD(∆)(τ, z, ϕKM)

〉
.
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3. The Kudla-Millson theta lift

Now we are able to apply the result for the coefficients in the case ∆ = 1 to the integral
above. Note that we have to replace m by m/|∆| in (3.3.8) and (3.3.9).

For m ∈ Q we then obtain that the (m,h)-th Fourier coefficient of the holomorphic part
of IKM

∆,r (τ, F ) is given by 1/[Γ0(N) : Γ∆] times〈
ψ∆,r(eh),

∑
δ∈D(∆)

C(m,h)eδ

〉
=

∑
δ∈D(∆)
π(δ)=rh

Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ) t(F ;m, δ) (3.3.10)

×


(
−4πm
|∆|

)k/2
if k is even,(

|∆|
4πm

)(k+1)/2∏ k−1
2

j=0

(
k
2

+ j
) (
j − k+1

2

)
if k is odd.

(3.3.11)

Here, the traces are taken with respect to Γ∆ and the discriminant group D(∆). Note that

t(F ;m, δ) =
∑

λ∈Γ∆\(∆L)δ,m

1∣∣Γ∆,λ

∣∣∂F (Dλ). (3.3.12)

where (∆L)δ,m = {λ ∈ ∆L+ δ : Q∆(λ) = m}. If m ≡ sgn(∆)Q(h) (mod Z) the right
hand side in (3.3.10) is equal to t∆,r(F ;m,h) and we obtain the result stated in the theorem.

3.4. Fourier expansion in the case k = 0

For the sake of completeness we briefly state the Fourier expansion of the lift in the case
k = 0. It was derived by Bruinier and Funke in [BF06] for ∆ = 1 and by Ehlen and the
author in [AE13] for ∆ 6= 1.

Theorem 3.4.1 (Theorem 4.5 in [BF06], Theorem 5.5 in [AE13]). Let F ∈ H+
0 (N) and

write
F (σ`z) =

∑
n∈ 1

α`
Z

n�−∞

a+
` (n)qn +

∑
n∈ 1

α`
Z

n<0

a−` (n)q̄n

for the Fourier expansion of F at the cusp `. Assume that F has vanishing constant term
at every cusp of Γ0(N). Then the Fourier expansion of IKM

∆,r,h(τ, F ) is given by

IKM
∆,r,h(τ, F ) =

∑
m∈Q>0

m≡sgn(∆)Q(h) (Z)

t∆,r(F ;m,h)qm +
∑

m∈Q>0

−N |∆|m2≡sgn(∆)Q(h) (Z)

t∆,r(F ;−N |∆|m2, h)q−N |∆|m
2

.

If the constant coefficients of F at the cusps do not vanish, the following terms occur in
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3.4. Fourier expansion in the case k = 0

addition: √
|∆|

2π
√
Nv

∑
`∈Γ0(N)\ Iso(V )

d∆,r(`, h) ε` a
+
` (0)

+
√
|∆|
∑
m>0

∑
λ∈Lrh,−Nm2

Q∆(λ)≡sgn(∆)Q(h) (Z)

χ∆(λ)
a+
`λ

(0) + a+
`−λ

(0)

8π
√
vNm

β

(
4πvNm2

|∆|

)
q−Nm

2/|∆|,

where β(s) =
∫∞

1
t−3/2e−stdt and d is defined in Remark 3.4.3.

Remark 3.4.2. The coefficients of the principal part of IKM
∆,r (τ, F ) can be computed ex-

plicitly in terms of the coefficients of the principal part of F (see [BF06, Proposition 4.7]
and [AE13, Proposition 5.7]).

Remark 3.4.3. We briefly explain the nature of the constant d as defined in [AE13]. For
h ∈ L′/L and ` ∈ Iso(V ), we let

δ`(h) =

{
1, if ` ∩ (L+ h) 6= ∅,
0, otherwise.

(3.4.1)

If δ`(h) = 1, there is an h` such that ` ∩ (L + h) = Zλ` + h`. Now let s ∈ Q such that
h` = sλ`. Write s = p

q
with (p, q) = 1 and define d(`, h) := q, which depends only on ` and

h. Moreover, we define h′` = 1
d(`,h)

λ` which is well defined as an element of D.

Then d∆,r(`, h) is defined as follows

d∆,r(`, h) :=


δ`(h), if ∆ = 1,

χ∆((rh)′`), if ∆ 6= 1, δ`(rh) = 1 and ∆ | d(`, rh),

0, otherwise.

(3.4.2)

In fact, the constant d∆,r(`, h) always vanishes in the case that N is square-free [AE13,
Proposition 5.4].
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4. The Bruinier-Funke theta lift

In this chapter we define the Bruinier-Funke theta lift. The construction is similar to the
one in the previous chapter but now we employ the Millson theta function as an integration
kernel. This lift was first considered by Bruinier and Funke in their fundamental paper
[BF04]. The Bruinier-Funke lift behaves like the Kudla-Millson lift in many aspects. In
the next chapter we show that the lifts are in some sense dual to each other.

We let F ∈ H+
−2k(N) be a harmonic Maass form of weight −2k ≤ 0 for Γ0(N). Recall

that ρ̃ = ρ if ∆ > 0 and ρ̃ = ρ if ∆ < 0. The Bruinier-Funke lift is a weakly holomorphic
modular form of weight 3/2 + k transforming with respect to ρ̃ if k is odd. If k is even, it
is a harmonic Maass form in H+

1/2−k,ρ̃ and is weakly holomorphic if and only if the twisted

L-function of ξ−2k(F ) vanishes at s = k + 1.

The case k = 0 is special. In this case the Millson theta function satisfies a differential
equation with respect to the Shintani theta function leading to a relation between the
Bruinier-Funke and Shintani theta lift. We make use of this in Chapter 6 to prove results
on L-series of weight 2 cusp forms.

We also compute the coefficients of the holomorphic part of the lift which are again given
by the twisted traces of CM values of the input function as in Section 2.7.

Especially in the case k = 0, it would be interesting to compute the Fourier expansion
of the non-holomorphic part as well. However, we can not employ the methods of [BF06]
directly which rely on the existence of a Green current for the Kudla-Millson Schwartz
function. In our case no such function is known.

As in the previous chapter, we assume the notation of Section 1.2. In particular, V is
a rational quadratic space of signature (1, 2) that we identify with the 2 × 2 matrices in
Q with trace 0. Recall that M is the modular curve Y0(N) = Γ0(N) \ H. We frequently
use the identification between the symmetric space D and the complex upper half plane
H as in (1.2.2). As before, z is used as a variable for integer weight forms, and τ is used
for half-integer weight forms. Recall that we write q = e2πiz and q = e2πiτ . Let L be the
lattice defined in Section 1.2.1, let ∆ ∈ Z be a fundamental discriminant, and r ∈ Z such
that ∆ ≡ r2 (mod 4N). By ρ we denote the Weil representation associated to the lattice
L.

4.1. Definition of the Bruinier-Funke theta lift

In this section we define the Bruinier-Funke theta lift. Let Θ∆,r(τ, z, ψKM) be the Millson
theta function defined in Section 2.6.2. It is a non-holomorphic C[L′/L]-valued modular
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4. The Bruinier-Funke theta lift

form of weight 1/2 for the representation ρ̃ in the variable τ . Furthermore, it is Γ0(N)-
invariant in the variable z ∈ D. We then make the following definition.

Definition 4.1.1. Let k ≥ 0 be an integer and let F be a harmonic weak Maass form in
H+
−2k(N). For even k we define the Bruinier-Funke lift of F by

IBF
∆,r(τ, F ) = L

k/2
1/2,τ

∫
M

(Rk
−2k,zF )(z)Θ∆,r(τ, z, ψKM)dµ(z) (4.1.1)

and for k odd

IBF
∆,r(τ, F ) = R

(k+1)/2
1/2,τ

∫
M

(Rk
−2k,zF )(z)Θ∆,r(τ, z, ψKM)dµ(z). (4.1.2)

Since the Millson theta function is rapidly decaying at the cusps (Proposition 2.6.5), the
integrals above exist.

4.2. Automorphic and analytic properties

Here, we study the Bruinier-Funke lift IBF
∆,r(τ, F ) with respect to its transformation behav-

ior under the Petersson slash operator and the analytic conditions it satisfies on H and at
the cusps. We have the following theorem.

Theorem 4.2.1. Let k ≥ 0 be an integer and let F ∈ H+
−2k(N) be a harmonic Maass form

of weight −2k for Γ0(N). The Bruinier-Funke theta lift of F has the following properties:

(i) If k = 0, the Bruinier-Funke lift of F is a harmonic Maass form of weight 1/2
transforming with respect to the representation ρ̃.

(ii) For square-free N and odd k > 0 the Bruinier-Funke theta lift of F is a weakly
holomorphic form of weight 3/2 + k transforming with respect to the representation
ρ̃.

(iii) For square-free N and even k > 0 the Bruinier-Funke theta lift of F is a harmonic
Maass form of weight 1/2 − k transforming with respect to the representation ρ̃.
Moreover, the lift IKM

∆,r (τ, F ) is a weakly holomorphic modular form if and only if the
twisted L-function of ξ−2k(F ) ∈ S3/2+k(N) vanishes at s = k + 1.

Note that the transformation properties of the twisted theta function Θ∆,r(τ, z, ψKM)
directly imply that the lift transforms with representation ρ̃. First we investigate how the
lift behaves under the action of the Laplace operator. As in the case of the Kudla-Millson
theta lift, we then show that the lift satisfies the correct growth conditions at the cusps if
N is square-free by computing the lift of Poincaré series and using the equivariance under
the action of the Atkin-Lehner involutions.
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The case F ∈ H+
0 (N) is special. Then the Bruinier-Funke lift is related to the Shin-

tani theta lift via the differential equation between the two theta functions (see Equa-
tion (2.6.12)). This directly implies that the lift is a harmonic Maass form (for all N) if
the constant coefficients of F at all cusps vanish. In this case, we compute the lift of the
constant function to show that the resulting function is contained in H+

1/2,ρ̃.

Lemma 4.2.2. Let F be an eigenform of ∆−2k,z with eigenvalue λ. Then the Bruinier-
Funke lift of F is an eigenform of eigenvalue λ

4
of ∆1/2−k,τ if k is even and of ∆3/2+k,τ if

k is odd.

Proof. For even k we have by Lemma 2.3.9

∆1/2−k,τ

(
L
k/2
1/2,τ

∫
M

(Rk
−2k,zF )(z)Θ∆,r(τ, z, ψKM)dµ(z)

)
= L

k/2
1/2,τ

∫
M

(Rk
−2k,zF )(z)∆1/2,τΘ∆,r(τ, z, ψKM)dµ(z) +

k

4
(k + 1)IBF

∆,r(τ, F ).

The relation of the action of ∆0,z and ∆1/2,τ on Θ∆,r(τ, z, ψKM) (see Equation (2.6.11))
implies that

∆1/2−k,τIBF
∆,r(τ, F ) =

1

4
L
k/2
1/2,τ

∫
M

(Rk
−2k,zF )(z)∆0,zΘ∆,r(τ, z, ψKM)dµ(z)+

k

4
(k+1)IBF

∆,r(τ, F ).

By the square exponential decay of the Millson theta function (Proposition 2.6.5) we may
move the Laplacian to (Rk

−2k,zF )(z). Using that ∆0,z(R
k
−2k,zF ) = Rk

−2k,z(∆−2k,z−k(k+1))
(Lemma 2.3.9) and that F has eigenvalue λ under ∆−2k,z we then obtain the result. For
odd k we proceed analogously.

As for the Kudla-Millson lift, we compute the lift of Poincaré series. Recall that ε = 1
if ∆ > 0 and ε = i if ∆ < 0.

Theorem 4.2.3. For even k we have

IBF
∆,r(τ, Fm(z, s,−2k)) = Ce

∑
n|m

(
∆

n

)
nkF m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2
− k
)
,

where

Ce = −22k−s+1ε̄

Γ(s/2)i
πk/2+1/2Nk/2+1/2 |∆|1/2−k/2

k−1∏
j=0

(s+ j − k)

k/2−1∏
j=0

(
s− 1

2
− j
)
,

and for odd k we have

IBF
∆,r(τ, Fm(z, s,−2k)) = Co

∑
n|m

(
∆

n

)
n−(k+1)F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2
− k
)
,
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4. The Bruinier-Funke theta lift

where

Co = −22s+2k−1Γ(s/2 + 1/2) ε̄

Γ(2s)i
π3k/2N−k/2 |∆|k/2+1m2k+1

k−1∏
j=0

(s+ j−k)

(k−1)/2∏
j=0

(
s+ 1

2
+ j

)
.

Proof. We first compute the lift of the weight 0 Poincaré series Fm(z, s, 0) and prove that

I∆,r(τ, Fm(z, s, 0)) =
2−s+1i

Γ(s/2)

√
πN |∆|ε̄

∑
n|m

(
∆

n

)
F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2

)
. (4.2.1)

Using the definition of the Poincaré series (2.5.1) and an unfolding argument we obtain

I∆,r(τ, Fm(z, s, 0)) =
1

Γ(2s)

∫
Γ∞\H

Ms,0(4πmy)e(−mx)Θ∆,r(τ, z, ψKM)dµ(z).

By Proposition 2.6.7 this equals

− ε̄ N

Γ(2s)2i

∞∑
n=1

(
∆

n

)
n

∑
γ∈Γ̃∞\Mp2(Z)

I(τ, s,m, n)|1/2,ρ̃K γ,

where

I(τ, s,m, n) =

∫ ∞
y=0

∫ 1

x=0

y2Ms,0(4πmy)e(−mx) exp

(
−πn

2Ny2

|∆| v

)
× v−1/2

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ
dxdy

y2
.

Identifying K ′ = Z
(

1/2N 0
0 −1/2N

)
we find that

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλ =
∑
b∈Z

e

(
− |∆| b

2

4N
τ̄ − nbx

)
erb.

Inserting this in the formula for I(τ, s,m, n), and integrating over x, we see that I(τ, s,m, n)
vanishes whenever n - m and the only summand occurs for b = −m/n when n | m. Thus,
I(τ, s,m, n) equals

v−1/2e

(
− |∆| m2

4Nn2
τ̄

)
·
∫ ∞
y=0

Ms,0(4πmy) exp

(
−πn

2Ny2

|∆| v

)
dy e−rm/n. (4.2.2)

As in the proof of Theorem 3.2.4 we use that

Ms,0(4πmy) = 22s−1Γ

(
s+

1

2

)√
4πmy · Is−1/2(2πmy).
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4.2. Automorphic and analytic properties

Substituting t = y2 yields∫ ∞
y=0

Ms,0(4πmy) exp

(
−πn

2Ny2

|∆| v

)
dy

= 22s−1Γ

(
s+

1

2

)∫ ∞
y=0

√
4πmy Is−1/2(2πmy) exp

(
−πn

2Ny2

|∆| v

)
dy

= 22s−1Γ

(
s+

1

2

)√
mπ

∫ ∞
t=0

t−1/4Is−1/2(2πmt1/2) exp

(
−πn

2Nt

|∆| v

)
dt.

Again, the last integral is a Laplace transform and is computed in [EMOT54] (see (20) on
p. 197). It equals

Γ
(
s
2

+ 1
2

)
Γ
(
s+ 1

2

) (πm)−1

(
πn2N

|∆| v

)−1/4

exp

(
πm2 |∆| v

2n2N

)
M− 1

4
, s
2
− 1

4

(
πm2 |∆| v
n2N

)
.

Therefore, we have that I(τ, s,m, n) equals

22s−1Γ

(
s

2
+

1

2

)√
|∆|
πNn2

e

(
−m

2 |∆|u
4n2N

)
M s

2
+ 1

4
, 1
2

(
πm2 |∆| v
n2N

)
e−rm/n.

Putting everything together we obtain the following for the lift of Fm(z, s, 0)

− 22s−2Γ(s/2 + 1/2)ε̄

Γ(2s)i

√
N |∆|
π

∑
n|m

(
∆

n

)

×
∑

γ∈Γ̃∞\Mp2(Z)

[
e

(
−m

2 |∆|u
4Nn2

)
M s

2
+ 1

4
, 1
2

(
πm2 |∆| v
n2N

)
e−rm/n

] ∣∣∣∣∣
1/2,ρ̃K

γ,

which implies the formula in (4.2.1).

A repeated application of Proposition 2.5.1 yields that

IBF
∆,r(τ, Fm(z, s,−2k)) = (4πm)k

k−1∏
j=0

(s+ j − k)

∫
M

Fm(z, s, 0)Θ∆,r(τ, z, ψKM)dµ(z).

For even k we have by Proposition 2.5.2

L
k/2
1/2,τ

(
M s

2
+ 1

4
, 1
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4Nn2

))
=

(
Nn2

πm2 |∆|

)k/2 k/2−1∏
j=0

(
s− 1

2
− j
)
M s

2
+ 1

4
, 1
2
−k

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4Nn2

)
.
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4. The Bruinier-Funke theta lift

Since the lowering and the slash operator commute, we obtain

I∆,r(τ, Fm(z, s,−2k)) = Ce ·
∑
n|m

(
∆

n

)
nkF m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2
− k
)
,

with

Ce = −22k−s+1ε̄

Γ(s/2)i
πk/2+1/2Nk/2+1/2 |∆|1/2−k/2

k−1∏
j=0

(s+ j − k)

k/2−1∏
j=0

(
s− 1

2
− j
)
.

For odd k we compute

R
(k+1)/2
1/2,τ M s

2
+ 1

4
, 1
2

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4Nn2

)
=

(
πm2 |∆|
Nn2

)(k+1)/2 (k−1)/2∏
j=0

(
s+ 1

2
+ j

)
M s

2
+ 1

4
, 3
2

+k

(
πm2 |∆| v
n2N

)
e

(
−m

2 |∆|u
4Nn2

)
.

and get

I∆,r(τ, Fm(z, s,−2k)) = Co ·
∑
n|m

(
∆

n

)
n−(k+1)F m2

4Nn2 |∆|,−
m
n
r

(
τ,
s

2
+

1

4
,
1

2
− k
)
,

with

Co = −22s+2k−1ε̄Γ(s/2 + 1/2)

Γ(2s)i
π3k/2N−k/2 |∆|k/2+1m2k+1

k−1∏
j=0

(s+ j − k)

(k−1)/2∏
j=0

(
s+ 1

2
+ j

)
.

From Proposition 2.6.6 we can directly deduce the following Proposition on the action
of the Atkin-Lehner involutions on the Bruinier-Funke theta lift.

Proposition 4.2.4. For an Atkin-Lehner involution WN
Q as in Definition 1.2.2, h ∈ L′/L

and F ∈ H−2k(N), we have

IBF
∆,r,WN

Q .h
(τ, F ) = IBF

∆,r,h(τ, F |−2k(W
N
Q )−1).

The following two results follow completely analogous to the corresponding results in
the previous chapter (Corollary 3.2.6 and Theorem 3.2.7).

Corollary 4.2.5. Let N be square-free, k > 0 an integer and F ∈ H+
−2k(N). Then the

Bruinier-Funke lift of F is a weakly holomorphic modular form of weight 3/2 + k if k is
odd. If k is even, then the lift is a harmonic Maass form of weight 1/2− k.
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4.2. Automorphic and analytic properties

Theorem 4.2.6. Let N be square-free and k 6= 0 be even. For a harmonic Maass form
F ∈ H+

−2k(N) the lift is weakly holomorphic if and only if

L(ξ−2k(F ),∆, k + 1) = 0.

In particular, this is the case when F is weakly holomorphic.

Proof of part (ii) and (iii) of Theorem 4.2.1. Combining the results proved above we ob-
tain the second and third part of Theorem 4.2.1.

4.2.1. Relation to the Shintani lift

The Bruinier-Funke lift of a harmonic Maass form of weight 0 and the Shintani lift of ξ0(F )
are closely related as we will explain now.

We let ISh
∆,r(τ,G) be the Shintani lifting of a cusp form G of weight 2 for Γ0(N). It is

defined as

ISh
∆,r(τ,G) =

∫
M

G(z)Θ∆,r(τ, z, ϕSh)y2dµ(z)

and is a vector valued modular form of weight 3/2 transforming with respect to the
representation ρ̃.

We then have the following relation between the two theta lifts.

Theorem 4.2.7. Let F ∈ H+
0 (N) with vanishing constant term at all cusps of Γ0(N).

Then we have that

ξ1/2,τ

(
IBF

∆,r(τ, F )
)

= − 1

2
√
N
ISh

∆,r(τ, ξ0,z(F )).

Proof. By Stokes’ theorem and Lemma 2.3.11 we have that

ISh
∆,r(τ, ξ0,z(F )) =

∫
M

ξ0(F (z))Θ∆,r(τ, z, ϕSh)y2dµ(z)

= −
∫
M

F (z)ξ2,z(Θ∆,r(τ, z, ϕSh))dµ(z) + lim
t→∞

∫
∂Ft

F (z)Θ∆,r(τ, z, ϕSh)dz̄,

where Ft = {z ∈ H : =(z) ≤ t} denotes the truncated fundamental domain. The differ-
ential equation between the Shintani and the Millson theta function (Equation (2.6.12))
implies that

−
∫
M

F (z)ξ2,z(Θ∆,r(τ, z, ϕSh))dµ(z)

= − 1

2
√
N

∫
M

F (z)ξ1/2,τ (Θ∆,r(τ, z, ψKM))dµ(z) = − 1

2
√
N
ξ1/2,τ

(
IBF

∆,r(τ, F )
)
.

It remains to show that

lim
t→∞

∫
∂Ft

F (z)Θ∆,r(τ, z, ϕSh)dz̄ = 0.
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4. The Bruinier-Funke theta lift

We have to investigate the growth of the Shintani theta function at the cusps. Again, we
let ∆ = N = 1, L = Z3, and h′ = 0, 1/2 for simplicity and obtain

Θ∆,r(τ, z, ϕSh) =
∑
a,c∈Z
b∈Z+h′

−cz̄
2 − bz̄ + a

4y2
e
−πv
y2 (c|z|2−bx+a)

e2πiτ̄(−b2/4+ac).

As in the proof of Proposition 2.6.5, we apply Poisson summation to the sum over a. Thus,
we consider ∫ ∞

−∞
−cz̄

2 − bz̄ + a

4y2
e
−πv
y2 (c|z|2−bx+a)

e2πiτ̄(−b2/4+ac)e2πiwada.

Proceeding as in the proof of Proposition 2.6.5, we obtain

θh(τ, z, ϕSh) = − 1

4
√
vy

∑
w,c∈Z
b∈Z+h′

e−2πiτ̄(b/2−cx)2

e2πi(bxw−cx2w)

×
(
cz̄2 + biy − c|z|2 + i

y2

v
(cτ̄ + w)

)
e−

πy2

v
|cτ+w|2 .

If c and w are not both equal to 0 this vanishes in the limit as y → ∞. In this case, the
whole integral vanishes. But if c = w = 0 we have

− i

4
√
v

∑
b∈Z+h′

beπiτ̄b
2/2.

Thus, we are left with (the complex conjugate of)∫
∂Ft

F (z)Θ(τ, z, ϕSh)dz =
i

4
√
v

∑
b∈Z+h′

beπiτ̄b
2/2

∫ 1

0

F (x+ it)dx.

We see that

lim
t→∞

∫ 1

0

F (x+ it)dx = 0,

since the constant coefficient of F at the cusp ∞ vanishes. Therefore,

lim
t→∞

∫
∂Ft

F (z)Θ(τ, z, ϕSh)dz̄ = 0.

Generalizing to arbitrary N , similar growth estimates hold for the other cusps of M .

The relation to the Shintani lifting directly implies

Proposition 4.2.8. Let F ∈ H+
0 (N) with vanishing constant term at all cusps and let

ξ0,z(F ) = G ∈ Snew
2 (N). The lift IBF

∆,r(τ, F ) is weakly holomorphic if and only if the
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4.2. Automorphic and analytic properties

Shintani lift of G vanishes, i.e. if

L(G,∆, 1) = 0.

In particular, this happens if F is weakly holomorphic.

4.2.2. The lift of the constant function

We now turn to the computation of the lift of the constant function. We follow the strategy
of Bruinier and Funke [BF06] and first compute the lift of the (normalized) real-analytic
Eisenstein series E0(z, s) of weight 0 for Γ0(N) and then take residues at s = 1

2
. The

Eisenstein series E0(z, s) is given by

E0(z, s) =
1

2
ζ∗(2s+ 1)

∑
γ∈Γ∞\Γ0(N)

(=(γz))s+
1
2 ,

where
ζ∗(s) = π−s/2Γ

(s
2

)
ζ(s)

denotes the completed Riemann Zeta function. Here, Γ∞ = ( 1 Z
0 1 ). The Eisenstein series

E0(z, s) converges for <(s) > 1 and has a meromorphic continuation to C with a simple
pole at s = 1

2
with residue

π

6Vol(Γ0(N) \H)
=

1

2N
∏

p|N

(
1 + 1

p

) .
For the computation of the lift of a constant we need the following results on the Eisen-

stein series of weight 1/2 defined by

E1/2,K(τ, s) =
1

2

∑
γ∈Γ̃∞\Mp2(Z)

(v
1
2

(s+ 1
2

)e0)|1/2,ρ̃Kγ.

Here, K is the sublattice Z ( 1 0
0 −1 ). Note that E1/2,K(τ, s) vanishes if ρ̃K = ρK , i.e. if ∆ > 0.

This can bee seen by replacing γ by Zγ in the sum, where Z = (−1, i) ∈ Mp2(Z) and using
that e0|1/2,ρKZ = −e0. Combining Theorem 6.2, the results of Section 6.4 and Equation
(5.19) in [BFI13] we obtain the following proposition.

Proposition 4.2.9. The residue of E1/2,ρK (τ, s) at s = 1
2

is given by

12

π

∑
`∈Γ0(N)\Iso(V )

B`(1)√
N

Θ̃K`(τ).

Here, B`(s) is a holomorphic function associated to the Fourier expansion at the cusp `
of a weight 0 Eisenstein series (see [BFI13, Section 5.5.]) and Θ̃K`(τ) is a theta series
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4. The Bruinier-Funke theta lift

associated to the cusp ` (see [BFI13, Section 2]).

Theorem 4.2.10. Let ∆ < 0. For the lift of the weight 0 Eisenstein series we obtain

IBF
∆,r(τ, E0(z, s)) = −ζ∗(2s+ 1)N1/4−s/2|∆|s/2+3/4 ε̄

2i
√
π

Γ
(
s
2

+ 3
4

)
Γ
(
s
2

+ 1
4

)
× Λ

(
ε∆, s+

1

2

)
E1/2,ρK (τ, s).

Remark 4.2.11. Note that the vanishing of the Millson theta function for some values
of N and ∆ implies the vanishing of the Bruinier-Funke lift as well. For example, if
N = ∆ = 1, the lift vanishes. The same holds for N = 1 and ∆ > 0.

Proof. The proof follows the one in [BF06, Theorem 7.1, Corollary 7.2] and [AE13, Theo-
rem 6.1]. Using the standard unfolding trick we obtain

IBF
∆,r(τ, E0(z, s)) = ζ∗(2s+ 1)

∫
Γ∞\H

Θ∆,r(τ, z, ψKM)ys+
1
2dµ(z).

By Proposition 2.6.7 this equals

− ζ∗(2s+ 1)
Nε̄

2i

∑
n≥1

n

(
∆

n

) ∑
γ∈Γ̃∞\Mp2(Z)

1

(cτ + d)
1
2

ρ̃−1
K (γ)

1

=(γτ)1/2

×
∫ ∞
y=0

ys+
1
2 exp

(
− Nπn2y2

|∆| =(γτ)

)
dy

×
∫ 1

x=0

∑
λ∈K′

e (|∆|Q(λ)τ̄ − 2Nλnx) erλdx.

The integral over x equals e0 and the one over y equals

1

2
Γ

(
s

2
+

3

4

)
(|∆| =(γτ))

s
2

+ 3
4 (Nπ)−

s
2
− 3

4n−s−
3
2 .

Thus, we have

IBF
∆,r(τ, E0(z, s)) = −ζ∗(2s+ 1)N−

s
2

+ 1
4 ε̄Γ

(
s

2
+

3

4

)
1

2i
|∆|

s
2

+ 3
4 π−

s
2
− 3

4

× L
(
ε∆, s+

1

2

)1

2

∑
γ∈Γ̃∞\Mp2(Z)

(v
1
2

(s+ 1
2

)e0)|1/2,Kγ
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For ∆ > 0 this vanished and for ∆ < 0 we find that this equals

−ζ∗(2s+ 1)Λ

(
ε∆, s+

1

2

)
E1/2,K(τ, s)N1/4−s/2|∆|s/2+3/4 ε̄

2i
√
π

Γ
(
s
2

+ 3
4

)
Γ
(
s
2

+ 1
4

) .

We now take residues at s = 1
2

in Theorem 4.2.10 to compute the lift of the constant
function.

Theorem 4.2.12. For ∆ < 0 we have

IBF
∆,r(τ, 1) = −

2N
∏

p|N

(
1 + 1

p

)
ε̄

πi
|∆| Λ(ε∆, 1)

∑
`∈Γ0(N)\Iso(V )

B`(1)√
N

Θ̃K`(τ).

Remark 4.2.13. Note that IBF
∆,r(τ, 1) ∈M1/2,ρ̃L .

Remark 4.2.14. This might be interpreted as a first term identity in the sense of Kudla
and Rallis.

Proof of part (i) of Theorem 4.2.1. Combining the preceding results we obtain the state-
ments in the first part of Theorem 4.2.1.

4.3. Fourier coefficients of the holomorphic part

Now we turn to the computation of the Fourier coefficients of positive index of the holo-
morphic part of the theta lift. Recall that the modular trace functions t+

∆,r(F ;m,h) and

t−∆,r(F ;m,h) are defined as

t+
∆,r(F ;m,h) =

∑
λ∈Γ0(N)\L+

|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ)

t−∆,r(F ;m,h) =
∑

λ∈Γ0(N)\L−|∆|m,rh

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ),

where ∂F := Rk
−2k(F ) for F ∈ H+

−2k(N) with k ≥ 0, h ∈ L′/L and m ∈ Q>0 with
m ≡ sgn(∆)Q(h) (Z) (see Section 2.7).

Theorem 4.3.1. We let k ≥ 0 be an integer and F ∈ H+
−2k(N). Moreover, let h ∈ L′/L

and m ∈ Q>0 with m ≡ sgn(∆)Q(h) (Z). We obtain the following results:
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4. The Bruinier-Funke theta lift

(i) Let k ≥ 0 be even. Then the coefficient of index (m,h) of the holomorphic part of
the lift IBF

∆,r(τ, F ) is given by√
|∆|

2
√
m

(
|∆|

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

) (
t+

∆,r(F ;m,h)− t−∆,r(F ;m,h)
)
.

(ii) Let k be odd. Then the coefficient of index (m,h) of the holomorphic part of the lift
IBF

∆,r(τ, F ) is given by√
|∆|

2
√
m

(
−4πm

|∆|

)(k+1)/2 (
t+

∆,r(F ;m,h)− t−∆,r(F ;m,h)
)
.

Proof. The proof is very similar to the one of Theorem 3.3.1 and we frequently omit some
arguments that are completely analogous to the ones in the proof of Theorem 3.3.1. Again,
we first prove the result for ∆ = 1. Using the methods developed in [AE13] we then deduce
the general result. We write

IBF
∆,r(τ, F ) =

∑
h∈L′/L

∑
m∈Q

 ∑
λ∈Lm,h

∫
M

∂F (z)
√
vψ0

KM(
√
vλ, z)dµ(z)

 e2πimτ

=
∑

h∈L′/L

∑
m∈Q

C(m,h)e2πimτ

for the Fourier expansion of IBF
∆,r(τ, F ). By the usual unfolding argument we obtain

C(m,h) =
∑

λ∈Γ0(N)\L+
m,h

1∣∣Γλ∣∣
∫
M

∂F (z)
√
vψ0

KM(
√
vλ, z)dµ(z)

+
∑

λ∈Γ0(N)\L−m,h

1∣∣Γλ∣∣
∫
M

∂F (z)
√
vψ0

KM(
√
vλ, z)dµ(z).

For the latter sum we find that it equals

−
∑

λ∈Γ0(N)\L−m,h

1∣∣Γ−λ∣∣
∫
M

∂F (z)
√
vψ0

KM(−
√
vλ, z)dµ(z).

Note that we have to distinguish between elements in L+
m,h and L−m,h here since ψKM is an
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4.3. Fourier coefficients of the holomorphic part

odd function in the first variable. Proceeding as in the proof of Theorem 3.3.1 we obtain

C(m,h) =
∑

λ∈Γ0(N)\L+
m,h

1∣∣Γλ∣∣
∫
G(R)

∂F (gi)
√
vψ0

KM(
√
vλ, gi)dg

−
∑

λ∈Γ0(N)\L−m,h

1∣∣Γ−λ∣∣
∫
G(R)

∂F (gi)
√
vψ0

KM(−
√
vλ, gi)dg.

Since the group SL2(R) acts transitively on L+
m,h, there is a g1 ∈ SL2(R) such that g−1

1 .λ =√
mλ(i) for λ ∈ L+

m,h. Also, there is a g1 ∈ SL2(R) such that g−1
1 .(−λ) =

√
mλ(i) for

λ ∈ L−m,h. We then have

C(m,h) =
∑

λ∈Γ0(N)\L+
m,h

1∣∣Γλ∣∣
∫
G(R)

∂F (g1gi)
√
vψ0

KM

(√
v
√
mg−1.λ(i), i

)
dg

−
∑

λ∈Γ0(N)\L−m,h

1∣∣Γ−λ∣∣
∫
G(R)

∂F (g1gi)
√
vψ0

KM

(√
v
√
mg−1.λ(i), i

)
dg.

Using the Cartan decomposition of SL2(R) we find

C(m,h) =
∑

λ∈Γ0(N)\L+
m,h

1∣∣Γλ∣∣∂F (Dλ)
√
vYc(
√
mv)−

∑
λ∈Γ0(N)\L−m,h

1∣∣Γ−λ∣∣∂F (D−λ)
√
vYc(
√
mv),

with

Yc(t) = 4π

∫ ∞
1

ψ0
KM(tα(a)−1.λ(i), i)ωc(α(a))

a2 − a−2

2

da

a
.

As before, ωc(α(a)) = ωc

(
a2+a−2

2

)
is the spherical function of eigenvalue c = −k(k + 1)

given by the Legendre polynomial Pk(x). Substituting a = er/2 we obtain

Yc(t) = 4πt

∫ ∞
0

cosh(r) sinh(r)Pk(cosh(r))e−4πt2 sinh(r)2

dr.

Setting x = sinh(r)2 we get

Yc(t) = 2πt

∫ ∞
0

Pk(
√

1 + x)e−4πt2xdx.

This is a Laplace transformation computed in equation (7) on page 180 in [EMOT54]. It
equals

2πt

(4πt2)5/4
W 1

4
, k
2

+ 1
4
(4πt2)e2πt2 .
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4. The Bruinier-Funke theta lift

We have √
vYc(
√
mv)e2πimτ =

1

2
√
m
W k

2
+ 3

4
, 1
2
(4πmv)e(mx)

and

L
k/2
1/2

(
W k

2
+ 3

4
, 1
2
(4πmv)e(mx)

)
=

(
1

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

)
W k

2
+ 3

4
, 1
2
−k(4πmv)e(mx)

=

(
1

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

)
e2πimτ .

Moreover,

R
(k+1)/2
1/2

(
W k

2
+ 3

4
, 1
2
(4πmv)e(mx)

)
= (−4πm)(k+1)/2 1√

m
W k

2
+ 3

4
, 1
2
−k(4πmv)e(mx)

= (−4πm)(k+1)/2 e2πimτ .

We now twist this result as described in the proof of Theorem 3.3.1 to obtain the results
stated in the theorem.
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5. Duality results for the Kudla-Millson
and Bruinier-Funke lift

In this chapter we consider Kudla-Millson and Bruinier-Funke theta lifts that are weakly
holomorphic of weight 3/2 + k. We show that the lifts are orthogonal to cusp forms with
respect to the Petersson inner product in this case.

Recall that ρ̃ = ρ if ∆ > 0 and ρ̃ = ρ if ∆ < 0. We obtain that the bilinear pairing
defined in Section 2.3.2 of the Kudla-Millson or Bruinier-Funke lift I(τ, F ) ∈M !

3/2+k,ρ̃ with

a harmonic Maass form f in the dual space H+

1/2−k,ρ̃ vanishes, i.e.

{I(τ, F ), f} = (I(τ, F ), ξ1/2−k(f))reg
3/2+k,ρ̃ = 0.

Recall that ξ1/2−k(f) is a cusp form of weight 3/2 + k transforming with respect to ρ̃.

Together with the formula for the bilinear pairing given in Proposition 2.3.20 we obtain
formulas for the coefficients of the holomorphic part of f in terms of the coefficients of the
holomorphic part of I(τ, F ), thus in terms of twisted traces of CM values of F .

Choosing f = IKM(τ, F ) ∈ H+

1/2−k,ρ̃ and IBF(τ, F ) ∈ M !
3/2+k,ρ̃ (or vice versa) we obtain

duality results in the spirit of [Zag02].

Recall that M is the modular curve Y0(N) = Γ0(N) \ H. As before, z is used as a
variable for integer weight forms, and τ is used for half-integer weight forms. Recall that
we write q = e2πiz and q = e2πiτ . Let L be the lattice defined in Section 1.2.1, ∆ ∈ Z be
a fundamental discriminant, and r ∈ Z such that ∆ ≡ r2 (mod 4N). By ρ we denote the
Weil representation associated to the lattice L.

5.1. Orthogonality to cusp forms

In this section we show that the Kudla-Millson and the Bruinier-Funke lift are orthogonal
to cusp forms with respect to the regularized Petersson inner product. Recall that for
g ∈ S3/2+k,ρ̃ we have

(
IKM

∆,r (τ, F ), g(τ)
)reg

3/2+k,ρ̃
= lim

t→∞

∫
Ft

〈
IKM

∆,r (τ, F ), g(τ)
〉
v3/2+kdµ(τ),

where Ft denotes the truncated fundamental domain Ft = {τ ∈ H : =(τ) ≤ t}.
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5. Duality results for the Kudla-Millson and Bruinier-Funke lift

Theorem 5.1.1. For IKM
∆,r (τ, F ) ∈M !

3/2+k,ρ̃, where k ≥ 0, and g ∈ S3/2+k,ρ̃ we have(
IKM

∆,r (τ, F ), g(τ)
)reg

3/2+k,ρ̃
= 0.

The same holds for IBF
∆,r(τ, F ) ∈M !

3/2+k,ρ̃, where k ≥ 0, and g ∈ S3/2+k,ρ̃, i.e.(
IBF

∆,r(τ, F ), g(τ)
)reg

3/2+k,ρ̃
= 0.

Proof of Theorem 5.1.1. We only prove the statement for the Kudla-Millson theta lift since
the arguments carry over directly for the Bruinier-Funke lift. To simplify notation we prove
the theorem in the untwisted case. Since the twisted lift is essentially a linear combination
of untwisted ones the arguments carry over directly (see the proof of Theorem 3.3.1).

Using the dominated convergence theorem it is tedious but straightforward to show that
interchanging the integration with respect to z and τ is allowed. That is

lim
t→∞

∫
Ft

〈
IKM

∆,r (τ, F ), g(τ)
〉
v3/2+kdµ(τ)

= lim
t→∞

∫
Ft

〈
R
k/2
3/2,τ

∫
M

(Rk
−2k,zF )(z)Θ(τ, z, ϕKM), g(τ)

〉
v3/2+kdµ(τ)

=

∫
M

(Rk
−2k,zF )(z) lim

t→∞

∫
Ft

〈
R
k/2
3/2,τΘ(τ, z, ϕKM), g(τ)

〉
v3/2+kdµ(τ).

We consider the cases k = 0 and k > 0 separately.

Proof for k > 0: We first show that for k > 0

lim
t→∞

∫
Ft

〈
R
k/2
3/2,τΘ(τ, z, ϕKM), g(τ)

〉
v3/2+kdµ(τ) = 0.

Following the proof of Theorem 4.1 in [BOR08] we let

H := vk−1/2R
k/2−1
3/2,τ Θ(τ, z, ϕKM)

and
h := R

k/2
3/2,τΘ(τ, z, ϕKM) = v−k−3/2L1/2−k,τH.

Note that R
k/2−1
3/2,τ Θ(τ, z, ϕKM) is only defined for k > 0. We obtain∫

Ft

〈
R
k/2
3/2,τΘ(τ, z, ϕKM), g(τ)

〉
v3/2+kdµ(τ) =

∫
Ft

〈
v−k−3/2L1/2−k,τH, g(τ)

〉
v3/2+kdµ(τ).
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5.1. Orthogonality to cusp forms

We have that (see also Lemma 2.3.11)

〈
v−k−3/2L1/2−k,τH, g(τ)

〉
v3/2+kdµ(τ) =

〈
2iv2

∂

∂τ
H, g(τ)

〉
dudv

v2

= −
〈
∂

∂τ
H(τ), g(τ)

〉
dτdτ . (5.1.1)

By the holomorphicity of g we obtain that (5.1.1) equals

−
〈
∂

∂τ
H(τ), g(τ)

〉
dτdτ = −∂

(〈
H(τ), g(τ)

〉
dτ
)

= −d
(〈
H(τ), g(τ)

〉
dτ
)
.

We now apply Stoke’s Theorem. Since the integrand is SL2(Z)-invariant the equivalent
pieces of the boundary of the fundamental domain cancel and we obtain∫

Ft

〈
R
k/2
3/2,τΘ(τ, z, ϕKM), g(τ)

〉
v3/2+kdµ(τ)

= −
∫
∂Ft

〈
vk−1/2R

k/2−1
3/2,τ Θ(τ, z, ϕKM), g(τ)

〉
dτ

=
∑

h∈L′/L

∫ 1/2

−1/2

tk−1/2R
k/2−1
3/2,τ θh(u+ it, z, ϕKM)gh(u+ it)du. (5.1.2)

Plugging in the Fourier expansions of the two series and carrying out the integration over
u we see that (5.1.2) equals

∑
h∈L′/L

tk−1/2

∞∑
n=1

b(n, h)a(n, h)e−4πnt,

where b(n, h) and a(n, h) denote the Fourier coefficients of gh and R
k/2−1
3/2,τ θh respectively.

By classical results these coefficients grow very moderately and thus, the main contribution
comes from the exponential terms, implying that the limit tends to 0 as t→∞.

Proof for k = 0: For k = 0 we use an argument for harmonic forms on Riemann surfaces
to show that

lim
t→∞

∫
Ft
θh(τ, z, ϕKM)gh(τ)v3/2dµ(τ) = 0,

where we consider the components of the Petersson inner product separately now.

We first show that ∆0,z annihilates this expression. Since the partial derivatives ∂2

∂x2 and
∂2

∂y2 of
∫
Ft θh(τ, z, ϕKM)gh(τ)v3/2dµ(τ) converge locally uniformly in z as t → ∞, we can

interchange differentiation and the limit.

83



5. Duality results for the Kudla-Millson and Bruinier-Funke lift

Recall that we have ∆3/2,τΘ(τ, z, ϕKM) = 1
4
∆0,zΘ(τ, z, ϕKM) by (2.6.10), which implies∫

Ft
∆0,zθh(τ, z, ϕKM)gh(τ)v3/2dµ(τ)

= 4

∫
Ft

∆3/2,τθh(τ, z, ϕKM)gh(τ)v3/2dµ(τ).

By Lemma 4.3 of [Bru02] we find∫
Ft

∆3/2,τθh(τ, z, ϕKM)gh(τ)v3/2dµ(τ)

=

∫
Ft
θh(τ, z, ϕKM)∆3/2,τgh(τ)v3/2dµ(τ) (5.1.3)

+

∫ 1/2

−1/2

[
θh(τ, z, ϕKM)L3/2,τgh(τ)v3/2

]
v=t

du (5.1.4)

−
∫ 1/2

−1/2

[
L3/2,τθh(τ, z, ϕKM)gh(τ)v3/2

]
v=t

du. (5.1.5)

The holomorphicity of g implies that the integrals in (5.1.3) and (5.1.4) vanish. When
plugging in the Fourier expansions of gh(u+ it) and L3/2,τθh(u+ it, z, ϕKM) and integrating
over u we see that the resulting expression is exponentially decaying as t→∞, which then
implies

∆0,z lim
t→∞

∫
Ft
θh(τ, z, ϕKM)gh(τ)v3/2dµ(τ) = 0.

Writing limt→∞
∫
Ft θh(τ, z, ϕKM)gh(τ)v3/2dµ(τ) = h(z)dz ∧ dz̄ for a smooth function on

M , we have ∆0,zh(z) = 0. By the square-exponential decay of the Kudla-Millson theta
function (see Proposition 2.6.9) ∆0,zh(z) = 0 implies that h(z) is constant [Bru02, Corollary
4.22]. So it remains to show that this constant is zero. We do this by showing that for
z ∈ H and σ` as in Section 1.2.3 we have

lim
y→i∞

h(σ`z) = 0. (5.1.6)

For simplicity, we only consider the cusp ` = ∞. A careful analysis yields that we can
interchange the limit processes with respect to t and y. The square exponential decay
of θh(τ, z, ϕKM) implies that limy→i∞ θh(τ, z, ϕKM) = 0. Therefore, the limit limy→i∞ h(y)
vanishes.

5.2. Duality and Hecke action

The orthogonality of the two lifts together with Proposition 2.3.20 and Remark 2.3.16
directly implies the following duality results.
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5.2. Duality and Hecke action

Corollary 5.2.1. Let κ = 3/2 + k if k is odd and κ = 1/2 − k if k is even. We let
f be a harmonic weak Maass form of weight κ transforming with representation ρ̃ and
denote the (m,h)-th Fourier coefficient of the holomorphic part by c+

f (m,h). Moreover, let

F ∈M !
−2k(N), such that IKM

∆,r (τ, F ) is weakly holomorphic of weight 2− κ and transforms
with representation ρ̃. We denote the Fourier coefficients of IKM

∆,r (τ, F ) by a+
IKM(m,h).

Then we have∑
h∈L′/L

∑
m≥0

m≡sgn(∆)Q(h) (Z)

c+
f (−m,h)a+

IKM(m,h)

= −
∑

h∈L′/L

∑
m≥0

−N |∆|m2≡sgn(∆)Q(h) (Z)

c+
f (N |∆|m2, h)a+

IKM(−N |∆|m2, h).

The same result holds for the Bruinier-Funke lift.

Corollary 5.2.2. Let κ = 3/2 + k if k is even and κ = 1/2 − k if k is odd. We let f be
a harmonic weak Maass form of weight κ transforming with representation ρ̃ and denote
the (m,h)-th Fourier coefficient of the holomorphic part by c+

f (m,h). Moreover, let F ∈
M !
−2k(N), such that IBF

∆,r(τ, F ) is weakly holomorphic of weight 2− κ and transforms with
representation ρ̃. We denote the Fourier coefficients of the lift IBF

∆,r(τ, F ) by a+
IBF(m,h).

Then we have∑
h∈L′/L

∑
m≥0

m≡sgn(∆)Q(h) (Z)

c+
f (−m,h)a+

IBF(m,h)

= −
∑

h∈L′/L

∑
m≥0

−N |∆|m2≡sgn(∆)Q(h) (Z)

c+
f (N |∆|m2, h)a+

IBF(−N |∆|m2, h).

Remark 5.2.3. These results can be rephrased in terms of the two lifts, i.e. choosing
f = IBF

∆,r(τ, F ) in Corollary 5.2.1, respectively f = IKM
∆,r (τ, F ) in Corollary 5.2.2, we obtain

a duality result for the two lifts. With these formulas we can recover duality results between
Poincaré series as in [Zag02, BO07] (also see the introduction).

Using the action of the Hecke algebra we also obtain formulas of such type for a wider
class of coefficients.

Proposition 5.2.4. Let the hypotheses be as in Corollary 5.2.1. Then we have∑
h∈L′/L

∑
m≥0

m≡sgn(∆)Q(h) (Z)

c+,∗
f (−m,h)t∆,r(F ;m,h)

= −
∑

h∈L′/L

∑
m≥0

−N |∆|m2≡sgn(∆)Q(h) (Z)

c+,∗
f (N |∆|m2, h)a+

IKM(−N |∆|m2, h),
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5. Duality results for the Kudla-Millson and Bruinier-Funke lift

where c+,∗
f (n, h) is as in (2.3.10).

Remark 5.2.5. An analogous result holds for the Bruinier-Funke lift.

Proof. We can assume that g ∈ Snew
2−κ,ρ̃ such that ξκ(f) = g/||g||2. Then we have{

IKM
∆,r (τ, F ), f |κT (`)

}
=
(
IKM

∆,r (τ, F ), ξκ [(f |κT (`))(τ)]
)reg

2−κ,ρ̃

=
(
IKM

∆,r (τ, F ), `2κ−2 (ξκ(f)|2−κT (`)) (τ)
)reg

2−κ,ρ̃

by equation (7.2) in [BO10]. This equals(
IKM

∆,r (τ, F ), `2κ−2 1

||g||2
g|κT (`)

)reg

2−κ,ρ̃
.

Since g is an eigenform we obtain

λ``
2κ−2

(
IKM

∆,r (τ, F ),
g

||g||2

)reg

2−κ,ρ̃
,

where λ` is the eigenvalue of g under T (`). But this vanishes since the lift is orthogonal to
cusp forms.
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6. Elliptic curves and harmonic Maass
forms

In this chapter we study the relation between the central value and central derivative of the
Hasse-Weil zeta function of twists of an elliptic curve E over Q and the Fourier coefficients
of a harmonic Maass form of weight 1/2 associated to E.

The starting point is a theorem by Bruinier and Ono [BO10, Theorem 7.8]. They consider
weight 1/2 harmonic Maass forms f whose image under ξ1/2 is equal to a real multiple of
a weight 3/2 newform g that maps to G under the Shimura correspondence. That is, we
have the following picture

G ∈ S2(N)

f ∈ H+
1/2,ρ̃

ξ1/2 //g ∈ S3/2,ρ̃.

Shimura

OO (6.0.1)

Employing deep work of Shimura and Waldspurger they proved that the Fourier coefficients
of the non-holomorphic part of f as above give exact formulas for L(G,D, 1), where D is
an appropriate discriminant. Using the theory of Borcherds products and the Gross–
Zagier Theorem they show that at the same time the coefficients of the holomorphic part
of f encode the vanishing of the central derivatives L′(G,D′, 1) (where D′ is again an
appropriate discriminant). However, the harmonic Maass form f does not directly arise
from the cusp form G.

In this chapter we show that we can complete the diagram (6.0.1) by constructing a
canonical preimageWE of a newform GE ∈ Snew

2 (NE) associated to an elliptic curve E over
Q and employing the Bruinier-Funke lift. We obtain the following commutative diagram

WE ∈ H0(NE)

IBF
∆,r

��

ξ0 //GE ∈ Snew
2 (NE)

Shintani

��
IBF

∆,r(τ,WE) ∈ H+
1/2,ρ̃

ξ1/2 //g ∈ S3/2,ρ̃.

(6.0.2)

Recall that for an elliptic curve E : y2 = x3 +ax+b over Q and a fundamental discriminant
d, the d-quadratic twist of E is defined by Ed : dy2 = x3 + ax+ b.

The above diagram leads to a connection between the vanishing of L(Ed, 1) and the
vanishing of the d-th coefficient of the non-holomorphic part of IBF

∆,r(τ,WE). Here, d 6= 1
is a fundamental discriminant that we choose depending on the discriminant ∆ which is
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6. Elliptic curves and harmonic Maass forms

used to twist the Bruinier-Funke lift.

Moreover, we prove that the algebraicity of the d-th Fourier coefficient of the holomorphic
part of the Bruinier-Funke lift of WE as above encodes the vanishing of L′(Ed, 1) (again
d depends on ∆). Note that our proof is independent of the results in [BO10]. Moreover,
it also applies to the coefficients of the Kudla-Millson lift of WE (or more generally a
harmonic Maass form of weight 0 that maps to a newform of weight 2 under ξ0).

In the first part of the chapter we briefly introduce the theory of elliptic curves and
explain the connection between L-functions of weight 2 cusp forms and of elliptic curves.
Moreover, we discuss the notion of differentials of the first, second and third kind on a
complex Riemann surface. We then turn to the construction of the harmonic Maass form
WE associated to an elliptic curve E. The last part of the chapter is devoted to the proof
of the relation between the Fourier coefficients of IBF

∆,r(τ,WE) and the central values and
derivatives of the Hasse-Weil zeta function of E. Moreover, we present some implications
of this result for periods of differentials of the first and second kind associated to WE.

6.1. Elliptic curves and modular forms

In this section we summarize some results on elliptic curves and their relations to modular
forms. Most of the material is taken from [DS05, Sil09].

6.1.1. Elliptic curves and Weierstrass functions

Let E be an elliptic curve over Q, i.e. a non-singular curve defined by an equation of the
form

y2 = x3 + ax+ b

with a, b ∈ Q. The condition that E is non-singular is equivalent to the non-vanishing of
the discriminant ∆ = −16(4a3 + 27b2).

Over C every elliptic curve is isomorphic to C/ΛE, where ΛE is a certain lattice in C.
To define the corresponding isomorphism we introduce the Weierstrass ℘-function. For a
lattice Λ in C and z ∈ C \ Λ we let

℘(Λ; z) :=
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

The Weierstrass ℘-function converges absolutely and uniformly on compact subsets of C
away from Λ. It is an even Λ-invariant function and is holomorphic on C \Λ. In points of
Λ it has poles of second order with residue 0.

For an integer k > 0 we let G2k(Λ) be the standard weight 2k Eisenstein series defined
as

G2k(Λ) :=
∑

ω∈Λ\{0}

ω−2k.
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6.1. Elliptic curves and modular forms

This series converges for k > 1. For k = 1 we will consider its analytic continuation
(see (6.2.3)).

We obtain the following isomorphism between E and C/ΛE.

Proposition 6.1.1. Let E be an elliptic curve given by the equation

E(ΛE) : y2 = 4x3 − 60G4(ΛE)− 140G6(ΛE)

with ΛE a lattice in C. The map

Ψ : (C/ΛE) \ {ΛE} → E(ΛE)

z 7→ (℘(ΛE; z), ℘′(ΛE; z))

is an isomorphism.

The Weierstrass ℘-function has a Laurent expansion of the form

℘(Λ; z) =
1

z2
+
∞∑
n=2

(2n− 1)G2n(Λ)z2n−2

for all z satisfying 0 < |z| < inf{|w| : w ∈ Λ \ {0}}.
We are also interested in the Weierstrass ζ-function

ζ(Λ; z) :=
1

z
+

∑
w∈Λ\{0}

(
1

z − w
+

1

w
+

z

w2

)
=

1

z
−
∞∑
k=1

G2k+2(Λ)z2k+1. (6.1.1)

It satisfies
℘(Λ; z) = −ζ ′(Λ; z).

6.1.2. Modularity of elliptic curves

Let E/Q be an elliptic curve over Q with conductor NE (an integer divisible by the same
prime numbers as the discriminant of E). Let s ∈ C with <(s) > 1 and define the
L-function (or Hasse-Weil zeta function) of E by

L(E, s) =
∏

p prime

Lp(E, s),

where

Lp(E, s) =


(1− a(p)p−s + p1−2s)−1 p - NE,

(1− a(p)p−s)−1 p|NE, p
2 - NE,

1 p2|NE.

Here a(p) = p+ 1− (#of points of E modulo p).
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6. Elliptic curves and harmonic Maass forms

In the mid-1950’s Taniyama conjectured that the L-function of an elliptic curve agrees
with the L-function of a weight 2 newform that has eigenvalues a(p) under the action of
the Hecke operators. One direction of this conjecture was proved in the 1960’s by Eichler
and Shimura, who showed that given a Hecke eigenform G in S2(N) with integral Fourier
coefficients, there is an elliptic curve E/Q such that L(E, s) = L(G, s).

The other direction was finally proved in the 1990’s by Wiles, Breuil, Conrad, Diamond,
and Taylor [Wil95, BCDT01] (see [DS05] for an overview of the different versions of the
modularity theorem and [CSS97] for an overview of the proof of Fermat’s last theorem
involving the proof of the modularity of elliptic curves).

Theorem 6.1.2 (Modularity Theorem). Let E/Q be an elliptic curve of conductor NE.
There is a weight 2 newform GE(τ) =

∑∞
n=1 aE(n)qn ∈ S2(NE) that satisfies

L(GE, s) = L(E, s), s ∈ C.

Remark 6.1.3. Let the notation be as above. The theorem implies that all the properties
of L(GE, s) also apply to L(E, s), i.e. it can be holomorphically continued to C, it can be
written as

L(E, s) =
∞∑
n=1

aE(n)

ns
.

and it satisfies a functional equation in s as in Proposition 2.1.7.

A different version of the modularity theorem above is the following theorem (stated as
Theorem 2.5.1 in [DS05]).

Theorem 6.1.4. Let E/Q be an elliptic curve of conductor NE. There is a surjective
holomorphic function of complex Riemann surfaces from the modular curve X0(NE) to the
elliptic curve E of conductor NE,

φE : X0(NE)→ E.

This function is called the modular parametrization of E.

6.1.3. The Birch and Swinnerton-Dyer Conjecture

Throughout let E/Q be an elliptic curve of conductor NE over Q. We consider the group
E(Q) of rational points on E. Mordell proved the following famous theorem.

Theorem 6.1.5 (Mordell-Weil). We have

E(Q) = E(Q)tors ⊕ Zr

for some integer r ≥ 0 called the rank of E. Here, E(Q)tors is a finite abelian group.

The Birch and Swinnerton-Dyer Conjecture relates the rank r to the analytic properties
of the L-function of the elliptic curve. It is one of the most famous open problems in
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6.1. Elliptic curves and modular forms

number theory. It was named after Bryan Birch and Peter Swinnerton-Dyer who came up
with the conjecture in the 1960’s with the help of extensive computer-based computations.
We state the original version of the conjecture.

Conjecture 6.1.6. The Taylor expansion of L(E, s) at s = 1 is of the form

L(E, s) = c · (s− 1)r + higher order terms

with c 6= 0 and r = rank(E).

There is a more detailed version of this conjecture predicting the value of L(r)(E, 1),
namely

L(r)(E, 1) = c · Ω ·R.

Here, Ω =
∫
E(R)

dx/y is the real period, and R is the regulator, the determinant of a

r× r-matrix whose entries are given by a height pairing applied to a system of generators
of E(Q)/E(Q)tors. The number c is a non-zero rational number involving the order of the
Tate-Shafarevich group and several other expressions (see for example [KZ01, Wil06]).

The conjecture has only been proved in the case that the analytic rank is equal to 0 or
1 in [GZ86] and [Kol88].

Theorem 6.1.7 (Gross-Zagier, Kolyvagin). If L(E, s) = c(s − 1)r + higher order terms
and r = 0 or 1, then the Birch and Swinnerton-Dyer conjecture is true.

The remaining cases are still unknown, however, by recent results of Bhargava and
Shankar combined with results of Nekovà, the Dokchitser brothers and Skinner and Urban
it is known that a positive proportion of elliptic curves over Q has analytic rank zero and
thus satisfies the Birch and Swinnerton-Dyer conjecture [BS, Nek01, DD10, SU14].

An interesting question is if one can compute L(E, s) and L′(E, s) at s = 1. In fact,
this was done by Gross and Zagier in their part of the proof of Theorem 6.1.7. Roughly,
they proved (if L(E, 1) = 0) that L′(E, 1) is given by a multiple of the height of a Heegner
point (see [GZ86] and (6.3.7)). Here, we recall results of Waldspurger as well as Kohnen
and Zagier saying that the coefficients of half-integral weight cusp forms are essentially the
square roots of central values of quadratic twists of modular L-functions.

In order to state these results, we first define quadratic twists of elliptic curves. For an
elliptic curve E : y2 = x3 + ax+ b over Q and a fundamental discriminant ∆, we consider
the ∆-quadratic twist of E

E∆ : ∆y2 = x3 + ax+ b. (6.1.2)

The corresponding twisted L-function is given by

L(E∆, s) =
∞∑
n=1

(
∆

n

)
a(n)n−s,

and this corresponds to the twisted (modular) L-function L(GE,∆, s) with GE as in
Theorem 6.1.2.
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Building upon results of Waldspurger [Wal81] Kohnen and Zagier proved the following
theorem in [KZ81].

Theorem 6.1.8 (Waldspurger, Kohnen–Zagier). Let G ∈ S2k(1) be a normalized Hecke
eigenform and let g ∈ S+

k+1/2(4) (the Kohnen plus-space) be the form that corresponds to

G under the Shimura correspondence. We denote the n-th coefficient of g by c(n). Let D
be a fundamental discriminant with (−1)kD > 0. Then

|c(|D|)|2

||g||2
=

(k − 1)!

πk
|D|k−1/2L(G,D, k)

||G||2
.

6.1.4. Differentials on Riemann surfaces, modular and elliptic curves

In this section we introduce the identification between modular forms and differential
forms on X0(N) following the exposition in [Sil94, DS05]. Moreover, we define the notion
of differentials of the first, second and third kind on compact Riemann surfaces and present
a theorem by Scholl on the transcendence of differentials of the third kind.

ByMk(N) we denote the space of meromorphic modular forms f : H→ C. These forms
satisfy the following conditions:

(i) (f |kγ) (z) = f(z) for all γ ∈ Γ0(N).

(ii) f is meromorphic on H.

(iii) f is meromorphic at the cusps of Γ0(N).

Let X be a compact Riemann surface. By ΩX we denote the C(X)-vector space of
meromorphic differential 1-forms on X. The space of meromorphic differentials of degree
k is the k-fold tensor product

Ωk
X = Ω⊗kX .

We have the following identification between meromorphic differentials and meromorphic
modular forms.

Proposition 6.1.9 (Proposition 3.7 in Chapter 1 of [Sil94] and Theorem 3.3.1 in Chapter 3
of [DS05]). Let f ∈M2k(N). The k-form f(τ)(dτ)k on H descends to give a meromorphic
k-form wf on X0(N). That is, there is a k-form wf ∈ Ωk

X0(N) such that

φ∗(wf ) = f(τ)(dτ)k,

where φ : H→ X0(N) is the usual projection.

Next we introduce the notion of differentials of the first, second, and third kind. A
differential of the first kind on X is a holomorphic 1-form. A differential of the second kind
is a meromorphic 1-form on X whose residues all vanish. A differential of the third kind
on X is a meromorphic 1-form on X whose poles are all of first order with residues in Z.
Later we will relax the condition on the integrality of the residues.
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6.1. Elliptic curves and modular forms

Let ψ be a differential of the third kind on X that has poles at the points Pj with residues
aj, and is holomorphic elsewhere. The residue divisor of ψ is defined by

res(ψ) :=
∑
j

ajPj.

The restriction of res(ψ) to any component of X has degree 0. Conversely, if D =
∑
cjPj

is a divisor on X whose restriction to any component has degree 0, then the Riemann-
Roch theorem and Serre duality imply that there is a differential of the third kind ψD with
res(ψD) = D (see for example [GH94, p. 233]). The differential ψD is determined by this
condition up to addition of a differential of the first kind.

Using the Riemann period relations, one can show that there is a unique differential of
the third kind ηD on X with residue divisor D such that

<
(∫

γ

ηD

)
= 0

for all γ ∈ H1(X\{Pj},Z). It is called the canonical differential of the third kind associated
with D.

A different characterization of ηD is given by Scholl.

Proposition 6.1.10 (Proposition 1 in [Sch86]). The differential ηD is the unique differ-
ential of the third kind with residue divisor D which can be written as ηD = ∂hD, where
hD is a harmonic function on X \ {Pj}.
Remark 6.1.11. By Corollary 8.2 (ii) of [Spr57] we have (in the setting of Proposi-
tion 6.1.10)

hD(z) = cj log |z − Pj|+H(z)

for a local variable z near Pj and a smooth function H(z).

Example 6.1.12. (i) Let G ∈ S2(N) be a cusp form of weight 2 for Γ0(N). Then

ωG = 2πiG(z)dz (6.1.3)

is a differential 1-form of the first kind on X0(N).

(ii) Let F ∈M !
2(N) with vanishing constant coefficient. Then

2πiF (z)dz (6.1.4)

is a differential 1-form of the second kind on X0(N).

(iii) Let D be a degree 0 divisor on X0(N) that is coprime to the cusps. Let D(z) be a
meromorphic modular form of weight 2 for Γ0(N) whose poles lie on D ⊂ Y0(N) and
are of first order with residues in Z. Then

2πiD(z)dz (6.1.5)
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is a differential of the third kind with residue divisor D on X0(N). The constant
coefficient of the Fourier expansion of D(z) =

∑∞
n=0 d(n)qn at ∞ is the residue of ηD

at ∞. We have analogous expansions at the other cusps of Γ0(N). We refer to d(n)
as the n-th coefficient of ηD at the cusp ∞.

Remark 6.1.13. For a geometric approach to harmonic Maass forms see [BF04, Proof of
Theorem 3.7] and the work of Candelori [Can14]. Using different descriptions of the de
Rham cohomology attached to modular forms one can show that there are differentials of
the first and second kind, denoted by ω and φ, such that φ − ω is exact. For harmonic
Maass forms of weight 0 this is reflected in Lemma 2.3.14.

Scholl proved an interesting criterion on the transcendence of differentials of the third
kind. From now on we assume that X is defined over Q. By Q̄ we denote the algebraic
closure of Q in C. We assume that D is a degree 0 divisor on X which is defined over a
number field F ⊂ Q̄. Using results of Waldschmidt [Wal87] Scholl proved the following on
the transcendence of a canonical differential of the third kind ηD with residue divisor D
[Sch86].

Theorem 6.1.14 (Scholl). If some non-zero multiple of D is a principal divisor, then ηD
is defined over F . Otherwise, ηD is not defined over Q̄.

The q-expansion principle directly implies the following corollary if we take X = X0(N)
(see also [BO10, Theorem 3.3]).

Corollary 6.1.15. If some non-zero multiple of D is a principal divisor, then all the
coefficients d(n) of ηD at the cusp ∞ are contained in F . Otherwise, there is an n such
that d(n) is transcendental.

We now describe differentials of the first and second kind on an elliptic curve. Let E
be an elliptic curve of conductor NE over Q and let ωE = dx

y
be the Néron differential

of E. By GE ∈ S2(NE) we denote the cusp form corresponding to E under the modular
parametrization. Multiplicity one implies that the pullback of ωE under the modular
parametrization is given by

φ∗(ωE) = cE ωGE ,

where cE denotes the Manin constant (see for example [Cre97]).

Example 6.1.16. (i) The Néron differential ωE = dx
y

is of the first kind. Its pullback

under the complex uniformization C/ΛE of E equals dz.

(ii) The differential
xωE.

is of the second kind. The pullback of xωE under the complex uniformization C/ΛE

of E is equal to ℘(z)dz.
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6.2. Canonical Weierstrass harmonic Maass forms

6.2. Canonical Weierstrass harmonic Maass forms

In this section we show that there are canonical preimages of weight 2 newforms GE for
the group Γ0(NE) related to an elliptic curve E over Q of conductor NE. This is joint work
with Michael Griffin, Ken Ono, and Larry Rolen [AGOR] and is based on an idea of Pavel
Guerzhoy [Gue13, Gue]. Note that the results in this section were worked out by Michael
Griffin, Ken Ono, and Larry Rolen.

We write GE =
∑∞

n=1 aE(n)qn for the Fourier expansion of GE and define the Eichler
integral EE(z) of GE by

EE(z) := −2πi

∫ i∞

z

GE(τ)dτ =
∞∑
n=1

aE(n)

n
· qn. (6.2.1)

Recall the Weierstrass ζ-function defined in (6.1.1)

ζ(ΛE; z) :=
1

z
+

∑
w∈ΛE\{0}

(
1

z − w
+

1

w
+

z

w2

)
=

1

z
−
∞∑
k=1

G2k+2(ΛE)z2k+1.

It is not lattice invariant, but Eisenstein [Wei76] observed that a suitable modification is.
Namely, he considered

ζ∗(ΛE; z) = ζ(ΛE; z)− S(ΛE)z − π

a(ΛE)
z, (6.2.2)

where

S(ΛE) := lim
s→0+

∑
w∈ΛE\{0}

1

w2|w|2s
(6.2.3)

and a(ΛE) is the area of the fundamental parallelogram for ΛE. For a new and short proof
of the lattice invariance of ζ∗ by Zagier see the first chapter of the (not yet finished) book
by Bringmann, Folsom and Ono [BFO]. Zagier [Zag85] and Cremona [Cre94] showed that
we can express a(ΛE) in terms of the degree of the modular parametrization as follows

a(ΛE) =
4π2||GE||2

deg(φE)
.

Evaluating ζ∗(ΛE, z) at the Eichler integral EE(z) we obtain a modular object of weight
0. The Eichler integral is not modular, however its obstruction to modularity is easily
characterized. The map ΨE : Γ0(N)→ C given by

ΨE(γ) := EE(z)− EE(γz)

is a homomorphism of groups. Its image in C turns out to be the lattice ΛE as in Propo-
sition 6.1.1. Hence, since ζ∗(ΛE; z) is invariant on the lattice, the map ζ∗(ΛE; EE(z)) is
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modular of weight 0.
We define

W∗E(z) := ζ(ΛE; EE(z))− S(ΛE)− deg(φE)

4π||GE||2
EE(z).

We write W∗,+E (z) for the holomorphic part of W∗E(z) (which is given by ζ∗(ΛE, EE(z))).
This form satisfies the following properties.

Theorem 6.2.1. Assume the notation and hypotheses above. The following are true:

(1) The poles of the holomorphic part of W∗,+E (z) are precisely those points z for which
EE(z) ∈ ΛE.

(2) If the holomorphic part of W∗E(z) has poles in H, then there is a canonical modu-
lar function ME(z) on Γ0(NE) with algebraic coefficients for which W∗,+E (z) −ME(z) is
holomorphic on H.

(3) We have that W∗E(z)−ME(z) is a weight 0 harmonic Maass form on Γ0(NE).

Definition 6.2.2. Assuming the notation above we define a Weierstrass harmonic Maass
form for the cusp form GE by

WE(z) :=W∗E(z)−ME(z) =W+
E (z) +W−E (z), (6.2.4)

where

W+
E (z) = ζ(ΛE; EE(z))− S(ΛE)EE(z)−ME(z), (6.2.5)

W−E (z) = − deg(φE)

4π||GE||2
EE(z). (6.2.6)

Remark 6.2.3. Note that the choice we make for WE(z) is not unique. Note also, that
every such WE(z) satisfies

ξ0(WE(z)) =
1

degφE

GE

||GE||2
.

Remark 6.2.4. In [AGOR] we referred to the holomorphic part of W∗E(z) as the Weier-
strass mock modular form for E. It is a simple task to compute this form. Using the
two Eisenstein numbers G4(ΛE) and G6(ΛE), one then computes the remaining Eisenstein
numbers using the recursion

G2n(ΛE) :=
n−2∑
j=2

3(2j − 1)(2n− 2j − 1)

(2n+ 1)(2n− 1)(n− 3)
·G2j(ΛE)G2n−2j(ΛE).

Armed with the Fourier expansion of GE(z) and S(ΛE), one then simply computes the
functions in (6.2.1) and (6.2.5).

Proof. First note that we already proved the modularity (of weight 0) for W∗E(z).
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Part (1) of Theorem 6.2.1 follows by noting that ζ∗(ΛE, z) diverges precisely for z ∈ ΛE.
This divergence must result from a pole in the holomorphic part, i.e. in ζ(ΛE, z)−S(ΛE)z.

In order to establish part (2), we consider the modular function ℘(ΛE; EE(z)). We observe
that ℘(ΛE; EE(z)) is meromorphic with poles precisely for those z such that EE(z) ∈ ΛE.
We claim that ℘(ΛE; EE(z)) may be decomposed into modular functions with algebraic
coefficients, each with only a simple pole at one such z and possibly at cusps. This
follows from a careful inspection of the standard proof that M !

0(N) = C (j(z), j(Nz)).
For example, following the proof of Theorem 11.9 in [Cox11], one obtains an expression
for the given modular function in terms of a function G(z) and a modular function with
rational coefficients. The function G(z) clearly lies in Q (j(z), j(Nz)) whenever we start
with a modular function with algebraic coefficients at all cusps, from which the claim
follows easily.

These simple modular functions may then be combined appropriately to construct the
function ME(z) to cancel the poles of W+

E (z), and the remainder of the proof of (3) then
follows from straightforward calculations.

We also state the Fourier expansion ofW∗E(z) at cusps. Let NE be square-free and recall
that the Atkin-Lehner involutions act transitively on the cusps of X0(NE). By Atkin-
Lehner Theory, there is a λQ ∈ {±1} for which GE|2WNE

Q = λQGE.

Theorem 6.2.5 (Theorem 1.2 in [AGOR]). If Q is an exact divisor of NE, then

(W∗E|0W
NE
Q )(z) =W∗,+E (λQ(EE(z)− ΩQ(GE)))− deg(φE)

4π||GE||2
· λQ(EE(z)− ΩQ(GE)),

where we have

ΩQ(GE) := −2πi

∫ i∞

(W
NE
Q )−1i∞

GE(z)dz.

Remark 6.2.6. In particular, we have ΩQ(GE) = L(GE, 1). By the modular parametriza-
tion, we have that ℘(ΛE; EE(z)) is a modular function on Γ0(NE). We then have for each
Q|NE that ΩQ(GE) ∈ rΛE, where r is a rational number. This can be seen by consid-
ering the constant term of ℘(ΛE; EE(z)) at cusps. The constant term of ℘(ΛE; EE(z)) is
℘(ΛE; ΩQ(GE)). More generally, if NE is square-free, then ΩQ(GE) maps to a rational
torsion point of E.

Remark 6.2.7. The expansion of W∗E(z) at cusps can be explicitly computed using the
addition law for the Weierstrass ζ-function

ζ(ΛE; z1 + z2) = ζ(ΛE; z1) + ζ(ΛE; z2) +
1

2

℘′(ΛE; z1)− ℘′(ΛE; z2)

℘(ΛE; z1)− ℘(ΛE; z2)
.

Remark 6.2.8. The function W∗E(z) admits special p-adic properties under the action of
the Hecke algebra that were also investigated in [AGOR, Theorem 1.3]. Namely, we have:
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If p - NE is ordinary, then there is a constant SE(p) for which

lim
n→+∞

[
q d
dq
ζ(ΛE; EE(z))

]
|T (pn)

aE(pn)
= SE(p)GE(z).

6.3. Lifts of Weierstrass harmonic Maass forms and
Hasse-Weil zeta functions

In this section we study the connection between the vanishing of the central twisted L-
values and L-derivatives of elliptic curves and the Fourier coefficients of the associated
harmonic Maass form of weight 1/2.

Let E be an elliptic curve over Q of conductor NE and GE ∈ Snew
2 (NE) the newform

corresponding to E as described in Theorem 6.1.2.
Recall the Weierstrass harmonic Maass form

WE(z) = ζ(ΛE; EE(z))− S(ΛE)EE(z)−ME(z)− deg(φE)

4π||GE||2
EE(z).

We assume that the principal parts of WE at all cusps other than ∞ vanish. This can
be obtained by choosing a suitable function ME(z) in Theorem 6.2.1. In particular, this
choice of WE implies that the constant coefficients of WE vanish at all cusps of Γ0(N).
Moreover, we normalize WE such that it maps to GE/||GE||2 under ξ0. By slight abuse of
notation we denote this form by WE(z) again.

Let ∆ 6= 1 be a fundamental discriminant and r ∈ Z such that ∆ ≡ r2 (mod 4NE). By
fE = fE,∆,r = IBF

∆,r(τ,WE(z)) we denote the twisted Bruinier-Funke theta lift of WE(z) as
in Section 4.1. We then have the following Hecke-equivariant diagram by Theorem 4.2.7

WE

IBF

��

ξ0 //GE

Shintani
��

fE
ξ1/2 //RgE,

where gE is the newform that maps to GE under the Shimura correspondence.
In this section we prove the following theorem.

Theorem 6.3.1. Assume that E/Q is an elliptic curve of square-free conductor NE, and
suppose that GE|2WNE = εGE. Denote the coefficients of fE(τ) by c±E(n, h). Then the
following are true:

(i) If d 6= 1 is a fundamental discriminant and r′ ∈ Z such that d ≡ sgn(∆)Q(r′)(Z),
and εd < 0, then

L(Ed, 1) = 8π2||GE||2||gE||2
√
|d|
NE

· c−E(εd, r′)2.
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(ii) If d 6= 1 is a fundamental discriminant and r′ ∈ Z such that d ≡ sgn(∆)Q(r′)(Z) and
εd > 0, then

L′(Ed, 1) = 0 ⇐⇒ c+
E(εd, r′) ∈ Q ⇐⇒ c+

E(εd, r′) ∈ Q.

Remark 6.3.2. This theorem can be seen as a more intrinsic version of Bruinier’s and
Ono’s main theorem in [BO10]. Note that our method of proof (for part (ii)) is independent
of the results of Bruinier and Ono. The proof also differs from the one given in [AGOR].
There, we showed that we can construct a harmonic Maass form corresponding to an elliptic
curve that satisfies the hypotheses in Bruinier’s and Ono’s theorem.

The first part of Theorem 6.3.1 follows from the inspection of the Fourier expansion of
ξ1/2(fE) and Kohnen’s theory of half-integral weight newforms (see Corollary 1 on page
242 of [Koh85]).

The second part is harder to prove. We will use the fact that the coefficients of fE
are given as twisted traces of CM values of WE, i.e. the evaluation WE[Z] of WE at a
certain twisted Heegner divisor Z (depending on ∆ and d). We relate this quantity to
the coefficients of a certain differential of the third kind associated to Z. Using results
of Scholl on the algebraicity of such differentials and introducing the action of the Hecke
algebra we find that WE[Z] is algebraic if and only if the image of the projection of Z
to the G-isotypical component vanishes in the Jacobian. The Gross–Zagier Theorem then
establishes the connection to the vanishing of the twisted L-derivative.

In the last part of the section we indicate implications for the algebraicity of periods of
differentials of the first and second kind.

Remark 6.3.3. Note that we can also prove an analogue of part (ii) of Theorem 6.3.1
using the Kudla-Millson lift ofWE and Theorem 3.3.1. Our proof only exploits the relation
between the algebraicity of the evaluation of WE at the Heegner divisor and the vanishing
of the projection to the GE-isotypical component of this Heegner divisor in the Jacobian.

The similarity of the arithmetic information that the coefficients of IKM(τ,WE) and
IBF(τ,WE) encode is also explained by the duality results in Section 5.

6.3.1. A relation between differentials of the first, second and third
kind

In this section we derive a relation between differentials of the first, second and third kind
defined on a compact Riemann surface X. We then specialize this result to the compactified
modular curve X0(N).

We let X be a compact Riemann surface. Moreover, let D =
∑
ciPi be a degree 0 divisor

on X. Let ηD be the canonical differential of the third kind with residue divisor D. From
now on, we relax the condition on the integrality of the residues of ηD. We write ∂hD = ηD
for a harmonic function hD as in Proposition 6.1.10 and Remark 6.1.11.

Let x0 ∈ X be a point on X that is not contained in D. We choose a differential of
the first kind ω and a differential of the second kind φ that only has poles at x0 such that
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there is a function Fx0 ∈ C∞(X) that satisfies dFx0 = φ − ω (see [Can14] for a rigorous
approach to this construction).

We write Fx0 [D] for
∑n

i=1 ciFx0(Pi).

Theorem 6.3.4. Assume the notation above. Then we have

Fx0 [D] = − 1

πi
lim
ε→0

∫
∂Bε(x0)

Fx0ηD.

Proof. We consider the pairing of Fx0 and ηD defined by

[Fx0 , ηD] :=

∫
X

(∂Fx0) · ηD.

Let ε > 0. We can write

[Fx0 , ηD] = lim
ε→0

∫
X′ε

(∂Fx0)(∂hD),

with hD as in Proposition 6.1.10 and X ′ε = X \ (Bε(x0) ∪
⋃n
i=1Bε(Pi)). We have that

d((∂Fx0) · hD) = (∂Fx0)(∂hD) and d(Fx0(∂hD)) = (∂Fx0)(∂hD).

Therefore, Stoke’s Theorem implies that

[Fx0 , ηD] = lim
ε→0

∫
∂X′ε

(∂Fx0) · hD (6.3.1)

and, at the same time,

[Fx0 , ηD] = lim
ε→0

∫
∂X′ε

Fx0(∂hD). (6.3.2)

We first show that the integral in (6.3.1) vanishes. We compute the integrals

lim
ε→0

∫
∂Bε(Pi)

(∂Fx0)hD (6.3.3)

and

lim
ε→0

∫
∂Bε(x0)

(∂Fx0)hD (6.3.4)

separately. By Remark 6.1.11 we can write hD(z) = ci log |z − Pi| + H(z) for a smooth
function H near Pi. We obtain that the integral in (6.3.3) is equal to

lim
ε→0

∫
∂Bε(Pi)

(∂Fx0)(ci log |z − Pi|+H(z)).

Note that both, log |z−Pi|(∂Fx0) and H(z)(∂Fx0) are continuously differentiable and thus
bounded on ∂Bε(Pi). Therefore, the integral vanishes as ε approaches 0.
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We have ∂Fx0 = −ω, with ω a holomorphic 1-form. Therefore, ∂Fx0 does not have
a pole in x0. Neither has GD, so the integral in (6.3.4) vanishes. Thus, the integral in
Equation (6.3.1) is equal to 0.

We now turn to the evaluation of the integral in (6.3.2). Note that

lim
ε→0

∫
∂X′ε

Fx0(∂hD) = − lim
ε→0

∫
∂Bε(x0)

Fx0(∂hD)−
n∑
i=1

lim
ε→0

∫
∂Bε(Pi)

Fx0(∂hD). (6.3.5)

We consider

lim
ε→0

∫
∂Bε(Pi)

Fx0∂hD = lim
ε→0

∫
∂Bε(Pi)

Fx0∂ (ci log |z − Pi|+H(z)) .

Let U be a neighborhood of 0 in C and consider a chart

U
φ−→ X

0 7→ Pi.

Then we have

∂φ∗(hD) = φ∗(∂hD) =
ci
2

dz

z
+ ∂H(z),

Therefore, ∫
∂Bε(Pi)

Fx0∂ (ci log |z − Pi|+H(z))

=

∫
∂Bε(0)

φ∗(Fx0)φ∗(∂ (ci log |z − Pi|) +

∫
∂Bε(0)

φ∗(Fx0H(z)).

The second integral again vanishes by similar arguments as before. For the first integral
we find

ci
2

∫
∂Bε(0)

φ∗(Fx0)
1

z
dz. (6.3.6)

Changing to polar coordinates we have that (6.3.6) equals

ci
2
i

∫ 2π

0

φ∗(Fx0(εeiθ))dθ.

Thus, the integral is independent of ε and as ε→ 0 we have

lim
ε→0

∫
∂Bε(Pi)

Fx0∂hD = πiciFx0(Pi).
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Summarizing, we find that

0 = −πiciFx0(Pi)− lim
ε→0

∫
∂Bε(x0)

Fx0∂hD.

We now specify Theorem 6.3.4 to the situation when X = X0(N) is the compactified
modular curve and F ∈ H+

0 (N) is a harmonic Maass form of weight 0 for Γ0(N) whose prin-
cipal parts at all cusps other than ∞ are constant. By Lemma 2.3.14 and Theorem 2.3.13
dF is equal to the sum of a differential of the second kind whose poles are only supported
at ∞ and the complex conjugate of a differential of the first kind. We write

F (z) =
∑

n�−∞

a+
F (n)qn +

∑
n<0

a−F (n)e2πinz̄.

for the Fourier expansion of F .

We let D be a degree 0 divisor on X0(N) that is coprime to the cusps of X0(N). We
let ηD be the associated canonical differential of the third kind with residue divisor D. We
write ηD = 2πi

∑∞
n=1 d(n)qndz with a meromorphic modular form

∑∞
n=1 d(n)qn of weight

2 as in Equation (6.1.5).

Corollary 6.3.5. Assume the notation above. We have

F [D] = −2
∑
n≥1

a+
F (−n)d(n).

Proof. By Theorem 6.3.4 we only have to evaluate the integral over FηD in a neighborhood
of ∞, which is equal to

− 1

πi
lim
t→∞

∫ x=1

x=0

F (x+ it)ηD(x+ it)dx.

We plug in the Fourier expansions of F and ηD. The integral over F+ηD picks out the
constant coefficient, that is

−2
∑
n≥1

a+
F (−n)d(n).

For the integral over F−ηD we obtain similarly

−2
∑
n≥1

e−4πnta−F (−n)d(n),

which vanishes as t→∞.
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6.3.2. Hecke eigenspaces and the restriction to isotypical components

We now describe a refined version of Corollary 6.3.5 that can be obtained by considering
the action of the Hecke algebra on X0(N).

Recall that the compactified modular curve X0(N) is defined over Q. We let J be the
Jacobian of X0(N) and write J(k) for its points over a number field k. Then, J(k) is a
finitely generated abelian group. By Abel’s Theorem the Jacobian can be described as the
quotient of the group Div(X0(N), k)0 of degree 0 divisors on X0(N) which are rational over
k modulo the subgroup of principal divisors div(f) for f ∈ k(X)×.

Let K ⊂ C be a subfield of C and write k ·K for the compositum of k and K (where
we fix an embedding of k ↪→ C such that k · K ∈ C). We let J(k)K = J(k) ⊗Z K and
Div(X0(N), k)0

K = Div(X0(N), k)0 ⊗Z K.
Following Bruinier [Bru13] we denote by D(X0(N), k)K the group of meromorphic dif-

ferentials on X0(N) defined over k ·K whose poles are all of first order and whose residue
divisor belongs to Div(X0(N), k)0

K . Let P(X0(N), k)K be the subgroup of differentials
which are finite K-linear combinations of differentials of the form df

f
with f ∈ k(X)×.

Then we define
CL(X0(N), k)K = D(X0(N), k)K/P(X0(N), k)K .

Note that the Hecke algebra T of Γ0(N) acts on X0(N) by correspondences which are
defined over Q. This induces compatible actions on CL(X0(N), k), J(k) and the space of
holomorphic differentials whose Fourier expansions are defined over k.

Let G ∈ Snew
2 (N) be a newform of weight 2 for Γ0(N). Then G is a normalized eigenform

for all Hecke operators. We write K = KG for the number field generated by the Hecke
eigenvalues of G. By Proposition 2.2 of [Bru13] the G-isotypical component of J(k)C
corresponding to G is defined over K.

Moreover, if D ∈ Div(X0(N), k)0
K is a divisor in the G-isotypical component, there is a

canonical differential of the third kind ηD ∈ D(X0(N), k)K with residue divisor D whose
class belongs to the G-isotypical component of CL(X0(N), k)K [Bru13, Proposition 2.2].
We let L = k ·K.

Lemma 6.3.6. Let G ∈ Snew
2 (N) be a newform of weight 2 for Γ0(N) and D be a divisor in

the G-isotypical component of Div(X0(N), k)0
K. We assume that the divisor D is coprime

to ∞. Let ηD ∈ D(X0(N), k)K be the canonical differential of the third kind with residue
divisor D whose class belongs to the G-isotypical component of CL(X0(N), k)K. Denote
the n-th Fourier coefficient of ηD by d(n). Then we have

d(n) = λnd(1) + an,

where λn is the eigenvalue of T (n) corresponding to G and ai ∈ L.

Proof. Let T (n) be a Hecke operator and write λn for the eigenvalue of G under the action
of T (n). Since the class of ηD be belongs to the G-isotypical component we find that

T (n)ηD − λnηD ∈ P(X0(N), k)K .
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Note that we can identify the differential in P(X0(N), k)K with a meromorphic differential
whose Fourier coefficients are contained in L. Analyzing the action of the Hecke operator
on the first Fourier coefficient of ηD, we find that

d(n)− λnd(1) = an,

with an ∈ L.

Lemma 6.3.7. Let the hypothesis be as in Lemma 6.3.6. Then the following are equivalent:

(i) The first Fourier coefficient d(1) of ηD is contained in L.

(ii) Some non-zero multiple of D is the divisor of a rational function.

Proof. If some non-zero multiple of D is the divisor of a rational function Corollary 6.1.15
implies that all the Fourier coefficients of ηD are contained in L. In particular, d(1) is
contained in L.

Now let d(1) ∈ L. We can apply the same strategy as Bruinier and Ono in the proof
of Theorem 7.6 in [BO10]: Assume that D is not a principal divisor. By Corollary 6.1.15
there is a positive integer n such that d(n) is transcendental. Let n0 be the smallest of
these integers. We have to show that n0 = 1.

Assume that n0 6= 1 and p is a prime dividing n0. By λp we denote the eigenvalue of
the Hecke operator T (p) corresponding to G. Then Lemma 6.3.6 implies that there is an
an0 ∈ L such that

d(n0) = λpd

(
n0

p

)
− pd

(
n0

p2

)
+ an0 ,

with an0 ∈ L. Since n0/p, n0/p
2 ≤ n0, and n0 was the smallest integer with the property

that d(n0) is transcendental, d(n0) is a linear combination of algebraic numbers, contra-
dicting our assumption.

We let H+,∞
0 (N)K be the space of harmonic Maass forms of weight 0 for Γ0(N) whose

principal parts at all cusps other than ∞ vanish and whose coefficients of the principal
part at ∞ are in K.

Recall that the pairing of F with a cusp form G as in Section 2.3.2 equals (in particular
see the formula for the pairing in Equation (2.3.9))

{G,F} =
∑
n≥1

a+
F (n)aG(n),

where we denote the n-th Fourier coefficient of G by aG(n).

Theorem 6.3.8. Let G ∈ Snew
2 (N) be a newform of weight 2 for Γ0(N) and D be a divisor

in the G-isotypical component of Div(X0(N), k)0
K. We assume that the divisor D is coprime

to ∞. Let F ∈ H+,∞
0 (N)K be a harmonic Maass form such that {G,F} = 1. Then the

following are equivalent:
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(i) F [D] is contained in L.

(ii) Some non-zero multiple of D is the divisor of a rational function.

Proof. Let ηD ∈ D(X0(N), k)K be the canonical differential of the third kind with residue
divisor D whose class belongs to the G-isotypical component of CL(X0(N), k)K .

If some non-zero multiple of D is the divisor of a rational function Theorem 6.1.14 implies
that ηD is defined over L and by Corollary 6.1.15 the Fourier coefficients d(n) of ηD are
contained in L for all n. Recall that the coefficients of the principal part of F are contained
in K. Together with Corollary 6.3.5 it follows that F [D] is contained in L.

If F [D] is contained in L, then by Corollary 6.3.5 we also have
∑

n≥1 a
+
F (−n)d(n) ∈ L.

Let T (n) be a Hecke operator in T. We write λn for the eigenvalue of T (n) corresponding
to G. Since the class of ηD belongs to the G-isotypical component Lemma 6.3.6 implies
that

d(n)− λnd(1) = an,

with an ∈ L. Therefore (we omit −2 since this is not important for the algebraicity results
we are looking for),

F [D] =
∑
n≥1

a+
F (−n)d(n)

= d(1)
∑
n≥1

a+
F (−n)aG(n) +

∑
n≥1

ana
+
F (−n),

since λn = aG(n). Using that {G,F} = 1 we find

d(1)
∑
n≥1

a+
F (−n)aG(n) +

∑
n≥1

ana
+
F (−n) = d(1) +

∑
n≥1

ana
+
F (−n).

By assumption we have that F [D] and
∑

n≥1 ana
+
F (−n) are in L, thus d(1) ∈ L.

Lemma 6.3.7 now implies the statement in the theorem.

Now we let Z̃∆,r(m,h) = Z+
∆,r(m,h)−Z−∆,r(m,h) be the twisted Heegner divisor defined

in Section 2.7. Here, ∆ 6= 1 is a fundamental discriminant and r ∈ Z is such that r2 ≡ ∆
(mod 4N). Moreover, h ∈ L′/L and m ∈ Q>0 with m ≡ sgn(∆)Q(h) (Z). Recall that the

divisor Z̃∆,r(m,h) is defined over Q(
√

∆,
√
m).

Corollary 6.3.9. Let G ∈ Snew
2 (N) such that K = Q and let G = G1, G2, . . . , Gn be a

basis of simultaneous eigenforms for S2(N). We let F ∈ H+,∞
0 (N)Q with the property that

ξ0(F ) = G/||G||2.
Then the following are equivalent:

(i)

F
[
Z̃∆,r(m,h)

]
=

∑
z∈Z̃∆,r(m,h)

F (z) ∈ Q(
√

∆,
√
m).
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(ii) √
∆√
m
F
[
Z̃∆,r(m,h)

]
∈ Q.

(iii) The projection Z̃G
∆,r(m,h) of the divisor Z̃∆,r(m,h) to the G-isotypical component of

Div(X0(N),Q(
√

∆,
√
m))0

Q is a non-zero multiple of the divisor of a rational function.

Proof. We first show that (i) implies (iii). Let F [Z̃∆,r(m,h)] ∈ Q(
√

∆,
√
m). By The-

orem 6.3.8 some non-zero multiple of Z̃∆,r(m,h) is a principal divisor. Since the group
of degree 0 divisors Div(X0(N),Q(

√
∆,
√
m))0

Q decomposes into G-isotypical components

corresponding to the basis G1, G2, . . . , Gn, it follows that a non-zero multiple of Z̃G
∆,r(m,h)

is a principal divisor.
Now we show that (iii) implies (i). Recall that ξ0(F ) = G/||G||2 for a newform G implies

that {G,F} = 1 and {G′, F} = 0 for all G′ orthogonal to G (see Lemma 2.3.29). Assume

that the projection of Z̃∆,r(m,h) to the G-isotypical component is a non-zero multiple of
the divisor of a rational function. We write

Z̃∆,r(m,h) =
n∑
i=1

Z̃Gi
∆,r(m,h).

By Theorem 6.3.8 F [Z̃G
∆,r(m,h)] is contained in Q(

√
∆,
√
m).

We now compute F [Z̃Gi
∆,r(m,h)] for i 6= 1. By Corollary 6.3.5 we have (again omitting

the factor −2)

F [Z̃Gi
∆,r(m,h)] =

∑
n≥2

a+
F (−n)di(n),

where di(n) is the coefficient of the corresponding differential of the third kind whose
class is in the Gi-isotypical component of CL(X0(N),Q(

√
∆,
√
m))Q. Let T (n) be a Hecke

operator and λn,i be the eigenvalue of T (n) corresponding to Gi. By Lemma 6.3.6 we have

di(n)− λn,idi(1) = an,i,

with an,i ∈ Q(
√

∆,
√
m). Therefore, we find that

F [Z̃Gi
∆,r(m,h)] =

∑
n≥2

a+
F (−n)di(n)

=
∑
n≥2

a+
F (−n)λn,i +

∑
n≥2

a+
F (−n)an,i

=
∑
n≥2

a+
F (−n)aGi(n) +

∑
n≥2

a+
F (−n)an,i.

since {Gi, F} = 0, we have
∑

n≥2 a
+
F (−n)aGi(n) = 0. The quantity

∑
n≥2 a

+
F (−n)an,i is

contained in Q(
√

∆,
√
m) since F ∈ H+,∞

0 (N)Q.
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Obviously, (ii) implies (i). Assume that F [Z̃∆,r(m,h)] ∈ Q(
√

∆,
√
m). Then, we also

have
√

∆
√
mF [Z̃∆,r(m,h)] ∈ Q(

√
∆,
√
m).

By Lemma 5.1 of [BO10] we have for the non-trivial automorphism σ of Q(
√

∆)/Q (and

similarly Q(
√
m)/Q) that σ(Z̃∆,r(m,h)) = −Z̃∆,r(m,h). Therefore,

σ
(
F
[
Z̃∆,r(m,h)

])
= −F

[
Z̃∆,r(m,h)

]
which then implies the desired result.

Proof of part (ii) of Theorem 6.3.1. Assume that E/Q is an elliptic curve over Q of con-
ductor NE, and suppose that GE|2WNE = εGE. Then the Hecke L-series of GE satisfies
a functional equation under s 7→ 2 − s with root number εG = −ε. Note that for a fun-
damental discriminant D that is equal to a square modulo 4NE the sign of the functional
equation of L(G,D, s) is sgn(D)εG.

Recall that ∆ 6= 1 is a fundamental discriminant and r ∈ Z such that r2 ≡ ∆
(mod 4N). Moreover, we let d 6= 1 be a fundamental discriminant and r′ ∈ Z such
that d ≡ sgn(∆)Q(r′)(Z).

We first consider the case that dεG < 0 (that is dε > 0). Then the L-series L(G, d, 1)
vanishes.

Recall that

WE(z) = ζ(ΛE; EE(z))− S(ΛE)EE(z)−ME(z)− deg(φE)

4π||GE||2
EE(z),

where ME was chosen such that the principal parts of WE vanish at all cusps other than
∞. Moreover, WE(z) was normalized such that ξ0 (WE(z)) = GE/||GE||2. The coefficients
of the principal part of WE(z) at ∞ are contained in Q by construction. Note that the
freedom in the choice of ME does not influence our results.

For the (εd, r)-th coefficient of fE = fE,∆,r = IBF
∆,r(τ,WE(z)) we find

cE(εd, r) =

√
|∆|

2
√
|d|

(
t+

∆,r(WE(z); εd, r′)− t−∆,r(WE(z); εd, r′)
)

=

√
|∆|

2
√
|d|
WE(z)[Z̃∆,r(εd, r

′)].

By Corollary 6.3.9 the coefficient cE(εd, r) is rational if and only if the projection of

Z̃∆,r(d, r
′) to the GE-isotypical component of Div(X0(N),Q(

√
∆,
√
d))0

Q is a non-zero mul-
tiple of the divisor of a rational function.

By the Gross–Zagier formula (see Theorem 6.3 of [GZ86]) the Néron-Tate height on

J(H) of Z̃GE
∆,r(d, r

′) is given by

〈Z̃GE
∆,r(d, r

′), Z̃GE
∆,r(d, r

′)〉 =
hKu

2

8π2||GE||2
√
|d∆|L(GE,∆, 1) · L′(GE, d, 1), (6.3.7)
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where H is the Hilbert class field of K = Q(
√
d∆), and 2u is the number of roots of unity

in K and hK denotes the class number of K.
Consequently, the class of the divisor Z̃GE

∆,r(d, r
′) vanishes in the Jacobian if and only if we

have L(GE,∆, 1) = 0 or L′(G, d, 1) = 0. By Proposition 4.2.8 the vanishing of L(GE,∆, 1)
is equivalent to WE(z) being weakly holomorphic, which is obviously not the case. This
completes the proof of Theorem 6.3.1.

Remark 6.3.10. Note that the same method of proof works using the Kudla-Millson lift
of WE. Moreover, the proof can be generalized to harmonic Maass forms F ∈ H+,∞

0 (N)
mapping to a newform G ∈ Snew

2 (N) in the straightforward way.

6.3.3. Periods of differentials of the first and second kind

In this section we explain how the results of the previous section imply conditions on the
transcendence of periods of differentials of the first and second kind.

Recall that we have for a C∞-function F by Lemma 2.3.14

dF = − 1

2i
ξ0(F )dz̄ + 2πiD(F )dz.

Then ξ0(F )dz ∈ S2(N) is a differential of the first kind and D(F )dz ∈ M !
2(N) is a differ-

ential of the second kind (see (6.1.3) and (6.1.4)). We then have

F (z) =

(
− 1

2i

∫ z

p

ξ0(F )dz̄ + 2πi

∫ z

p

D(F )dz

)
,

for an arbitrary basepoint p.
Using the results in the previous section we directly obtain the following corollary.

Corollary 6.3.11. Assume the notation of part (ii) of Theorem 6.3.1. Then the following
are equivalent:

(i) Some non-zero multiple of Z̃GE
∆,r(d, r

′) is the divisor of a rational function.

(ii) The sum of periods of differentials of the first and second kind∑
z∆,r∈Z̃∆,r(d,r′)

(
− 1

2i

∫ z∆,r

p

ξ0(WE)dz̄ + 2πi

∫ z∆,r

p

D(WE)dz

)

is rational.

Remark 6.3.12. For the Weierstrass harmonic Maass form WE as in Theorem 6.3.1 we
find that

− 1

2i

∫ z∆,r

p

ξ0(WE)dz̄ = − 1

2i||GE||2

∫ z∆,r

p

GE(z)dz̄
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and

2πi

∫ z∆,r

p

D(WE)dz = −2πi

∫ z∆,r

p

(℘(ΛE, EE(z))GE(z) + S(ΛE)GE(z) +D(ME(z))) dz.

Note that the differentials of the first and second kind we obtain above correspond to the
differentials of the first and second kind on the elliptic curve E as in Example 6.1.16.

Remark 6.3.13. It would be interesting to relate these results to an expression Bruinier
[Bru13] obtained for the coefficients c+

E(dε, r) in terms of periods of a certain differential of
the third kind associated with the Heegner divisor Z∆,r(fE).

6.4. An example - the elliptic curve 37a1

We consider the elliptic curve 37a given by the equation

E : y2 = 4x3 − 4x+ 1.

The sign of the functional equation is −1 and E(Q) has rank 1.
The q-expansion of GE ∈ Snew

2 (37) is given by

GE(z) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 + · · · ∈ Snew
2 (Γ0(37)) .

Using Remark 6.2.4 and Sage [S+14] we find

W+
E (z) = q−1 + 1 + 2.1132...q+ 2.3867...q2 + 4.2201...q3 + 5.5566...q4 + 8.3547...q5 +O(q6).

It turns out that
fE(z) = IBF

−3 (τ,W(z))

corresponds to the Poincaré series P−3 with principal part q−3/148(e21 + e−21) (where we
normalized the lift by dividing by

√
3).

Using Sage [S+14] Bruinier and Strömberg [BS12] computed the coefficients c+
P−3

(d) for
fundamental discriminants d ≤ 15000 of P−3 and compared them with the corresponding
values of L′(GE,∆, 1) = L′(E∆, 1).

Stephan Ehlen numerically confirmed that

c+
E(d) =

1

2
√
d

(
t+
−3(WE(z); d)− t−−3(WE(z); d)

)
using Sage [S+14].

Note that in the case d = 1 one has to pay attention to a contribution to the trace
coming from the constant term of WE. Also note that the

√
3 does not appear in the

denominator, since we normalized fE to have principal part in Q. The following table
illustrates Theorem 6.3.1. It was computed by Strömberg.
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d c+
E(d) L′(Ed, 1) rank(Ed(Q))

1 −0.2817617849 . . . 0.3059997738 . . . 1
12 −0.4885272382 . . . 4.2986147986 . . . 1
21 −0.1727392572 . . . 9.0023868003 . . . 1
28 −0.6781939953 . . . 4.3272602496 . . . 1
33 0.5663023201 . . . 3.6219567911 . . . 1

...
...

...
...

1489 9 0 3
...

...
...

...
4393 66 0 3

Remark 6.4.1. In general, the task of computing the weight 1/2 harmonic Maass forms
appearing in the main theorem of Bruinier and Ono [BO10, Theorem 7.8] has been non-
trivial. Natural difficulties arise (see [BS12]). These weight 1/2 forms are preimages under
ξ1/2 of certain weight 3/2 cusp forms, and as mentioned earlier, there are infinitely many
such preimages.

Using the methods of this thesis gives an alternative approach for the computation of
the holomorphic part of a canonical harmonic Maass form.
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7.1. Powers of the Dedekind η-function

In the spirit of Bruinier and Ono who proved algebraic formulas for the coefficients of the
inverse of the Dedekind η-function in terms of traces of a certain Poincaré series using the
Kudla-Millson lift in [BO13], we consider η(τ)−25 here.

We let χ12 be the Kronecker character
(

12
·

)
and define

G25(τ) :=
∑

r∈Z/12Z

χ12(r)η(τ)−25er.

Using the transformation properties of the Dedekind η-function one easily sees that G25 is
a weakly holomorphic modular form of weight −25/2 for the representation ρ. We prove a
formula for the coefficients of G25(τ) in terms of traces of weight −26 Poincaré series using
Theorem 3.3.1.

We define

F = −F5(·, 14,−26) + F5(·, 14,−26)|W 6
2

+ F5(·, 14,−26)|W 6
3 − F5(·, 14,−26)|W 6

6 ,

and

F̃ = (25 + 513)
(
F1(·, 14,−26)− F1(·, 14,−26)|W 6

2

−F1(·, 14,−26)|W 6
3 + F1(·, 14,−26)|W 6

6

)
,

where the Poincaré series F1 and F5 are defined as in (2.5.1).

Corollary 7.1.1. For n > 0 the coefficient of index
(

24n−1
24

, 1
)

of G25, and therefore the
24n−1

24
-th coefficient of η(τ)−25, is given by

− 185725

4429185024π13

(
1

24n− 1

)7

×
(

t

(
F ;

24n− 1

24
, 1

)
+ t

(
F̃ ;

24n− 1

24
, 1

))
.

Remark 7.1.2. This corollary can be rephrased in terms of traces of CM points associated
to quadratic forms instead of lattice elements. See the example on p. 4 of [Alf14].
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Proof. The principal part of G25(τ) is equal to (q−25/24 + 25q−1/24)(e1 − e5 − e7 + e11).

For the lift 1
CoIKM(τ, F ) of the Poincaré series F we obtain (where Co is as in Theo-

rem 3.2.4)

−
∑
n|5

n13F 25
24n2 ,

5
n

(
τ,

29

4
,−25

2

)
+
∑
n|5

n13F 25
24n2 ,

5
n

(
τ,

29

4
,−25

2

)
|W 6

2

+
∑
n|5

n13F 25
24n2 ,

5
n

(
τ,

29

4
,−25

2

)
|W 6

3 −
∑
n|5

n13F 25
24n2 ,

5
n

(
τ,

29

4
,−25

2

)
|W 6

6 .

This has principal part 2(q−25/24 − 513q−1/24)(e1 − e5 − e7 + e11).

The lift 1
CoIKM(τ, F̃ ) of F̃ is given by

(25 + 513)

(
F 1

24
,1

(
τ,

29

4
,−25

2

)
−F 1

24
,1

(
τ,

29

4
,−25

2

)
|W 6

2

−F 1
24
,1

(
τ,

29

4
,−25

2

)
|W 6

3 + F 1
24
,1

(
τ,

29

4
,−25

2

)
|W 6

6

)
.

This has principal part 2(25 + 513)q−1/24(e1 − e5 − e7 + e11). Then the sum

1

2Co

(
IKM(τ, F ) + IKM(τ, F̃ )

)
has principal part (q−25/24 + 25q−1/24)(e1 − e5 − e7 + e11). Thus,

G25(τ) =
1

2Co
(IKM(τ, F ) + IKM(τ, F̃ )),

which implies the formula in the corollary.

Remark 7.1.3. More generally, one can deduce formulas for the coefficients of η(τ)−i,
where i ≡ 1 (mod 24). Here we let

Gi(τ) :=
∑

r∈Z/12Z

χ12(r)η(τ)−ier.

Then, similarly as above, one has to construct a linear combination of twisted lifts of
Poincaré series whose lift has the same principal part as Gi(τ).

7.2. A formula for the coefficients of Ramanujan’s f (q)

In this section we present another application of Theorem 3.3.1.
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7.2. A formula for the coefficients of Ramanujan’s f(q)

We consider Ramanujan’s mock theta function

f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2 (1 + q2)2 · · · (1 + qn)2 = 1 +
∞∑
n=1

af (n)qn.

We let ∆ < 0 be a fundamental discriminant with ∆ ≡ 1 (mod 24). We define

F (z) = − 1

40

E4(z) + 4E4(2z)− 9E4(3z)− 36E4(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 4 + 83q + · · · ,

which is a weakly holomorphic modular form of weight 0 for Γ0(6).

Corollary 7.2.1. We have

af

(
|∆|+ 1

24

)
= − 1

8i
√
|∆|

(t∆,1(F ; 1, 1)− t∆,1(F ; 1, 5)

+ t∆,1(F ; 1, 7)− t∆,1(F ; 1, 11)).

Remark 7.2.2. These formulas were checked numerically by Stephan Ehlen using Sage

[S+14].

Proof. Here we employ the duality results between weight 1/2 and 3/2. Note that the
function q−1/24f(q) can be realized as the component of the holomorphic part of a vector
valued harmonic Maass form H̃ of weight 1/2 with representation ρ [BO10, Lemma 8.1].
More precisely,

H = (0, h0, h2 − h1, 0,−h1 − h2,−h0, 0, h0, h1 + h2, 0, h1 − h2,−h0)t,

where the holomorphic part of h0 is q−1/24f(q) and the holomorphic parts of h1 and h2

are given by Ramanujan’s mock theta function ω(q). The non-holomorphic parts are given
by certain unary theta series [BO10, Section 8.2]. The principal part of H is given by
q−1/24(e1 − e5 + e7 − e11).

In terms of Poincaré series we have

F (z)
.
= F1(z, 1, 0) + F1(z, 1, 0)|W 6

2 − F1(z, 1, 0)|W 6
3 − F1(z, 1, 0)|W 6

6 ,

where
.
= means up to addition of a constant.

By Theorem 3.4.1 we see that IKM
∆,1 (τ, F ) is a weakly holomorphic modular form. Note

that the non-holomorphic part vanishes since 6 is square-free and for ∆ < 0 we have
χ∆(−λ) = −χ∆(λ). To determine the principal part of IKM

∆,1 (τ, F ) we compute the lift of
the Poincaré series. Note that the lift of a constant vanishes in this case.

By Theorem 3.2.4 the function F (z) lifts to a vector valued Poincaré series having
principal part

2i |∆|1/2 q−|∆|/24(e1 − e5 + e7 − e11).

113



7. Applications and examples

Therefore, by Proposition 2.3.20 we obtain that
{
IKM

∆,1 (τ, F ), H
}

= 0, which implies

c+
H(−1, 1)t∆,1(F ; 1, 1) + c+

H(−1, 5)t∆,1(F ; 1, 5)

+ c+
H(−1, 7)t∆,1(F ; 1, 7) + c+

H(−1, 11)t∆,1(F ; 1, 11)

= −2i
√
|∆|
(
c+
H

(
|∆|
24

, 1

)
· 1 + c+

H

(
|∆|
24

, 5

)
· (−1)

+c+
H

(
|∆|
24

, 7

)
· 1 + c+

H

(
|∆|
24

, 11

)
· (−1)

)
.

Since we can identify the coefficients in the different components of H we obtain the
formula in the corollary.

Remark 7.2.3. For ∆ ≡ r2 (mod 24), where r ≡ 5, 7, 11 (mod 12), we consider

F (z) = − 1

40

E4(z)± 4E4(2z)± 9E4(3z)± 36E4(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 4 + 83q + · · ·

and have to arrange the ±’s in such a way that we obtain (up to a constant) q−|∆|/24(e1 −
e5 + e7 − e11) as the principal part of the lift.

Remark 7.2.4. A priori the lift of a constant is not a harmonic Maass form in the +-space.
Therefore, it is not possible to obtain the same results using the Bruinier-Funke lift right
away.

Remark 7.2.5. In general, given a scalar valued form one has to realize it as the component
of a vector valued harmonic weak Maass form to be able to obtain a formula as above for its
coefficients. For a detailed discussion of this problem see a preprint of Fredrik Strömberg
[Str]. If the corresponding vector valued form is known, one can construct the input
function using Poincaré series.

7.3. The example Γ0(p) of the introduction

We explain how to obtain the theorems in the introduction. Let p be a prime and let
∆ > 1 be a fundamental discriminant satisfying (∆, 2p) = 1 and let r ∈ Z with ∆ ≡ r2

(mod 4p). Moreover, let F ∈ H+
−2k(p) be a harmonic Maass form of negative weight −2k

for Γ0(p) that is invariant under the Fricke involution.
The group Γ0(p) has two cusps∞ and 0. These two cusps are interchanged by the Fricke

involution.
Via mapping

∑
h∈L′/L fh(τ)eh to

∑
h∈L′/L fh(4pτ) we obtain an isomorphism between the

spaces H+
1/2−k,ρ and H+

1/2−k(4p) and M !
3/2+k,ρ̃ and M !

3/2+k(4p) if k is odd. If k is even, we

obtain isomorphisms between H+
1/2−k,ρ̃ and H+

1/2−k(4p) and M !
3/2+k,ρ and M !

3/2+k(4p). For

M !
k/2,ρ this is Theorem 5.6 in [EZ85]; the isomorphism extends to H+

k/2,ρ.
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7.4. The lift of log(||∆||)

The assumption (∆, 2p) = 1 guarantees that we can choose r ∈ Z as a unit in Z/4pZ.
Therefore, the sum

∑
h∈L′/L IKM

∆,r,h does not depend on r. Here, we wrote IKM
∆,r,h for the h-th

component of the theta lifts.

Recall that −d is a negative fundamental discriminant such that −d and ∆ are squares
modulo 4p. By Q−d∆,p we denote the set of integral binary quadratic forms [a, b, c] =
ax2 +bxy+cy2 of discriminant −d∆ such that c ≡ 0 (mod p). We assume that (∆, 2p) = 1
if p 6= 1.

As described in Section 1.2.1 we identify lattice elements with integral binary quadratic
forms. Recall that the action of the group Γ0(p) on both spaces is compatible. Notice that
we have to consider positive and negative definite quadratic forms. For positive ∆ we have
χ∆(−Q) = χ∆(Q) which yields for m = d

4p
> 0 that

∑
h∈L′/L

∑
λ∈Γ0(p)\Lrh,|∆|m

χ∆(λ)∣∣Γλ∣∣ ∂F (Dλ) =
∑

Q∈Γ0(p)\Q−d|∆|,p

χ∆(Q)

|Γ0(p)Q|
∂F (αQ).

For the coefficients of the holomorphic part of IBF
∆,r(τ, F ) we proceed analogously, now

assuming that (d, 2p) = 1. (Moreover, we require that the constant coefficients of F vanish
at all cusps if the weight of F is zero.)

7.4. The lift of log(||∆||)

In this section we compute the lift of log(||∆||). We let

∆(z) = q
∞∏
n=1

(1− qn)24

be the Delta function. We normalize the Petersson metric of ∆ such that

||∆(z)|| = |∆(z)y6|.

Theorem 7.4.1. Let N = 1 and ∆ < 0. Then we have

− 1

12
IBF

∆,r(τ, log(|∆(z)y6|)) =
1

12
|∆|Λ(ε∆, 1) ·

(
G(τ)− 6

π
ΘK(τ)(γ − log(4π))

)
,

where G(τ) is as in Proposition A.0.5.

Remark 7.4.2. This might be interpreted as a second term identity in the sense of Kudla
and Rallis.

Remark 7.4.3. The Kudla-Millson lift of log ||∆|| was computed in [BF06] and [AE13].
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Proof. Recall that

ζ∗(2s) =
1

2

1

s− 1
2

+
1

2
(γ − log(4π)) +O(s− 1/2),

and

E0(z, s) =
1

2

1

s− 1
2

+
1

2
(γ − log(4π))− 1

12
log(|∆(z)y6|) +O(s− 1/2)

by the Kronecker limit formula.
Therefore

lim
s→ 1

2

(E0(z, s)− ζ∗(2s)) = − 1

12
log(|∆(z)y6|).

So we have

− 1

12
IBF

∆,r(τ, log(|∆(z)y6|)) = lim
s→ 1

2

(
IBF

∆,r(τ, E0(z, s))− ζ∗(2s)IBF
∆,r(τ, 1)

)
.

We let

C :=
1

12
|∆|Λ(ε∆, 1)

and obtain that

− 1

12
IBF

∆,r(τ, log(|∆(z)y6|))

= C · lim
s→ 1

2

((
ress=1/2E1/2,K(τ, s)

s− 1
2

+ CTs=1/2(E1/2,K(τ, s)) +O(s− 1

2
)

)
− 2(ress=1/2E1/2,K(τ, s))

(
1/2

s− 1
2

+
1

2
(γ − log(4π)) +O(s− 1

2
)

))
= C ·

(
CTs=1/2(E1/2,K(τ, s))− 2(ress=1/2E1/2,K(τ, s))

1

2
(γ − log(4π))

)
.

By using Proposition 4.2.9 and A.0.5 we obtain the result.
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8. Outlook

There are several open problems closely related to the results in this thesis that we did
not work out at the time finishing this thesis. In this chapter we briefly describe some of
them.

The coefficients of the non-holomorphic part of IBF
∆,r(τ, F ) It remains to compute

the coefficients of the non-holomorphic part of the Bruinier-Funke lift IBF
∆,r(τ, F ) ∈ H1/2,ρ̃ of

a harmonic Maass form F of weight 0. In view of Theorem 4.2.7 these coefficients encode
information in terms of F on the coefficients of the cusp form ξ1/2(IBF

∆,r(τ, F )) ∈ S3/2,ρ̃.
It might be possible to construct a Green current for the Millson Schwartz function

similar to the ones for the Kudla-Millson and Siegel Schwartz functions as in [KM86,
BF06, BFI13].

Relation to the Shintani lifting Another interesting question is if the Bruinier-Funke
lift is related to the Shintani lift when the weight of the input function is negative. That
is, we are looking for a relation similar to the one in Theorem 4.2.7.

Lifts of other types of automorphic forms In Theorem 4.2.10 we computed the
Bruinier-Funke lift of the non-holomorphic weight 0 Eisenstein series. It would be inter-
esting to consider the lift of other types of automorphic forms, for example log ||f || for a
meromorphic modular form f (see also the work of Funke on the Kudla-Millson lifts of
such forms [Fun07]).

Relation to a result on p-adic modular forms The alternative proof we gave for Bru-
inier’s and Ono’s main theorem (see the proof of Theorem 6.3.1) might help to understand
the relation of this theorem to its p-adic analog of Darmon–Tornaria [DT08, Theorem 1.5].
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A. The non-holomorphic Eisenstein
series of weight 1/2

Let τ ∈ H and s ∈ C with <(s) > 1. We compute the Fourier expansion of the weight 1/2
non-holomorphic Eisenstein series

P0,0(τ, s) =
1

2

∑
γ∈Γ̃∞\Mp2(Z)

[
vs−1/4e0

] ∣∣
1/2,ργ . (A.0.1)

This Eisenstein series is a special case of the vector valued Poincaré series Pm,h(τ, s) con-
sidered in [BFI13]. To the best knowledge of the author the Fourier expansion of the
Eisenstein series has not been computed yet. However, the Fourier expansion of similar
Poincaré series has been computed by Bruinier in [Bru02] whose strategy we follow here.

We let

Wn(v, s) =

|n|−1/4Γ
(
s+ sgn(n)

4

)−1

(4πv)−1/4W1/4sgn(n),s−1/2(4π|n|v) if n 6= 0,

22s− 1
2

(2s−1)Γ(2s−1/2)
v3/4−s if n = 0,

where Wk,s denotes the usual W -Whittaker function.

Proposition A.0.4. We have

P0,0(τ, s) = 2vs−1/4e0 +
∑

γ∈L′/L

∑
n∈Z+q(γ)

b(n, γ, s)Wn(v, s)e2πinueγ,

where

b(n, γ, v) =

{
(−2π)(4π|n|)1/4−s(2πn)2s−1

∑
c 6=0 |c|1−2sH∗c (0, 0, γ, n) if n 6= 0,

√
πΓ(2s− 1)21−2s

∑
c6=0 |c|1−2sH∗c (0, 0, γ, 0) if n = 0.

Here, we denote by

H∗c (β,m, γ, n) =
e−πi sgn(c)/4

|c|
∑
d(c)∗

( a bc d )∈Γ∞\SL2(Z)/Γ∞

ργβ

(̃
a b
c d

)
e

(
ma+ nd

c

)

the generalized Kloosterman sum. The sum runs over all primitive residues d modulo c.
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A. The non-holomorphic Eisenstein series of weight 1/2

Moreover, ( a bc d ) is a representative for the double coset in Γ∞ \ SL2(Z)/Γ∞ with lower row
(c, d′) such that d′ ≡ d (mod c).

Proof. We proceed as in [Bru02, Theorem 1.9]. We split the sum in equation (A.0.1) into

the sum over 1, Z, Z2, Z3 ∈ Γ̃∞ \Mp2(Z) and (M,φ) ∈ Γ̃∞ \Mp2(Z), where M = ( a bc d )
with c 6= 0. Since e0

∣∣
1/2,ρZ = e0 we find for the first part

2vs−1/4e0.

We now compute the Fourier expansion of the latter part, which we denote by G(τ, s).
Since e0 is invariant under the action of Z2, we can write G(τ, s) in the form

∑
( a bc d )∈Γ∞\SL2(Z)

c6=0

[
vs−1/4e0

]∣∣
1/2,ρ

(̃
a b
c d

)
.

We let γ ∈ L′/L and n ∈ Z+q(γ) and we write c(n, γ, v) for the (n, γ)-th Fourier coefficient
of G(τ, s). Then we have

c(n, γ, v) =

∫ 1

0

〈
G(τ, s), e2πinueγ

〉
du

=
∑
c 6=0

( a bc d )∈Γ∞\SL2(Z)/Γ∞

∫ ∞
−∞

(cτ + d)−1/2

(
v

|cτ + d|2

)s−1/4 〈
ρ−1(̃ a bc d )e0, e

2πinueγ

〉
du.

Since ρ is unitary we have〈
ρ−1(̃ a bc d )e0, e

2πinueγ

〉
= ργ0(̃ a bc d )e−2πinu.

Therefore,

c(n, γ, v) =
∑
c 6=0

( a bc d )∈Γ∞\SL2(Z)/Γ∞

ργ0(̃ a bc d )

∫ ∞
−∞

(cτ + d)−1/2

(
v

|cτ + d|2

)s−1/4

e−2πinudu.

Using (cτ + d)1/2 = sgn(c)
√
c
√
τ + d/c and substituting u by u− d/c we obtain

c(n, γ, v) =
∑
c 6=0

( a bc d )∈Γ∞\SL2(Z)/Γ∞

ργ0(̃ a bc d )e2πind/c|c|−1/2 sgn(c)1/2

×
∫ ∞
−∞

τ−1/2

(
v

|c|2|τ |2

)s−1/4

e−2πinudu.
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Using the definition of the generalized Kloosterman sum we obtain

c(n, γ, v) =
∑
c 6=0

|c|1/2i1/2H∗c (0, 0, γ, n)

∫ ∞
−∞

τ−1/2

(
v

|c|2|τ |2

)s−1/4

e−2πinudu

=
∑
c 6=0

|c|1/2H∗c (0, 0, γ, n)
( v
c2

)−1/4
∫ ∞
−∞

(
τ

−τ̄

)−1/4(
v

c2|τ |2

)s
e−2πinudu.

The latter integral equals∫ ∞
−∞

(
v − iu
v + iu

)−1/4(
v

c2|τ |2

)s
e−2πinudu (A.0.2)

and by substituting u = vx
2πn

we find

v1−sc−2s(2πn)2s−1

∫ ∞
−∞

(2πn− ix)−1/4−s(2πn+ ix)1/4−se−ivxdx.

This integral is a Fourier transform for n 6= 0, which is computed in [EMOT54, p. 119, eq.
(12)]. It equals

− 2π

Γ
(
s+ sgn(n)1

4

)(4π|n|)−svs−1W1/4 sgn(n),1/2−s(4π|n|v).

In the case n = 0 we find that (A.0.2) equals

c−2sv1−s
∫ ∞
−∞

(1− ix)−1/4−s(1 + ix)1/4−sdx =

{
c−2sv1−s

√
2π Γ(2s−1)

Γ(2s− 1
2)

if <(s) > 1
2
,

0 otherwise.

Thus,

c(n, γ, v) =

{
(−2π)(4π|n|)1/4−s(2πn)2s−1Wn(v, s)

∑
c 6=0 |c|1−2sH∗c (0, 0, γ, n) if n 6= 0,

√
πΓ(2s− 1)21−2sWn(v, s)

∑
c 6=0 |c|1−2sH∗c (0, 0, γ, 0) if n = 0.

To compute the constant term of E1/2,ρK (τ, s) = P0,0

(
τ, s

2
+ 1

2

)
at s = 1

2
note that

Wn

(
v,

3

4

)
=Wn(y)

for n 6= 0, where

Wn(v) = e−2πnv

{
|n|−1/2β(4π|n|v) if n < 0,

n−1/2 if n > 0.
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A. The non-holomorphic Eisenstein series of weight 1/2

For n = 0 we have W0(v, 3/4) = 1.

Proposition A.0.5. The constant term of E1/2,ρK (τ, s) is given by

G(τ) = 2v1/2e0 +
∑

γ∈L′/L

√
2πCTs= 1

2

(∑
c6=0

|c|1−2sH∗c (0, 0, γ, 0)

)
eγ

+
∑

γ∈L′/L

∑
n∈Z+q(γ)

n>0

(−2π)(4π)−1/2n−3/4CTs= 1
2

(∑
c 6=0

|c|1−2sH∗c (0, 0, γ, n)

)
qneγ

+
∑

γ∈L′/L

∑
n∈Z+q(γ)

n<0

(−2π)(4π)−1/2|n|−3/4CTs= 1
2

(∑
c 6=0

|c|1−2sH∗c (0, 0, γ, n)

)
β(4π|n|v)qneγ.

Remark A.0.6. Using the strategy of Bruinier and Kuss in [BK01] and Proposition 2.2.7
we can explicitly evaluate the Kloosterman sums H∗c (0, 0, γ, n) and the resulting L-series∑

c 6=0 |c|1−2sH∗c (0, 0, γ, n).
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List of Symbols

(λ, µ) The bilinear form associated to Q, later (λ, µ) = −N tr(λ · µ), 18

(a, b) = gcd(a, b), the greatest common divisor of a and b

(b+, b−) The signature of a quadratic space

(f, g)reg
k,ρL

The regularized Petersson inner product of f and g, 34

(f, g)k The Petersson inner product of f and g, 25

{f, g} A bilinear pairing of f and g, 35

[a, b, c] A binary quadratic form, 15

λ An element of L

Ak,ρL The space of functions that transform of weight k with respect to the
representation ρL, 30

C The field of complex numbers

C[L′/L] The group algebra of a lattice L, 27

cλ = {z ∈ D : z ⊥ λ}, 21

c±E The coefficients of fE, 100

c+
f The coefficients of the holomorphic part of a harmonic Maass form f

c−f The coefficients of the non-holomorphic part of a harmonic Maass form f

∆ A fundamental discriminant

∆k The hyperbolic weight k Laplace operator, 29

D Usually the real hyperbolic space of dimension 2, 19

d A fundamental discriminant

D(f)(τ) = 1
2πi

∂
∂τ
f , a differential operator, 33

EE The Eichler integral of a cusp form GE, 97
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List of symbols

ε∆ ε∆ = 1 if ∆ > 0 and ε∆ = i if ∆ < 0

E0(z, s) The (normalized) real-analytic Eisenstein series of weight 0 for Γ0(N), 75

E1/2,K(τ, s) A real-analytic Eisenstein series of weight 1/2, 75

eh The standard basis elements of C[L′/L]

e(x) = e2πix

E An elliptic curve over Q, 90

E∆ The ∆-quadratic twist of an elliptic curve E, 93

Fm(z, s, k) A Poincaré series, 40

Fm,h(τ, s, k) A Poincaré series, 40

F Usually a harmonic Maass form of weight −2k for Γ0(N)

f+ The holomorphic part of a harmonic Maass form f , 31

f− The non-holomorphic part of a harmonic Maass form f , 31

fE The Bruinier-Funke lift of WE, 100

fh The h-th component of a function f : H→ C[L′/L], 29

Γ(a, x) The incomplete Γ-function, 31

γ Usually an element of Γ0(N), later also the Euler-Mascheroni constant

g An element of SL2(R)

G(τ) The constant term of E1/2,K(τ, s) at s = 1
2
, 76

g.λ = gλg−1, conjugation, 18

GE A cusp form of weight 2 for Γ0(NE) associated to an elliptic curve E

G2k The weight 2k Eisenstein series, 91

Γ0(N) = {( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N)}

Γ∞ = {( 1 n
0 1 ) : n ∈ Z}, 39

Γλ The stabilizer of λ in the image of Γ0(N) in PSL2(Z), 21

ΓQ The stabilizer of Q in the image of Γ0(N) in PSL2(Z), 3

Γ̃∞ = {(( 1 n
0 1 ) , 1) : n ∈ Z}, 27
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ηD A canonical differential of the third kind with residue divisor D, 95

H The complex upper half-plane, H = {z ∈ C : =(z) > 0}

h An element of L′/L

H+
k (N) The space of harmonic Maass forms of weight k for Γ0(N), 30

H+
k,ρL

The space of harmonic Maass forms of weight k with respect to the rep-
resentation ρL and the group Mp2(Z), 29

Hc(0, 0, γ, n) A generalized Kloosterman sum, 76

Hk(N) The space of harmonic Maass forms of weight k for Γ0(N), 30

Hk,ρL The space of harmonic Maass forms of weight k with respect to the rep-
resentation ρL and the group Mp2(Z), 29

IKM
∆,r (τ, F ) The Kudla-Millson theta lift of a function F , 52

IBF
∆,r(τ, F ) The Bruinier-Funke theta lift of a function F , 68

ISh
∆,r(τ,G) The Shintani theta lift of a function G, 73

Iso(V ) The set of isotropic lines in V , 20

=(z) The imaginary part of z

Jk,m The space of holomorphic Jacobi forms of weight k and index m, 37

L+
|∆|m,rh A subset of L|∆|m,rh, 49

L−|∆|m,rh A subset of L|∆|m,rh, 49

` An element of Iso(V )

Λ A lattice in C

ΛE A lattice in C corresponding to an elliptic curve E, 91

L A lattice, later L = {
(
b −a/N
c −b

)
: a, b, c ∈ Z}, 18

L′ The dual lattice of L, 18

L− = (L,Q−), 17

Lk The Maass lowering operator, 32

Lnk The iterated Maass lowering operator, 32
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List of symbols

Lm,h = {λ ∈ L+ h : Q(λ) = m}, 19

L(E∆, s) The twisted L-function of an elliptic curve E, 93

L(f,D, s) The twisted L-function of a cusp form f , 26

L(E, s) The L-function of an elliptic curve, 91

L(f, s) The L-function of a cusp form f , 25

Ms,k(y) = y−k/2M− k
2
,s− 1

2
(y), 39

Mp2(R) The metaplectic group, 26

Mp2(Z) The metaplectic group over the integers, 27

M The modular curve Γ0(N) \D, 20

m Usually m ∈ Q, later m ∈ Q>0 such that m ≡ sgn(∆)Q(h) (mod Z)

M !
k(N) The space of weakly holomorphic modular forms of weight k for Γ0(N),

24

M !
k,ρL

The space of weakly holomorphic modular forms of weight k with respect
to the representation ρL and the group Mp2(Z), 30

Mk(N) The space of modular forms of weight k for Γ0(N), 24

Mk,ρL The space of modular forms of weight k with respect to the representation
ρL and the group Mp2(Z), 30

N A positive integer

O(−) The orthogonal group of −, 16

P1(Q) = Q ∪ {∞}, 20

℘(Λ; z) The Weierstrass ℘-function, 90

Pf The principal part of a harmonic Maass form f , 29

Q A quadratic form, later Q(λ) = N det(λ), 18

q Usually q = e2πiτ or q = e2πiz

ρ The dual representation of ρ

ρ = ρL for the lattice L = {
(
b −a/N
c −b

)
: a, b, c ∈ Z}

ρL The Weil representation on C[L/L′], 28
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ρ̃ = ρ if ∆ > 0 and ρ if ∆ < 0

r An integer satisfying r2 ≡ ∆ (mod 4N)

r′ An integer satisfying r′2 ≡ d (mod 4N)

R(λ, z) = 1
2
(λ, λ(z))2 − (λ, λ), 42

Rk The Maass raising operator, 32

Rn
k The iterated Maass raising operator, 32

<(z) The real part of z

SL2(R) The space of 2× 2-matrices with real entries and determinant 1

SL2(Z) The space of 2× 2-matrices with integer entries and determinant 1

s s ∈ C

Snew
k (N) The space of newforms of weight k for Γ0(N), 25

Sold
k (N) The space of oldforms of weight k for Γ0(N), 25

Sk(N) The space of cusp forms of weight k for Γ0(N), 24

Sk,ρL The space of cusp forms of weight k with respect to the representation ρL
and the group Mp2(Z), 30

SO(−) The special orthogonal group of −, 16

Θ∆,r(τ, z, ϕKM) The Kudla-Millson theta function, 46

ΘL(τ, z, ϕS) The Siegel theta function, 42

Θ∆,r(τ, z, ψKM) The Millson theta function, 44

Θ∆,r(τ, z, ϕSh) The Shintani theta function, 47

Θ̃K`(τ) A theta series associated to a cusp `, 75

T (p) A Hecke operator, 24

τ τ = u+ iv ∈ H

t+
∆,r(F ;m,h) A modular trace function, 49

t−∆,r(F ;m,h) A modular trace function, 49

t∆,r(F ;m,h) A modular trace function, 49
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List of symbols

φE The modular parametrization of E, 92

V The rational quadratic space of signature (1, 2) realized as the space of
2× 2-matrices with rational entries and trace 0, 17

ϕKM(λ, z) The Kudla-Millson theta kernel, 46

ϕS(λ, τ, z) The Siegel theta kernel, 42

ϕSh,∆(λ, τ, z) The Shintani theta kernel, 47

Ws,k(y) = y−k/2Wk/2,s−1/2(y), 41

WE The Weierstrass harmonic Maass form for a cusp form GE, 98

WN The Fricke involution, 20

WN
Q An Atkin-Lehner involution, 20

χ∆(δ) A generalized genus character for δ ∈ L′, 39

χD =
(
D
·

)
, the Kronecker character associated to a fundamental discriminant

D, 26

ξk(f) = vk−2Lkf , a differential operator, 33

X A compact Riemann surface, 94

X0(N) = Y0(N) ∪ (Γ0(N) \ P1(Q)) the compactified modular curve

ψKM(λ, τ, z) The Millson theta kernel, 43

Y0(N) = Γ0(N) \H, the modular curve

ζ∗(s) The completed Riemann Zeta function, 75

Z The ring of integers

ζ(Λ; z) The Weierstrass ζ-function, 91

z z = x+ iy ∈ H

Z̃∆,r(m,h) A twisted Heegner divisor, 49

Z(λ) A Heegner point, 21

Z(m,h) A Heegner divisor, 21

Z∆,r(m,h) A twisted Heegner divisor, 49
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