CM values and Fourier coefficients of
harmonic Maass forms

Vom Fachbereich Mathematik
der Technischen Universitat Darmstadt
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)
genehmigte

Dissertation

von
Dipl.-Math. Claudia Alfes

aus Dorsten

Referent: Prof. Dr. J. H. Bruinier
1. Korreferent: Prof. Ken Ono, PhD
2. Korreferent: Prof. Dr. Nils Scheithauer
Tag der Einreichung;: 11. Dezember 2014
Tag der miindlichen Priifung: 5. Februar 2015

Darmstadt 2015
D 17



i



Danksagung

Hiermit mochte ich allen danken, die mich wéihrend meines Studiums und meiner
Promotion, in- und auflerhalb der Universitdt, unterstiitzt und begleitet haben.

Ein besonders grofler Dank geht an meinen Doktorvater Professor Dr. Jan Hendrik
Bruinier, der mir die Anregung fiir das Thema der Arbeit gegeben und mich stets
gefordert, gefordert und motiviert hat. Aulerdem danke ich Professor Ken Ono, der mich
ebenfalls auf viele interessante Fragestellungen aufmerksam gemacht hat und mir stets
mit Rat und Tat zur Seite stand. Vielen Dank auch an Professor Nils Scheithauer fiir
interessante Hinweise und fiir die Bereitschaft, die Arbeit zu begutachten.

Ein weiteres grofles Dankeschén geht an Dr. Stephan Ehlen, von ihm habe ich viel gelernt
und insbesondere grofie Hilfe bei den in Sage angefertigten Rechnungen erhalten. Vielen
Dank auch an Anna von Pippich fiir viele hilfreiche Hinweise. Weiterer Dank geht an die
fleiffigen Korrekturleser Yingkun Li, Sebastian Opitz, Stefan Schmid und Markus
Schwagenscheidt die viel Zeit investiert haben, viele niitzliche Anmerkungen hatten und
zahlreiche Tippfehler gefunden haben.

Dariiber hinaus danke ich der Deutschen Forschungsgemeinschaft, aus deren Mitteln
meine Stelle an der Technischen Universitdt Darmstadt zu Teilen im Rahmen des
Projektes ,,Schwache Maafl-Formen” und der Forschergruppe ,,Symmetrie, Geometrie und
Arithmetik” finanziert wurde.

Vielen Dank auch an die ganze Arbeitsgruppe Algebra, in der stets eine angenehme und
lockere Atmosphére herrschte.

Ganz besonders mochte ich auch meiner Familie danken, ihr habt mich immer unterstiitzt
und an mich geglaubt. Und vor allem danke ich Dir, Marc, dafiir, dass Du immer da bist,
mich aufmunterst, motivierst und mir auch mal den Kopf wéschst, wenn es sein muss.






Zusammenfassung

In der vorliegenden Dissertation wird gezeigt, dass die Fourier-Koeffizienten gewisser har-
monischer Maal Formen halb-ganzen Gewichts die getwisteten Spuren von CM-Werten
von harmonischen Maafl Formen ganzen Gewichts sind. Diese Ergebnisse verallgemeinern
Arbeiten von Zagier, Bruinier, Funke und Ono iiber die Spuren von CM-Werten von har-
monischen Maafl Formen von Gewicht 0 und —2.

Wir betrachten zwei Thetaliftungen, den sogenannten Kudla-Millson und den Bruinier-
Funke Thetalift, um diese Resultate zu erhalten. Beide Liftungen haben interessante An-
wendungen. Insbesondere kann mit Hilfe des Bruinier-Funke Lifts gezeigt werden, dass
das Verschwinden der zentralen Ableitung der Hasse-Weil Zeta-Funktion einer elliptischen
Kurve E iiber Q mit der Algebraizitit der Spur von CM-Werten einer zu E assoziierten
harmonischen Maafi Form zusammenhéngt.
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Introduction

In this thesis, we show that the Fourier coefficients of certain half-integral weight harmonic
Maass forms are given as “twisted traces” of CM values of integral weight harmonic Maass
forms. These results generalize work of Zagier, Bruinier, Funke, and Ono on traces of CM
values of harmonic Maass forms of weight 0 and —2 [Zag02, BF04, BO13].

We utilize two theta lifts: one of them is a generalization of the Kudla-Millson theta
lift considered in [BE04, BO13| [AE13] and the other one is defined using a theta kernel
recently studied by Hovel [Hov12).

Both of the lifts have interesting applications. For instance, we show that the vanishing
of the central derivative of the Hasse-Weil zeta function of an elliptic curve E over Q is
encoded by the Fourier coefficients of a harmonic Maass form arising from the Weierstrass
(-function of F.

Parts of this thesis were published in [Alf14] and in a joint paper with Michael Griffin,
Ken Ono, and Larry Rolen [AGOR].

Harmonic weak Maass forms

We first define the notion of harmonic weak Maass forms. The space of such forms was
introduced by Bruinier and Funke in [BF04]. Here and in the following we let z := x +iy €
H = {z€C: $(z) >0}, where z,y € R, and we let ¢ := ¢>™*. For an integer N > 1
we have the congruence subgroup I'o(N) := {(¢4) € SLy(Z) : ¢=0 (mod N)}. We let
ke Z.

A twice continuously differentiable function f : H — C is called a harmonic weak Maass
form of weight k for I'y(NV) if the following conditions are satisfied:

(i) f (%) = (cz+d)*f(z) for all y = (28) € [o(N).

(i) Apf = 0, where A, = —y? (% + (93—;2> + iky <a% +ia%> is the weight k Laplace

operator.

(ili) There is a polynomial Py = >~ _;c*(n)q" € Clg~'] such that f(z)—Ps(2) = O(e™%),
as y — oo for some € > 0. Analogous conditions are required at all cusps.

We denote the space of such forms by Hf (N). If k € %Z \ Z we require a slightly modified
transformation behavior in . In the body of this thesis we will consider vector valued
analogs of these spaces.
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We let k # 1. A weight £ harmonic Maass formﬂ f(2) has a Fourier expansion of the

form
f(2) =)+ ()= ) ¢t n)g"+ )¢ (M1 -k 4xlnly)g", (0.1)
n>>—0o0 n<0

at the cusp oo and similar Fourier expansions at the other cusps. Here, I'(c,z) is the
incomplete Gamma-function. The function f*(z) = > o c*(n)q" is the holomorphic
part of f(z), and f~(z) the non-holomorphic part. If f~ is nonzero, then f¥ is also called
a mock modular form. This is due to the connection between harmonic Maass forms and
Ramanujan’s mock theta functions: thanks to work of Zwegers [Zwe02] we know that every
such mock theta function is the holomorphic part of a weight 1/2 harmonic Maass form.

If f~ vanishes at the cusp oo, then f = [ is a weakly holomorphic modular form of
weight k. We denote the space of such forms by M (N). The subspace of modular forms
My, (N) of M{(N) consists of those functions that are holomorphic at all cusps and the
subspace of cusp forms Si(N) consists of the forms that vanish at all cusps.

Bruinier and Funke [BF04] showed that harmonic Maass forms are intimately connected
to cusp forms via the differential operator

) = 20 1 (2).

Every weight k cusp form is the image of infinitely many weight 2 — k harmonic Maass
forms under &_. If the cusp form & (f) carries arithmetic information it is an interesting
question whether there are “canonical” preimages of & (f) that also encode arithmetic
information.

Throughout the introduction, we will use the variable z = x + 1y € H for integer weight
forms and 7 = u + v € H for half-integer weight forms. We denote both €?™* and e?™" by

2miz 2miT

q. It will be clear from the context whether ¢ = e orqg=ce

Traces of singular moduli

A classical result states that the values of the modular j-invariant at quadratic irrational-
ities, called “singular moduli”, are algebraic integers. Their properties have been inten-
sively studied since the 19th century. In an influential paper [Zag02], Zagier showed that
the (twisted) traces of these values occur as the Fourier coefficients of weakly holomorphic
modular forms of weight 1/2 and 3/2.

To be more precise we let p be a prime or p = 1 and D be a negative integer congruent to
a square modulo 4p. We consider the set Qp , of positive definite integral binary quadratic
forms [a, b, c] = az® + bxy + cy? of discriminant D = b* — 4ac such that ¢ is divisible by p.
If p =1, we simply write Qp. For each form @) = [a, b, c] € Qp, there is an associated CM
point ag = %ﬁ in H. These points are called CM points, since the associated elliptic
curve has complex multiplication. The group I'¢(p) acts on Qp, with finitely many orbits.

IFor convenience we shall refer to harmonic weak Maass forms as harmonic Maass forms.



Let A € Z be a positive fundamental discriminant (possibly 1) and d be a positive
integer such that —d and A are squares modulo 4p. To ease the exposition we assume that
—d is a fundamental discriminant throughout the introduction.

For a weakly holomorphic modular form F' of weight 0 for I'y(p), we consider the modular

trace function . ©
ta(Fd) = — 2

S, SUNP DR

QeTo(P\Q—dnp Q

where I'g(p), denotes the stabilizer of @ in I'o(p), the image of I'g(p) in PSLy(Z). The
function xa is a genus character, defined for ) = [a,b,c] € Q_4a, by

=<

F(ag), (0.2)

W) {(%) . if (a,b,¢/p,A) =1, A| (b* — 4ac), and % is a square mod 4p,
A pu—

0, otherwise.

Here, n is any integer prime to A and represented by one of the quadratic forms [a, b, c|
or [pa,b,c/p|. It is known that xa(Q) is T'g(p)-invariant |[GKZ87]. Note that for A =1 we
have ya(Q) =1 for all Q € Q_g4,.

Let J(2) = j(2) — 744 = ¢~ 4+ 196884q + 21493760¢* + - - -, ¢ := €*™* be the normalized
Hauptmodul for the group PSLy(Z). By the theory of complex multiplication it is known
that ta(J;d) is a rational integer [Shi94l, Section 5.4].

Zagier [Zag02, Theorem 6] proved that for p = 1 and A > 0 the “generating series” of
these traces,

ga(m) =g = > ta(Jid)g",
d>0
d=0,3(4)
is a weakly holomorphic modular form of weight 3/2 for I'y(4). Here, we set ta(J;0) = 2, if
A =1and ta(J;0) = 0, otherwise. At the same time, these traces occur as the coefficients
of weight 1/2 weakly holomorphic modular forms. We have that

fa(r) =q¢ "+ Z ta(J;d)g™

>0
A=0,1(4)

is a weakly holomorphic modular form of weight 1/2.

Twisted traces of CM values of harmonic Maass forms

Zagier’s results were generalized in various directions, mostly for modular curves of genus
zero [BO07, [DJO8, [Kim09, MP10]. Building upon previous work of Funke [Fun02], Bruinier
and Funke [BF06] showed that Zagier’s function g; can be obtained as a special case of
a theta lift using a kernel function constructed by Kudla and Millson [KM86]. This lift,
called Kudla-Millson theta lift, maps a harmonic weak Maass form F' of weight 0 on a
modular curve of arbitrary genus to a harmonic Maass form Z*M(7, F') of weight 3/2. It
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is given by the following theta integral

T (. F) — / F(2)0(r, 2 pia).
To(N)\H

Here, the theta series O(T, z, vxm) is associated to a certain even lattice L of signature
(1,2) and a certain Schwartz function pxy first defined in [KM86]. It has weight 3/2 in
the variable 7 € H (for SLo(Z) resp. a suitable generalization), is invariant under the action
of T'o(IV) € SO(1,2) in the variable z € H, and is valued in the differential forms of Hodge
type (1,1). The Fourier coefficients of positive index of ZKM(7, F') are given by the traces
of the CM values of F' [BF(06, Theorem 7.8].

Theta functions of this kind can be used to lift modular forms from one group to another.
This phenomenon is explained by the fact that the two groups SLy(R) and SO(1,2) form a
reductive dual pair in the sense of Howe. Such theta lifts are a rich source of information
on modular forms and their generalizations (for example in the work by Shimura, Shintani,
Borcherds, Kudla, and Bruinier just to name a few).

The results of Bruinier and Funke were later generalized to the case A # 1 by Ehlen and
the author [AEL3]. We developed a systematic approach to twist vector valued modular
forms that transform with a certain Weil representation of Mpy(Z). With this method
and the results of Bruinier and Funke we studied the generating series of twisted traces of
harmonic Maass forms and recovered Zagier’s functions ga as special cases of the twisted
Kudla-Millson lift.

Recently, Bruinier and Ono [BO13] obtained a result similar to that of Bruinier and
Funke for the coefficients of weight —1/2 harmonic Maass forms. Using the Maass raising
and lowering operators they modified the Kudla-Millson lift such that it lifts from weight
—2 to weight —1/2. In this way, they obtained a finite algebraic formula for the partition
function p(n) in terms of traces of the CM values of the derivative of a weakly holomorphic
modular form F of weight —2 on I'(6).

In this thesis, we generalize the Kudla-Millson lift in two ways. Firstly, we extend the
lift to other weights (as suggested by Bruinier and Ono) and secondly, we include twisted
traces. Moreover, we show that there is another theta lift, the Bruinier-Funke theta lift,
that generalizes Zagier’s functions f; in the same way as the Kudla-Millson lift generalizes
the ga’s.

To make this more precise recall that p is a prime and that A is a positive fundamental
discriminant. Moreover, —d is a negative fundamental discriminant such that —d and A
are squares modulo 4p. By Q_4a, we denote the set of positive and negative definite
integral binary quadratic forms [a,b, c] = ax® + bxy + cy? of discriminant —dA such that
¢ =0 (mod p). We assume that (A,2p) =1if p # 1.

Let k € %Z. We will modify the Kudla-Millson theta lift using the Maass raising and
lowering operators Rj and L;. These are differential operators that raise respectively lower
the weight by 2. By R} := Rjpyo(n—1)0- - -0 Rj420 Ry we denote the iterated raising operator
and by L} = Ly_g(n—1)© -+ Ly—2 0 Ly, the iterated lowering operator. Note that RIX%F has
weight 0 for a harmonic Maass form F' of weight —2k < 0 for I'yg(p) but does not inherit



the analytic properties of F'.
The generalization of the Kudla-Millson lift of weight —2k < 0 harmonic Maass forms
F' is defined by

I\ (7, F) = R’efgf / (R, . F)(2)Oa(T, 2, 0xm),  for k even,
" Jro(p)\H
and by
IV (r, F) = L3 )" / (R 3. F)(2)0a(7. 2, gxn). for & odd,
" Jrop)\u ’

where O (T, z, pxm) is a twisted version of O(T, z, Ykm)-
Moreover, we define the twisted modular trace function for F' € H_o,(p) by

taFd)= S ?A_—@Rk%F(aQ).
QGFO(P)\Q_dA,p’ 0(p)Q|

We have the following theorem.

Theorem 1. Let p, A, d be as above and let F € H*,,(p) be a harmonic Maass form of

negative weight —2k for To(p) that is invariant under the Fricke involution z +— _zé'

(i) If k is even, the Kudla-Millson lift of F' is a weakly holomorphic modular form of
weight 3/2 4+ k for T'o(4p). The d-th coefficient of the holomorphic part of the lift is

given by
Ard\ "
()

(i1) If k is odd, the Kudla-Millson lift of F' is a harmonic Maass form of weight 1/2 — k
for To(4p). The d-th coefficient of the holomorphic part of the lift is given by

(k—1)/2
(m || SRS At AT ta (£ d).
Jj=0

The Kudla-Millson lift is weakly holomorphic if and only if the twisted L-function of
E_or(F') vanishes at k + 1, that is

L(&-ar(F), Ak +1) = 0.
In particular, this is the case when F' is weakly holomorphic.

Remark 2. The theorem also gives an interesting new criterion on the nonvanishing of
the twisted central L-values (see [Gol79, [(0S98, [(Ono01] for more information on this topic).
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Remark 3. The theorem generalizes the functions ga to higher weight as indicated in
Section 9 of [Zag02].

We now explain a similar framework for the generalization of the weight 1/2 forms fy
via a theta lift. Recall that —d is a negative fundamental discriminant. We use the Millson
theta function ©_4(7, z, kM) as an integration kernel. The theta series ©_4(7, 2z, kM) 18
associated to a certain even lattice of signature (1,2) and a certain Schwartz function ¥k
first defined in [KMO90]. It has weight 1/2 in the variable 7 and is invariant under the
action of I'g(N) in the variable z.

The theta function ©_4(7, z, k) was recently studied by Hével in his PhD thesis
[Hov12]. He lifted harmonic Maass forms of weight 1/2 to obtain locally harmonic Maass
forms of weight 0, i.e. going to the direction “opposite” to ours.

For a harmonic Maass form F' of weight —2k < 0 for I'g(p) we define the Bruinier-Funke
theta lift of F' by

I?g(’r, F) - LI;;;;/ (RliZk,zF)(z)@—d(T7 <, ¢KM)d,u(Z)a for k even,
Lo(p)\H

I8 F) = B [ (R F)(E)0mr s vian)duz), for b odd,
Lo (p)\H

_ dzdy
= =<,

where du(z)

To describe the Fourier expansion of the holomorphic part we need to refine the definition
of the modular trace function. Recall that A # 1 is a positive fundamental discriminant
and that A and —d are squares modulo 4p. We define two subsets Q% ap and Q7 5 o of
Q_an,p depending on the sign of a (where @) = [a, b, ¢]): for a > 0, the form is in Q’_LdAﬁp
and for a < 0 it is contained in Q_, Ap: We define the modular trace functions t+ JfiA)
and t~,(f; A) accordingly.

Theorem 4. Let the hypothesis be as in Theorem[1]

(i) If k > 0 is even the Bruinier-Funke lift of F' is a harmonic Maass form of weight
1/2 — k for T'o(4p). The lift is a weakly holomorphic modular form if and only if the
twisted L-function L(§—ok(F),—d,s) of {—or(F) € S3/a4k(N) at s = k + 1 vanishes.
The A-th coefficient of its holomorphic part is given by

% (47%)/ I (% +j) (j - g) (654(F; A) — t=,(F; A))

5=0
(i1) If k is odd the Bruinier-Funke lift of F' is a weakly holomorphic modular form of
weight 3/2 + k for Toy(4p). The A-th coefficient of its holomorphic part is given by

Vd (_47;A

(k+1)/2 . )
m —) (tid(F; A) —t—,(F; A)) )



(i1i) If k = 0 the Bruinier-Funke lift of F' is a harmonic Maass form of weight 1/2 for
LCo(4p). The A-th coefficient of its holomorphic part is given by

Vd

m (ttd(Fi A) =t (F; A)) :

Remark 5. If £ = 0 and the constant coefficients of the input function F' do not vanish
at all cusps, the Bruinier-Funke lift of F' is a harmonic Maass form that maps to a linear
combination of unary theta functions of weight 1/2 under &,. We show this by computing
the lift of the non-holomorphic Eisenstein series of weight 0.

Example 6. We obtain
I85(7, J) = f3 = ¢ — 248q + 26752¢* — 85995¢° + 1707264¢® — 4096248¢° + - - - .

The two theta lifts satisfy a duality similar to Zagier’s functions f; and ga. Let kK =
3/24 k if k is odd and k = 1/2 — k if k is even. We can realize the Fourier coefficients
of harmonic Maass forms f of weight x as traces of CM values of weight —2k harmonic
weak Maass forms F' by showing that the Kudla-Millson lift is orthogonal to cusp forms
and then using a pairing defined by Bruinier and Funke [BF04]. Analogous formulas hold
for the Bruinier-Funke theta lift when & is replaced by kK which is 3/2 + k if k is even and
1/2 — k if k is odd.

Remark 7. By considering ZXM (7, J) and f = f; or ZB (7, J) and f = ga as above we
recover the relation of the coefficients of ga and f;. Note that our assumptions on A and
d imply the equality of the two trace functions in this case.

We now describe how these results lead to nonvanishing conditions for the twisted central
derivatives of L-functions of elliptic curves.

Elliptic curves and modular forms

Let E be an elliptic curve over Q given by the equation
E: y* =42 — 60G4(Ap)r — 140Gs(AR),

where Gar(Ag) = D ca\j0) w2 is the classical weight 2k Eisenstein series.

The elliptic curve E is isomorphic (over C) to C/Ag, where Ag is a lattice in C. The
corresponding isomorphism is called the analytic parametrization of £ and is given by the
map t — P, = (p(Ag;t), ¢ (Ag;t)) for t € C\ Ap, where

o=t 3, (o)

weAp\{0}

is the usual Weierstrass p-function for Ag.
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By a theorem of Mordell it is known that the group E(Q) of rational points of E is a
finitely generated abelian group, i.e. E(Q) = E(Q)*"™®Z" with r € Z>o and E(Q)™" finite.
The Birch and Swinnerton-Dyer Conjecture relates the rank r to the analytic properties of
the L-function L(FE,s) of E. More precisely, Birch and Swinnerton-Dyer conjectured that

L(E,s) =c- (s —1)" 4 higher order terms

with ¢ # 0 and r = rank(FE).

The conjecture is true in the case that the analytic rank is equal to 0 or 1 by the work of
Gross—Zagier, Kolyvagin and Wiles [GZ86], Kol88|,[Wil95]. Wiles et al. proved that for every
elliptic curve E/Q of conductor Ng there is a weight 2 cusp form Gg(z) =Y~ ag(n)q" €
So(Ng) that satisfies

L(Gg,s) = L(E,s).

Here, L(Gg,s) = > -~ ag(n)n* is the L-function of Gg.

Thus, results on L-functions of weight 2 cusp forms, which are often easier to obtain,
apply to the corresponding L-functions of elliptic curves. This was also used by Gross and
Zagier in their work on the Birch and Swinnerton-Dyer Conjecture.

A different connection was established by Waldspurger [Wal81] and Kohnen—Zagier
[KZ81] who proved that half-integer weight modular forms serve as “generating series”
for the central values of quadratic twists of modular L-functions. They showed that there
is a weight 3/2 cusp form whose coefficients are essentially the square roots of L(Gg, D, 1),
where L(Gg, D,s) =Y " xp(n)ag(n)n~* for a negative fundamental discriminant D and
the associated Kronecker character xyp = (2) This twisted modular L-function corre-
sponds to the D-quadratic twist of the elliptic curve E : 3> = 2® + ax + b given by

Ep: Dy? = a3 +ax + 0.

Elliptic curves and harmonic Maass forms

Let G € S3(N) be a cusp form of weight 2 and D be a fundamental discriminant. Bru-
inier and Ono [BO10| recently observed that the vanishing of L(G, D, 1) and L'(G, D, 1)
is related to the vanishing and the algebraicity of the Fourier coefficients of weight 1/2
harmonic Maass forms.

In their work, Bruinier and Ono consider weight 1/2 harmonic Maass forms f whose
image under &/, is equal to a real multiple of a weight 3/2 cusp form ¢ that maps to G
under the Shimura correspondence. That is, we have the following picture

G € Sy(N) (0.3)

Shimura

61 2
f € HY\(AN)="og € Syn(4N).

Employing deep work of Shimura and Waldspurger they proved that the Fourier coefficients
of the non-holomorphic part of f as above give exact formulas for L(G, D,1). Using the



theory of Borcherds products and the Gross-Zagier Theorem they show that at the same
time the coefficients of the holomorphic part of f encode the vanishing of the central
derivatives L'(G, D, 1).

An interesting question is if there is a canonical preimage under & of G € S5(N) in the
diagram ((0.3) and a lifting map Z such that the completed diagram is commutative, i.e.

Fe Pf(N) 0 &(F) € So(N) (0.4)
T Shimura,
I(F) € Hy(4N) Loty o(Z(F)) € Sya(4N).

We answer this question in the affirmative. We construct such canonical preimages F
under §, of weight 2 cusp forms that correspond to an elliptic curve and show that &/,
of the Bruinier-Funke lift of F' is equal to the Shintani lift of £, (F) (up to a constant).
Moreover, we show that the coefficients of ZBY (7, F') encode the vanishing of L(Gg, A, 1)
and L'(Gg, A, 1), where A > 1 is a fundamental discriminant. In this special setting we
obtain the corresponding results for the L-function of the elliptic curve E.

Weierstrass harmonic Maass forms

In the case of a weight 2 cusp form Gg € S3(Ng) corresponding to an elliptic curve E
of conductor Ng over Q there is a canonical preimage of Gg arising from the analytic
parametrization of E. This was first observed by Guerzhoy |[Guel3| [Gue] and later worked
out explicitly in [AGOR] by Griffin, Ono and Rolen. Let Ag be the lattice associated to E
via the analytic parametrization. The canonical preimage of Gy arises from the Weierstrass

(-function
1 1 1 t
A t = - —_— _— —_—
C(Ait) s Z (t—w+w+w2)’
weAp\{0}

that is essentially the antiderivative of the Weierstrass p-function
p(Ap;t) = —C'(Ap;t).

Furthermore, we make use of the modular parametrization. We let Eg(t) be the Eichler
integral of a cusp form Gg defined as

Ep(z) == —2mi /m Gp(r)dr = ap(n) 7.

n

n=1

Moreover, we let S(Ap) := im0+ >, cr (0} W Eisenstein observed that the func-
tion

C*(AE7 t) = C(AEat) - S(A)t - CL(AE)
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is lattice invariant, where a(Ag) is the area of the fundamental parallelogram for Ag. This
implies that
Wi (2) == ("(Ap, Ep(2))

is modular of weight 0. We have the following theorem.

Theorem 8. There is a modular function Mg(z) on I'o(Ng) with algebraic Fourier coef-
ficients for which W§(z) — Mg(2) is a harmonic Maass form of weight 0 on I'o(Ng). We
call the function Wg(z) = Wi(z) — Mg(2) a Weierstrass harmonic Maass form.

Elliptic curves and Weierstrass harmonic Maass forms

For simplicity, we now let Ng = pg be a prime. In the body of this thesis we will also
consider the general case. We let E be an elliptic curve of conductor pg over Q and
GE € S2(pr) be the associated cusp form. Moreover, let g € S3/2(4pg) be a cusp form that
maps to Gg under the Shimura correspondence. Recall that —d is a negative fundamental
discriminant that is congruent to a square modulo 4pg.

Using the Bruinier-Funke theta lift of the harmonic Maass form Wpg associated to the
cusp form Gg € So(Ng) we construct a weight 1/2 harmonic Maass form

fE(T) = I—BE(T’ WE)

Here, we chose the function Mg(z) such that the principal parts of Wy at all cusps other
than oo and the constant coefficient at oo vanish. For ease of exposition, we also as-
sume that Wg is invariant under the Fricke involution and that it is normalized such that

& We) = Gi/||Gel*.
Then the sign of the functional equation of L(Gg,s) = L(E, s) is €(E) = —1. Therefore,
L(E,1) = 0. For the Fourier expansion of fr we write

o) = £+ F5(2) = X ctna® + X ezt (oamnly) o

n>>—oo n<0

Let A > 1 be a fundamental discriminant. By Theorem [4] we have that the A-th coefficient
of fg is given by
Vd

S A — (P A)) = YL
m(tfd(FﬂA)_tfd(FUA))_ Z F(z),

for the twisted Heegner divisor

xa(@)
QGFO(p)\Q:dA,pE 0 Q

Z_g(A) = Z xa(@Q)

QEFO(p)\QlLdA,pE ’FO (p)Q |

We relate this modular trace to a certain differential of the third kind associated to Z_4(A).
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Using results by Scholl [Sch86] on the algebraicity of such differentials and the action of
the Hecke algebra, we show the following theorem.

Theorem 9. We assume the notation above. Then the following are equivalent:

(1) % Zzez,d(A) F(z) is rational.

(i1) Some non-zero multiple of the projection of the image of Z_4(A) in the Jacobian to
the Gg-isotypical component is the divisor of a rational function.

Recall that L(Gg, A, s) denotes the twisted L-function of G and that for the elliptic
curve E : y* = 23+ ax + b we have L(Gg, A, s) = L(En, s), where Ex : Ay? = 2° + ax +b.

Combining Theorem |§] with the Gross—Zagier formula we obtain part (i7) of the following
theorem.

Theorem 10. With the same notation as above the following are true:
(i) If A < 0 is a fundamental discriminant for which (%) =1, then

L(Ea,1) =0 if and only if cz(A) =0.
(i) If A > 0 is a fundamental discriminant for which (ﬁ) =1, then

L'(Exn,1) =0 if and only if cL(A) isin Q.

Part (i) follows from the fact that & o(fr) € Rgp by diagram (0.4) and by work of
Kohnen [Koh85| that relates the coefficients of gg to the twisted L-function of G .

Remark 11. Theorem [10|above gives a more intrinsic version of Bruinier’s and Ono’s main
theorem [BO10, Theorem 7.8] since we directly relate the cusp form Gg to the half-integer
weight form fz. Moreover, the proof for the relation between the algebraicity of ¢f(A) and
the vanishing of L'(Ea, 1) = 0 is independent of Bruinier’s and Ono’s work. In particular,
it does not rely on the construction of a Borcherds product and might therefore be easier
to generalize to higher weights.

Remark 12. Note that we could also phrase part (i7) of Theorem in terms of the
coefficients of the Kudla-Millson lift. Our proof of this part only relies on the property
that the coefficients are given as twisted traces and the fact that these predict the vanishing
of the associated Heegner divisor. However, we could not prove part (i) since there we rely
on the commutative diagram . The fact that the coefficients of the holomorphic parts
of the two lifts encode the same arithmetic information is also reflected in their duality as
explained before.

Remark 13. Part (i) of Theorem 10]also gives conditions for the algebraicity of periods of
differentials of the first and second kind associated to Wg and the Heegner divisor Z_4(A).
We explain this at the end of Chapter [0

11
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For elliptic curves E that satisfy the assumptions in Theorem [10] we then have by work
of Kolyvagin [Kol88] and Gross and Zagier [GZ86] on the Birch and Swinnerton-Dyer
Conjecture, that for fundamental discriminants A:

(i) A <O, (}%) =1, and ¢z (A) # 0, then the rank of EA(Q) is 0.

(ii) If A >0, (;%) =1, and c£(A) is not rational, then the rank of Fa(Q) is 1.

We now present an example illustrating our results.

The elliptic curve of conductor 37
We consider the elliptic curve of conductor 37 given by the equation
E:y* =42 — 4o+ 1.

The sign of the functional equation of the L-function of E is —1 and E(Q) has rank 1 (see
for example [LMF13]). The g-expansion of Gg € S3(37) is given by

Gp(2) =q—2¢* —3¢% +2¢* — 2¢° +6¢° — ¢" + 6¢° + 4¢"° — 5¢™ + - - € Sy (T(37))

and using Sage [ST14] we find that the g-expansion of the Weierstrass harmonic Maass
form Wg(z) is given by

Wi(2) = ¢ 4+ 1+2.1132...q + 2.3867...¢° + 4.2201...¢° + 5.5566...¢" + 8.3547...¢° + O(¢°).

We write

fo =T 5(r, We(2) = > ch(n)g"+ ().

n>>>—oo

The table below illustrates Theorem [I0] and its implications for ranks of elliptic curves.
It was computed by Stromberg [BS12].

A cp(A) L'(En, 1) rank(Ea(Q))
1 —0.2817617849. .. 0.3059997738 . .. 1
12 —0.4885272382 . .. 4.2986147986 . . . 1
21 —0.1727392572 . .. 9.0023868003 . .. 1
1489 9 0 3
4393 66 0 3

Stephan Ehlen numerically confirmed that

1

CE(A) = m

(tTs(Wi(2); A) = t25(We(2); 4))

12



for A as in the table using Sage [ST14].

The structure of this thesis

In the first two chapters, we introduce the setting and the important objects of this thesis.
In particular, we define the notion of vector valued harmonic Maass forms. The third and
fourth chapter are the technical heart of the thesis: here we investigate the analytic and
automorphic properties of the Kudla-Millson and the Bruinier-Funke theta lift and compute
their Fourier expansion of the holomorphic part. In the fifth chapter, we investigate the
relation of the lifts to their dual spaces. The sixth chapter is devoted to the connection
between elliptic curves, their L-functions, the Weierstrass harmonic Maass forms and the
coefficients of their Bruinier-Funke theta lifts. In the seventh chapter, we consider various
applications of the results and derive the theorems presented in the introduction. In the
eighth chapter, we present some future projects building upon the results in this thesis.
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1. Basic notation

In the first part of this chapter we introduce quadratic forms, quadratic spaces and lattices
which are the basic objects underlying the setting in this thesis. In the second part we
describe the special situation we will work in. The exposition in this chapter is brief and the
statements are presented without proofs, but we give references where a detailed exposition
can be found.

1.1. Quadratic forms and lattices

We start with a short introduction to the theory of quadratic forms, quadratic spaces
and lattices. The standard references for these topics are [Kit93l [Kne(2, [Ser73]. A good
overview is also given in Bruinier’s part of [BvdGHZ0S].

Let R be a ring with unity 1 and let M be a finitely generated R-module.

Definition 1.1.1. A quadratic form on M is a map ) : M — R such that:
(i) Q(rz) =r*Q(x) for all r € R and x € M.
(i) (z,y) :=Q(r+y) — Q(x) — Q(y) is a bilinear form.

We say that (x,y) is the bilinear form associated to Q). We call the pair (M, Q) a quadratic
module over R. If R = K is a field, then (M, Q) is called a quadratic space over K.

Note that in the case that 2 is invertible in R, the second condition implies the first one

in Definition

Example 1.1.2. We will later consider binary quadratic forms, i.e. quadratic forms in two
variables. For a binary quadratic form @) of the form

Q(z,y) = ar® +bxy +cy®, a,b, cER,

we write Q = [a,b,c|. If a, b, ¢ are integers, we call [a,b, ¢|] an integral binary quadratic
form.

In the following let (M, Q) be a quadratic module over R.

Definition 1.1.3. (i) Let z, y € M. If (z,y) = 0, we say that x and y are orthogonal
to each other.

15



1. Basic notation

(ii) Let U C M be a subset of M. We define the orthogonal complement of U by

Ut ={xeM: (z,u)=0foralluecU}.

(iii) A quadratic module M is called non-degenerate if M+ = {0}.

(iv) A non-zero vector x € M is called isotropic if Q(z) = 0, and anisotropic if Q(x) # 0.

Definition 1.1.4. Let (M, Q) be another quadratic module over R. An R-linear map
o: M — M is called an isometry if o is injective and

Q(o(z)) = Q(z) for all x € M.

If o is also surjective, M and M are called isometric.

Definition 1.1.5. The orthogonal group O(M) of M is defined as the group of all isometries
from M onto itself
O(M):={o: M — M : o isometry}.

The special orthogonal group SO(M) is the subgroup

SO(M) :={o € O(M) : det(c) = 1}.

Example 1.1.6. Let r, s be non-negative integers. By R™* we denote the quadratic space
over R"™* with the quadratic form

Qe)=ai+...+a2—al —...—a,,
for x = (21, ..., T,4s5). We denote the orthogonal group of R™* by O™*(R).
Definition 1.1.7. Suppose that M has a basis B = (b, ..., b,). The Gram matriz of Q

corresponding to B is the matrix G = Gg = (¢ij)1<i,j<n, Where g;; :== (b;, b;).
We define the determinant of M by

det(Q) = det(M) = det((M, Q)) := det(Go).

The determinant det(Q) (if non-zero) is well defined as an element of R*/(R*)?, where
R* denotes the group of units of R.

Proposition 1.1.8. Let (V,Q) be an n-dimensional non-degenerate quadratic space over
R. There exist non-negative integers r, s, with n = r + s, such that (V,Q) is isometric to
R™. The pair (r,s) is called the signature of V.

Definition 1.1.9. A lattice L is a finitely generated non-degenerate quadratic module
over Z. A lattice L is called integral if the bilinear form (A, i) takes values in Z for all
A, p € L. Tt is called even if Q(N\) € Z for all A € L and unimodular if |disc(L)|, the class
of |det(Gr)| in Z*/(Z*)?, is equal to 1. A lattice element A € L\ {0} is called primitive if
it satisfies QAN L = ZA.

16



1.2. A rational quadratic space of signature (1, 2)

Definition 1.1.10. For a lattice L we define its dual lattice L' as
L''={NeL®;Q: (\p)€Zforal pe L}

In the following let (L, @) be a lattice. The quadratic form @ on L induces a well-defined
map @ : V(R) := L ®, R — R via the assignment

QA®r):=r*Q\), e L, r €R.
Then, (V(R), @) is a quadratic space that contains L as a discrete subgroup.

Definition 1.1.11. Let V(R) = L ®; R as above and let B = (b, ..., b,) be a basis of
V(R) with L = 3" | Zb;. Then n is called the rank of L. The signature of L is given by
the signature of V(RR).

Remark 1.1.12. Let L~ denote the lattice L equipped with the quadratic form —(). Then
L~ has signature (s,r) if L has signature (r, s).

From now on let L be an even lattice.
Definition 1.1.13. The level of L is defined as
min{N € Z-q : NQ(\) € Z for all A € L'}.
Lemma 1.1.14. Let G be the Gram matriz of L. Then we have
L//L] = | det(@)].
Moreover, L' /L is a finite abelian group which is called the discriminant group of L.

Lemma 1.1.15. The quadratic form induces a well-defined map

Q: L'/L—Q/Z
A+ L= QA+L):=Q(\) (mod1).

Such a tuple (L'/L, Q) is called the discriminant form of L.

Definition 1.1.16. The orthogonal group O(L'/L) consists of all group homomorphisms
o:L'JL — L'/L satistying Q(o(z)) = Q(x) for all z € L'/ L.

1.2. A rational quadratic space of signature (1,2)

In this thesis we consider a 3-dimensional rational quadratic space of signature (1,2) that
is isotropic over Q. This is the same setting as in [BF06] and [BO13] (the general setting
for higher dimensional spaces can be found in Bruinier’s chapter of [BvdGHZ08]).

17



1. Basic notation

Let N > 0 be an integer. We let V' be the rational quadratic space

A1A
V= {)\: ()\; _)2\1> € Q¥ : tr(N) :O}

with the quadratic form Q(\) = N det()\). The associated bilinear form is given by (A, u) =
—Ntr(A- p)for A\, p € V. The quadratic space V has signature (1, 2).

1.2.1. A special lattice

L::{(i _f/bN) : a,b,cGZ}.

The dual lattice corresponding to the bilinear form as above is given by

L= {(b/iN __b“/;]\;) ©a,b,ce Z}.

We identify the discriminant group L'/L =: D with Z/2NZ, together with the Q/Z-valued
quadratic form z +— —x%/4N. The level of L is 4N.

For a fundamental discriminant A € 7Z we will later consider the rescaled lattice AL
together with the quadratic form Qa(\) := %. The corresponding bilinear form is given
by (-, )a = \Tll(" -). The dual lattice of AL corresponding to (-,+)a is equal to L’ as
above, independent of A. We denote the discriminant group L'/AL by D(A). Note that
D(1) = D and |D(A)| = |A]? D] = 2N |AP.

The lattice L is intimately related to binary quadratic forms and the congruence sub-
group I'o(NV) of SLy(Z) as we are going to explain now following [BO10]. Recall that

SLy(Z) = {(4) € Z*** : ad — be = 1} and that ['o(N) is defined as

We consider the lattice

To(N) = {(‘CL Z) €SLy(Z) : ¢c=0 (mod N)}.

In general, I'y(N) acts on the space V' via conjugation
gA=g\g ', for g € Ty(N), A€ V.

The natural homomorphism SO(L) — O(L'/L) is surjective (here, SO(L) is defined as in
Definition [1.1.5). We denote its kernel by I'(L). Let SO*(L) be the intersection of SO(L)
and the connected component of the identity of SO(V(R)). The group I'g(N) takes L to
itself and acts trivially on the discriminant group D. However, in general it does not act

trivially on D(A).

Proposition 1.2.1 (Proposition 2.2 in [BOI10]). The image of T'o(N) in SO(L) is equal

18



1.2. A rational quadratic space of signature (1, 2)

to T(L) N SO™(L). The image in SO(L) of the extension of To(N) by all Atkin-Lehner
involutions is equal to SO*(L). (The Atkin-Lehner involutions are defined in Section[1.2.3,)

For m € Q and h € L'/L, we consider the set

Lyp={ e L+h:QN\ =m}. (1.2.1)

We can identify lattice elements of L,,; with integral binary quadratic forms as follows.

For \ = (b/QN —a/N ) € L, we consider the matrix

¢ —b/2N
v = (o 2) =2 (B 5)

Then M()) defines an integral binary quadratic form [a, b, N¢] of discriminant D = b? —
4Nac = ANQ()) satisfying b = h (mod 2N). Conversely, every integral binary quadratic

form [a, b, Nc] of discriminant D = > — 4Nac = 4NQ(\) that satisfies b = h (mod 2N)
defines an element \ = (b/ 2N :ba//21]vV> € L, . The group I'y(N) acts on elements M () via

g-M(\) = gM(N\)g', for g € To(N) and M(A) as above. The actions of I'y(N) on L and on
quadratic forms are compatible.

Using this correspondence one can show that, by reduction theory, if m # 0, the group
['o(N) acts on Ly, with finitely many orbits.

1.2.2. The associated symmetric space

Let G = Spin(V) ~ SL, viewed as an algebraic group over Q and write ' for its image in
SO(V) ~ PSL,. We let D be the associated symmetric space.
The group SLy(Q) acts on V' by conjugation

gA:i=g g h, A eV, g € SLy(Q).

The space D can be realized as the Grassmannian of lines in V' (R) on which the quadratic
form () is positive definite,

D~{zCV(R) : dimz=1and Q|, > 0}.

We can identify the Grassmannian D with the upper half plane H = {z € C : J(z) > 0}

as follows. We write z = x + iy, with z, y € R, and obtain an isomorphism between D
and H by
z — RA(z), (1.2.2)

where we pick as a generator for the associated positive line

A(z) = %vy (i”lf @2) . (1.2.3)
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The group G(R) acts on H by linear fractional transformations. For (¢%) € G(R) these

are given by z > %t The isomorphism in (1.2.2)) above is then G(R)-equivariant. In

cz+d’

particular, Q(A(2)) = 1 and g.\(2) = A\(g2) for g € G(R).

1.2.3. Cusps

We let M be the modular curve I'o(N) \ D. Via the isomorphism between H and D as
in it can be identified with the usual modular curve Y5(N) = Iy(N) \ H. The
curve Yy(V) is not compact, but can be completed to a compact Riemann surface Xy (V)
by adding finitely many points, the cusps, to Yy(N). The cusps are given as the I'o(NV)-
equivalence classes of P'(Q) = QU {oc}, i.e. Xo(N) = Yo(N) U (Th(N) \ PH(Q)).

For square-free N we can describe the cusps of the modular curve Xy(N) in an explicit
and convenient way (see [Schl BO13]). In order to do so we define the Atkin-Lehner
involutions. A good reference for this topic is also [DS05].

Definition 1.2.2. Let @) be an exact divisor of N, i.e. Q|N and (Q, N/Q) = 1. Then we
define the Atkin-Lehner involution Wév by any matrix

Wy = (30 55)e asaden

with determinant ().
Moreover, we define the Fricke involution Wy by

0 -1
Wy = ( 0 ) .
Remark 1.2.3. The matrices Wév are uniquely determined up to left multiplication by
elements of 'g(V).

For exact divisors @), Q" of N we define

Q-
(@Q Q)

In the case of square-free N the cusps are represented by %, where () runs through the
divisors of N. Note that two cusps (a : ¢) and (o’ : ) are equivalent under I'g(N) if and
only if (¢, N) = (¢, N). In particular, a complete set of representatives for the cusps of
(V) is given by Wg 00, where ) runs through the divisors of N, i.e. the Atkin-Lehner
involutions act transitively in this case.

We now describe how we can identify the set of isotropic lines Iso(V') in V(Q) with P*(Q)
following the exposition in [Fun02, BF06]. The identification is given by the map

Q*Q =

(1.2.4)

0@ TsolV), vl p) = (7))

20



1.2. A rational quadratic space of signature (1, 2)

The map 9 is a bijection and ¥ (g(a : 5)) = g.¥((a : 5)) for g € I'o(N). So the cusps of
M can be identified with the I'o(N)-classes of Iso(V).

If we set (o := 1(00), then l is spanned by Ao = (34). For £ € Iso(V) we pick
o; € SLy(Z) such that oy, = ¢. Furthermore, we orient all lines ¢ by requiring that
A i= 04\ 18 a positively oriented basis vector of £.

Let I'y be the stabilizer of the line ¢. Then

aglrm = {j: (é k?ile) ke Z} ,

where ay € Q¢ is the width of the cusp ¢ [Fun02]. In our case it does not depend on
the choice of o,. For each ¢ there is a 8, € Q- such that (8 %‘f) is a primitive element of
loo NoyL. We write €, = ay/fy.

1.2.4. Heegner divisors

We define a divisor on the modular curve M = T'o(N)\ D as follows. For a vector A\ € V(Q)
of positive norm, we let
Dy = span(X) € D.

b/2N —a/N
¢ —b/2N

((b/QN —a/N) (z —z2>) _0

c —=b/2N)’\1 —-z))
that lies in the upper half plane, i.e. the point z = H—VZZC’N‘*“C]V. (Here we used that H
may be identified with the projective model of the symmetric space D, see for example
[BvdGHZ08, Chapter 2.4].)

We denote the image of Dy in M by Z(A). Then Z () is called Heegner point. We define

a Heegner divisor Z(m,h) by

For example, if A\ = < > € L'/L, the corresponding point in H is given by the

solution of

Z(m,h)= ) LZ(A).

AELO(N)\Lum, 1 1\

Here, T'y denotes the stabilizer of A in T'o(N), the image of ['o(N) in PSLy(Z).

1.2.5. Geodesics

If Q(N\) < 0, we obtain a geodesic ¢, in D via
ecx={z€D:z LA}

We denote I'\\cy in M by ¢()).
There are two cases (see [Fun02]):
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() We have Q(\) & — & (Q")"
(ii) We have Q(\) € —-(Q*).

In the first case Z(\) is a closed geodesic in Yy(/N) and in the second case it is an infinite
geodesic in Yy(N) (see [Fun02] or [Hov12, Section 1.9] for more details).

Thus, if ¢()\) is an infinite geodesic, A is orthogonal to two isotropic lines ¢, = span(yu)
and 0, = span(f1), with x4 and i positively oriented. We fix an orientation of V' and we say
that ¢ is the line associated to A if the triple (A, i, f1) is a positively oriented basis for V.
In this case, we write A ~ /.

These geodesics will be important when we describe the Fourier expansion of the Kudla-
Millson theta lift in Chapter [3]
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In this chapter we recall the theory of scalar valued and vector valued modular forms.
We introduce the notion harmonic weak Maass forms that was developed by Bruinier and
Funke in [BF04] and we present various aspects of the theory of (vector valued) harmonic
weak Maass forms. Moreover, we recall results of the author and Ehlen [AE13] on a method
for twisting automorphic forms with a certain genus character related to the lattice L we
defined in the previous chapter. We also define Poincaré series and Whittaker functions
as well as the theta functions, that we will use as kernel functions for the lifts of harmonic
weak forms in the upcoming chapters.

Throughout this thesis, we will use z and 7 as variables in the upper half plane H.
We will use z when talking about integer weight forms, since these will later correspond
to automorphic forms on the Grassmannian D. We will use 7 as the symplectic variable
corresponding to half-integer weight forms. We write ¢ for €*™* and for €™, It will be

clear from the context whether ¢ = > or ¢ = ™"

2.1. Scalar valued modular forms

We briefly introduce the notion of scalar valued modular forms following the classical
references for the theory [DS05, [Kob93l [KKO7]. The books of Ono [Ono04] and Zagier
[BvdGHZ0§| also give a good overview and provide many interesting applications of the
theory of modular forms.

Let N be a positive integer. Recall that the level N congruence subgroup I'g (V) C
SLy(Z) is defined by

Ty (N) ;_{(Z Z)ESLQ(Z):CEO (modN)}.

We define the Petersson slash operator for an integer k € Z and a matrix v = (¢}) €
GL2(R) on functions f : H — C by

(fI7) (2) = (cz + d) " det(7)*/* f (v2). (2.1.1)

Definition 2.1.1. Let k € Z. A holomorphic function f : H — C is called a modular form
of weight k for I'y(N) if the following hold:

(1) (flev) (2) = f(2) for all v € To(N).
(ii) f is holomorphic at the cusps of T'o(V).
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2. Automorphic Forms

If f vanishes at all cusps, it is called a cusp form and if it is only meromorphic at the cusps
it is called a weakly holomorphic modular form.

By My(N), Sp(N), respectively M;(N) we denote the spaces of modular forms, cusp
forms, respectively weakly holomorphic modular forms of weight &k for I'o(V).

Condition (i) implies that f is invariant under the transformation z — 241, so f has a
Fourier expansion of the form (by Condition ({i]))

f(z) =) ag(n)g",

n=0

at the cusp oo. Here, ¢ = €™ = ¢(z). The function f has a Fourier expansion of a similar
form at the other cusps of Xo(N). If f is a cusp form, we require a;(0) = 0. If f is weakly
holomorphic, then finitely many coefficients of negative index occur, i.e. af(n) might be 0
for finitely many n < 0.

2.1.1. Hecke operators and Atkin-Lehner involutions

We introduce Hecke operators, natural linear operators that act on spaces of modular
forms.

Definition 2.1.2. Let p be a prime and p{ N. If f(2) = > " a(n)¢" € My(N), then we
define the action of the Hecke operator T'(p) on f(z) for p by

(flsT(P)(2) =Y (a(pn) + p*a(n/p)) ¢".

n=0
If p t n, then a(n/p) = 0.
Remark 2.1.3. For the definition of T'(I) for any integer [ see [DS05], [Kob93].

Proposition 2.1.4. Let f € Mi(N). For p > 2 we have (f|yT(p))(z) € Mp(N). The
Hecke operators take cusp forms to cusp forms.

We recall some facts from the Atkin-Lehner theory of newforms.
Let d > 1. A cusp form f € Si(N) is easily seen to be contained in S(dN). A second
way to embed Si(N) into Sk(dN) is the so-called V—operator V' (d) defined on the Fourier

expansion of a form g(z) = > a(n)g" which lies in M (N) by
<Z a(n)q”) IV (d) = Z a(n)q™.
n=ngo n=no

Then it is
F(dz) = (f|xV(d))(2) € Sk(I'o(dN)).
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2.1. Scalar valued modular forms

We now describe how to distinguish “old” forms in Si(dN) from forms that are “new” at
this level, i.e. whose minimal level is dN.
We first define the subspace S¢4(N) of forms whose minimal level is not dN by

Sold Z Sk

dM|N

where we sum over pairs of positive integers (d, M) for which dM|N and M # N.
There is an inner product on the space of modular forms, called the Petersson inner
product. For cusp forms f,g € S,(NN) the Petersson inner product is defined by

(f ) : = 50, @) / F(2)g(2)y du(z),

where Fy denotes a fundamental domain for the action of I'g(N) on H and du(z) = %
denotes the invariant measure on H.
Recall the definition of the Atkin-Lehner involution WQ as in Definition . Then

Wy = @‘; 55) e 72,

where Q is an exact divisor of N and det(W})) = Q.
If f € Mi(N), then f — f|kWéV is independent of the choices «, 3, v, 0 and defines an
involution of My (N).

Definition 2.1.5. The subspace of newforms Sp°¥(N) is defined to be the orthogonal
complement of SP!4(N) in Si(N) with respect to the Petersson inner product.
A newform is a normalized eigenform in S (N) with respect to the Hecke operators

and all of the Atkin-Lehner involutions |ng , where () runs through the exact divisors of
N, and [,W¥.

Remark 2.1.6. Using the theory of Hecke operators one can show that every space
of newforms has a basis of newforms. Furthermore, newforms determine distinct Hecke
eigenspaces. This is known as the “multiplicity one” phenomenon.

2.1.2. L-functions of modular forms
For a cusp form f(z) = Y ° ar(n)q® € Sop(N) of weight 2k for T'o(N) we define its

L-function by
_ Z as(n)
n=1

where s € C.
These functions satisfy the following properties.

25



2. Automorphic Forms

Proposition 2.1.7. Let f =Y 7 az(n)q" € So(N). Then the following hold:
(i) L(f,s) is holomorphic for s € C with R(s) > k + 1.
(ii) L(f,s) has an analytic continuation to all of C.
(1ii) Let A(f,s) = (2m)*T'(s)L(f,s), where I'(s) denotes the usual T'-function. Then
A(f,2k = s) = (=1)"wnA(f, 5)

for all s € C. Here, wy 1is the eigenvalue of f under the Fricke involution, that is

f (—Niz) = wyN*2% f(2).

Let D be a fundamental discriminant and yp = (2) be the associated Kronecker char-
acter . Then we define the twisted L-function of f by

L(f,D,s) = ZXD(n)“f(S”).

n

Remark 2.1.8. The twisted L-function satisfies similar properties as L(f, s). Especially,
it has an analytic continuation to all of C. Moreover, the completed twisted L-function
A(f,D,s) := (2m)~*(ND?)*?I'(s)L(f, D, s) satisfies

M D.s) = (1) (2 ) ww Al D26 = ),

where wy is as before.

2.2. The Weil representation

Here, we give an overview of the Weil representation attached to an even lattice L. The
exposition follows the one in [Bru02] and [Bor9g].

We let H = {7 € C : &(7) > 0} be the upper half plane. Recall that we will let 7 € H,
and write 7 = u + v with u, v € R, throughout this thesis. We denote by /w = w'/?
the principal branch of the square root, such that arg(w) € (—%,%]. Moreover, we put
w® = e*198®) for o € C, where Log(-) denotes the principal branch of the logarithm. We
set e(w) := ™.

Recall that the special linear group SLy(R) = {(2%) € R**? : det(A) = 1} acts on H
via fractional linear transformations

ar +b

= Ls(R).
T CT—I—d’fYES 2(R)

We let Mp,(R) be the metaplectic group. It is the double cover of SLy(R). For an element
v = (2%) € SLy(R) we have two choices of the holomorphic square root of 7 + ¢ + d.
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2.2. The Weil representation

The elements of Mp,(IR) are therefore given by pairs (v, ¢), where v = (¢ %) € SLy(R) and
¢ : H — C is a holomorphic function satisfying ¢(7)? = ¢ + d. The multiplication of two
elements in Mp,(R) is given by

(v, o), (7)) = (77, (V' 7) (7))

The map

a b a b a b
(e a) o (0 a)= (2 ) virea)
defines a locally isomorphic embedding of SLy(R) into Mpy(R).
Let Mp,(Z) be the inverse image of SLy(Z) under the covering map Mp,(R) — SLy(R).
We recall the following well-known lemma.
Lemma 2.2.1. The group Mpy(Z) is generated by

(D) (@ ))

The center of Mpy(Z) is given by

We have S* = (ST)? = Z.

We let T, :={({%) : n € Z} and set

o= {(( 1)) ves)

From now on we let (L, Q) be an even lattice of signature (b™,b) with dual lattice L'.
Recall that L'/L is a finite abelian group.

Definition 2.2.2. The finite dimensional group algebra C[L'/L] of L is defined as the set
of formal linear combinations Zhe /1 Oneh with ap € C. Here, the symbols ¢, are called
standard basis vectors of the group algebra C[L'/L].

We define an inner product on C[L'/L] by

< S aen 3 bheh> =3 b,

hel!/L hel!/L hel!/L

Proposition 2.2.3. There is a unitary representation pr, of Mpy(Z) on the group algebra
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2. Automorphic Forms

C[L'/L] which is defined by the action of the generators S, T € Mpy(Z) by

pr(T)en = e(Q(h))en
\/—(b*7b+
V |L//L hlgl/L

The representation py, s called the Weil representation attached to L.

pr(S)e, = ))en.

Remark 2.2.4. We denote by pj the dual representation of p; and by p; its complex
conjugate. Then we have pj =75, = pr- with L~ as in Remark [1.1.12] [Shi75].

Using orthogonality relations between characters it is not hard to show the following
lemma.

Lemma 2.2.5. The standard generator Z of the center of Mpy(Z) acts on ¢, as follows

b — bt
pL(Z)eh =€ < 1 > e_p.

Remark 2.2.6. The Weil representation p;, factors through the finite group SLy2(Z/NZ)
if b+ — b~ is even, where N is the level of L. If b© — b~ is odd, it factors through a double
cover of SLy(Z/NZ).

Let h, k' € L'/L and (v, ¢) € Mpy(Z). We define the coefficient ppp (7, ¢) of the repre-
sentation pr by

prw (7, 0) = (pL(y, d)en, en).
The following proposition of Shintani [Shi75, Proposition 1.6] gives a formula for pp (v, ¢).
(Here, §; ; denotes the usual Kronecker delta.)
Proposition 2.2.7. Let h, h' € L'/L and v = (25%) € SLo(Z). Then the coefficient
prw (7, @) is given by
Vil g e (@bQ(R)),

if c=0, and by

N A > (a(h bt ) = 20 hr) 4 d(W h’))
’C‘b +bt /—|L//L‘ reLiel 2c
if c# 0.

2.3. Vector valued harmonic Maass forms

In this section we define vector valued automorphic forms. In particular, we introduce har-
monic weak Maass forms, a new type of automorphic form introduced in the fundamental
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2.3. Vector valued harmonic Maass forms

article [BEO4] by Bruinier and Funke. In contrast to the forms studied by Maafl these are
allowed to have linear exponential growth at the cusps.
Let (V, Q) be a rational quadratic space of signature (b",07) and let L be an even lattice.
We define the Petersson slash operator for k € 37 and (v,¢) € Mpy(Z) on functions
f:H— C[L'/L] by

(Floor (:8)) (T) = &(7) > pr(v,0) " f(77).

Definition 2.3.1. A twice continuously differentiable function f : H — C[L’/L] is called a
harmonic weak Maass form of weight k with respect to the representation py and the group
Mp,(Z) if

(1) (flep (7, ))(7) = f(7) for all (v, ¢) € Mp,(Z).

(ii)) Agf =0, where
02 0? , 0 0
A= v (%“LW) + kv (@w—)

is the weight k hyperbolic Laplace operator.
(iii) Thereisa C' > 0 such that f(7) = O(e“?) as v — oo uniformly in u, where 7 = u+iv.

We denote the space of these forms by Hj ,, and define a subspace H, ,j C Hy,, by
replacing condition ( . by

(iii’) There is a Fourier polynomial

Z Z nhqeh,

heLl'/L neZ+Q(h
—oo<<n<0

such that
f(r) = Pp(1) =0(e™") as v — o0,

for some constant € > 0. Here, ¢ = €*™". Then P;(7) is called the principal part of

f.

From now on we will frequently omit the word “weak” from the definition. It will also
be clear from the context if a harmonic Maass form is in H,:f o, OF Hip, .
We write f, for the h-th component of a function f: H — C[L'/L], i.e.

f= Z fnen.

heL'/L
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2. Automorphic Forms

Remark 2.3.2. We denote the spaces of weakly holomorphic modular forms, modular
forms, and cusp forms by M,L por» Mk, respectively Sy, .  Holomorphic functions f :
H — C[L'/L] are annihilated by the weight & Laplace operator, so we have the inclusions

|
Hy,, D H,;pr DM, D My, O Sk,

By A, we denote the space of functions that transform of weight k with respect to the
representation py (without requiring any analytic properties). We call this the space of
automorphic forms (note that some authors require not only the correct transformation
behavior but also some analytic conditions in the definition of automorphic forms).

Remark 2.3.3. For a unimodular, even lattice we recover the definition of scalar valued
modular forms (for SLy(Z)) as in Section 2.1} By adjusting the analytic properties appro-
priately in Definition [2.1.1] we can also define scalar valued harmonic Maass forms for the
group I'o(N). We denote the space of such forms by Hy(N), respectively H," (N).

Remark 2.3.4. Let N be the level of L. Using Remark it is not hard to show
that the components of f € M, ,, are scalar valued modular forms. If b* + b~ is even,
then the components fj, are modular forms for I'(N) = {(¢b) € SIy(Z) : a =d =1
(mod N), b=c=0 (mod N)}. If b* + b~ is odd, then k € 17\ Z and the components f;,
transform with respect to slightly more complicated multiplier systems (see for example
[Kob93]).

As in the scalar valued case, a function f € Hj ,, has a Fourier expansion of the form

Z Zcf(n, h,v)q

heL!/L neQ

Since A f = 0, the coefficients c(n, h,v) satisfy the differential equation Agc(n,h,v) =0
as functions in v. Computing the space of solutions to this differential equation gives rise
to the following proposition.

Proposition 2.3.5. Let f € H,, with k # 1. Then f uniquely decomposes as f =

[T+ f, with
= > ) b (2.3.1)
heLl!/L neZ+Q(h)
n>—0o
and

o)=Y [egone™+ Y ¢ W (2mnw)q" | e, (2.3.2)
heLl'/L neZ—;Q
n#0
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2.3. Vector valued harmonic Maass forms

where
o0

W(a) = Wilz) = / ettt

—2z
If x < 0, then W(z) = I'(1 — k,2|z|), where I'(a,z) is the incomplete I'-function. The
function 7 is called the holomorphic and [~ the non-holomorphic part of f.
If f e Hlj,py the Fourier expansion of f~ is given by

Z Z W (2mnv)q"ep,. (2.3.3)

heL’/L neZ+Q(h)
n<0

Remark 2.3.6. In the setting of this thesis as described in Section we obtain a
C[Z/2NZ]-valued function with Fourier expansion (assuming that f € H,’ ~and k < 1)

Z Z cf n, hq4Neh,

neL
n>> e’}

Z Zcf n, h)T (1—k,4ﬁ‘%

) n€EZ
n<0

and

v) qinep,.

The operation of Z as in Lemma implies that the Fourier coefficients of f € Hy,,
satisfy

¢E(n, h) = (—1) 5 (n, —h).

From this we directly deduce the following corollary.

Corollary 2.3.7. The space Hy, ,, s trivial iof

2k £ b* — b~ (mod 2).

2.3.1. Differential operators acting on automorphic forms

We introduce some differential operators acting on the space of harmonic Maass forms.
The basic reference here is [Bum98]. We define the differential operators - and = by

0 1 o .0 and 0 1 /0 W 0
— = — =i n — == =—4+1—).
or du 0w or 2\0u Ov
Definition 2.3.8. Let k € %Z. We define the Maass raising and lowering operators on

smooth functions f : H — C[L’/L] by

0 0
Ry = 2i— + kv™! and Ly = —2iv®>—.
or ot
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2. Automorphic Forms

The lowering operator L, takes automorphic forms of weight k to automorphic forms of
weight k£ — 2 and the raising operator Ry takes automorphic forms of weight k to automor-
phic forms of weight k& + 2. Moreover, these operators commute with the slash operator
[Bum98, Lemma 2.1.1].

We can write Ay in terms of L; and R}, as follows
—Ay = Lo Ry + k = Ry_oLy.

The Maass raising and lowering operators satisfy the following relations with the weighted

Laplace operator
RiAx = (Ao — k)R, (2.3.4)

LAy = (Ap—o+ 2 — k)Ly. (2.3.5)
We also define iterated versions of the raising and lowering operators
Ry = Rk+2(n71) 00 Rpig0 Ry, Ly = Lk72(n71) o+ Ly g0 Ly.

For n =0 we set R) = L} =id.

Using ([2.3.4) and (22.3.5]) we can show that the iterated versions of the Maass raising and
lowering operators satisfy relations similar to the ones that Ry and L; satisfy.
Lemma 2.3.9. For k € Z we have

AgRE . = RF, (Ao, — k(k+1)).

If k is even, then
AsjoerRy)y = Ry)s (A3/2 + %(k + 1)) ,
Auanllfs = 24 (A + U +1))
and if k is odd we have
Arjp y LSO = [0 (Aw + k(k + ))
Asjpii RSV = RSV (A1 j2+ Z(k + 1)) .

Following Bruinier and Funke [BE04] we consider another important differential operator
whose most important features will be discussed in the next section.

Definition 2.3.10. Let f € Hy,, be a harmonic Maass form. We define the antilinear
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2.3. Vector valued harmonic Maass forms

differential operator &, by

E()(7) 1= VL f(7) = R () = 200 f(7)

and the usual Dolbeault operators 0 and 0 on 1-forms, by requiring
_ 0 _
O(fdr +gdr) = | =g | dr NdT
or
_ B 0 B
a(fdr + gdr) = ;f dr Ndr.
T

We denote by £ the space of C*®-differential k-forms. Then d = 0 + 0 for the exterior
derivative d : £ — £2.

We summarize some useful identities between the various differential operators in the
following lemma.

Lemma 2.3.11. We have

O(fdr) = —v* " (f)du(r) = — Ly fdu(r).
We introduce another differential operator

1 0

"~ omior
Then we have the following lemma.

Lemma 2.3.12 (Lemma 2.1 in [BORO§|). We have

1 RAL

k=1 __
P e

Moreover, Bruinier, Ono and Rhoades proved the following theorem.

Theorem 2.3.13 (Theorem 1.1 in [BOROS]). Let 2 < k € Z and f € H', (N) with
Fourier expansion as in (2.3.3)). Then we have

D*Y(f) € My(N)
and

Dkqf _ Dkfler _ Z C}r(n)nqun_

n>>—oo

Moreover, the constant terms of D*~(f) at all cusps of To(N) vanish.

A short calculation yields the following lemma.
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Lemma 2.3.14. For a C*°-function F' on Xo(N) we have

dF = ——&(F)d7 + 2niD(F)dr. (2.3.6)

_ 1
2i
2.3.2. Harmonic Maass forms and the ¢-operator

In [BF04] Bruinier and Funke show that the {-operator relates harmonic Maass forms to
modular forms.

Proposition 2.3.15 (Proposition 3.2 and Theorem 3.7 in [BF04]). The operator & defines
a surjective mapping
/
gk : kaL — Mé—k,ﬁL‘

The kernel of this map is given by M,é’pL.
Remark 2.3.16. The space H ,j o, can alternatively be defined as
H]:PL = {f c Hk,PL : é-k(f) (— SQ*kyﬁL} .
A direct consequence of Proposition [2.3.15|is the following corollary.
Corollary 2.3.17. The following sequences are exact

&k

0 M/i?,pL Hip,, MZ!—k,ﬁL —0, (2.3.7)
0 Ml!wu Hl::pL & Sy_kp, —0. (2.3.8)

Via a direct computation we obtain the following lemma.

Lemma 2.3.18. Let k # 1. For f € Hy,, the Fourier expansion of &.(f) € My
given by

k 7ﬁL s

af)=—> |gonE-1)+ 3 ¢(nh)dmm) *q" | e

heL'/L neZ+Q(h)

Let f and g be automorphic forms of weight k transforming with respect to the repre-
sentation pr. We define the regularized Petersson inner product of f and g as

(f.9)ip, = lim [ (f(r), g(r))v*dpu(r),

t—o00 Fi

whenever this expression exists. Here, F; = {7 € F : J(7) < t} denotes the truncated
fundamental domain.
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2.3. Vector valued harmonic Maass forms

In [BE04] Bruinier and Funke define a bilinear pairing between the spaces M,_;5, and
H by

k.pr,

{9.1} = (9, &(H))2% 5, » (2.3.9)
where g € My_15, and f € H ,j ,.- Lhey obtain the following duality result.

Proposition 2.3.19 (Proposition 3.5, [BF04]). Let g € My 15, with Fourier expansion
9 = Yopnby(n,h)q"en, and f € H,', with Fourier expansion as in (2.3.1) and (2, 5’%)
Then the above defined pairing ofg and f is determined by the principal part of f. It is

equal to
{9.1Y= "> > ¢f(n,h)by(—n,h).

heL’/L n>0

We extend the pairing between M, 5 and H ,j o, to include not only holomorphic
modular forms but also weakly holomorphic modular forms.

Proposition 2.3.20. For g(r ) ZheL,/L Yo% bgG W) Pen € My 5 and f € H
with Fourier expansion as in and | - we have

{9.1}=>_ (Z cf (n, )by(—n, k) + Y cf(=n, h)by(n, h)) .

heLl’/L \n=0 n>0

Proof. We follow the argument of Bruinier and Funke [BE04, Proposition 3.5].

First, we note that (g, f)dr is a Mp,(Z)-invariant 1-form on H. By Lemma [2.3.11] we
have

and obtain using Stoke’s theorem

/f (0. Tufutr) = - /8 R

Since the integrand is SLy(Z)-invariant the equivalent pieces of the boundary of the fun-
damental domain cancel and we obtain

_ 1/2
—/ (g, f>dT=/ (g(u+1t), f(u+it))du.
OF, _

1/2

If we insert the Fourier expansions of g and f, we observe that the integral picks out the
0-th Fourier coefficient of (g, f). Therefore

/ 0. Tf)dn= 3 Z (=, h) + O(e™)

heLl’/L neZ+Q(h
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2. Automorphic Forms

for some € > 0. Taking the limit as ¢ — oo we obtain
{9./} = hm/ (9, Lef)du = Z (—n, h).
heL! /L neZ+Q(h

]

Proposition 2.3.21 (Proposition 3.11 in [BF04]). For every Fourier polynomial of the

form
Z Z (n,h)q"ey

heL’/L neZ+Q(h
n<0

with ¢t (n, h) = (—1)’”17_4)+ ct(n,—h), there is an f € Hy, with principal part Py(t) =
P(7) + ¢ for some T-invariant constant ¢ € C[L'/L]. If k < 0, then f is uniquely deter-
mained.

From the non-degeneracy of the bilinear pairing (2.3.9) and the formula in Proposi-
tion [2.3.19 we deduce the following corollary.

Corollary 2.3.22. A harmonic Maass form f € Hl:pL with constant principal part must
satisfy f~ = 0. In this case f is a modular form in My, ,, .

This implies that f, f € H oL with the same principal part actually have the same

non-holomorphic part as well, i.e. f~ = ]7_. Therefore, the non-holomorphic part f~ of a
harmonic Maass form f € H," ,, 1s determined by the principal part Py of f. Obviously,
the converse is wrong, since & is surjective.

2.3.3. Jacobi forms and Hecke operators

We briefly introduce Jacobi forms. These forms were first investigated by Eichler and
Zagier in [EZ85]. There is a natural isomorphism from the space of Jacobi forms to the
space of vector valued modular forms. Using this isomorphism we are able to define Hecke
operators on vector valued modular forms.

Definition 2.3.23. Let k,m € Z. A holomorphic function ¢ : H x C — C is called a
holomorphic Jacobi form of weight k and index m if

(i) ¢ (77’, ﬁ) = (e + d)* e(mcz?/(cT + d))p(T, 2) for all v = (24) € SLy(Z).
(i) @(1, 2 +r7 +8) = e(—m(r*t + 2r2))¢(7, 2) for all r, s € Z.

(iii) ¢(7, 2) is holomorphic at the cusp oo.
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2.3. Vector valued harmonic Maass forms

We denote the space of holomorphic Jacobi forms of weight k£ and index m by Jj ,,,. Such
a function ¢ € Jj,, has a Fourier expansion of the form

o(r,2) = Y eln,r)g"¢,

n,re€Z

where ¢ = €*™™ and ¢ = €*™. If ¢(7,2) is holomorphic at oo, then c(n,r) = 0 if the
discriminant 72 — 4nm is positive.

Proposition 2.3.24. Let ¢ € Jy,,. Then ¢(7,2) has a theta expansion of the form

$(r.2) = Y (7)0(7,2),

reZ/2miz

where

0u(1,2) = Y ¢ing
nez
n=r(2m)

forr € Z/2mZ.
If L =7 is the lattice with the quadratic form Q(z) = ma?, then

U(r) = Z or(T)e,

reZ/2miz

is a vector valued modular form contained in My_y3,, . This correspondence gives an
isomorphism
Mi—1/2,p, =~ Jim-

Remark 2.3.25. If L is the lattice defined in Section and k € 17\ Z, then we have
My p, >~ Jes1/2,N-

Remark 2.3.26. The space My, is isomorphic to the space of skew-holomorphic Jacobi
forms of weight k + 1/2 and index N as defined in [Sko90a].

Remark 2.3.27. The space Sp%7 is isomorphic as a module over the Hecke algebra to
Sor i (N). This is the space of newforms on which the Fricke involution acts by multipli-
cation with (—1)¥+1/2, The isomorphism is given by the Shimura correspondence. Analo-

gously, we can relate SpS% to Sy (N). Here, the Fricke involution acts by multiplication

with (—1)F=1/2,

Using these isomorphisms we can introduce the operation of the Hecke algebra that was
introduced for the space of Jacobi forms in [EZ85]. For any positive integer ¢ we have
a Hecke operator T'(¢) on My ,, that is self adjoint with respect to the Petersson inner
product (note that here py, can be either py, or ;). The action on the Fourier expansion of
a vector valued modular form g(7) = >,  b(n, h)q"es € My, can be described explicitly.
Moreover, this action extends to harmonic weak Maass forms.
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If p is a prime that is coprime to IV, we have g|T'(p) = >_,, ,, b*(n, h)q"en, where

4Non

b*(n, h) = b(p*n, ph) + P2 (
p

) b(n, h) + p**2b(n/p?, h/p), (2.3.10)

and where c = 1if A<0Oand o =—1if A > 0.
Bruinier and Ono proved a series of useful results regarding the action of Hecke operators
on the bilinear pairing which we recall now.

Proposition 2.3.28 (Proposition 7.1, [BO10]). The action of the Hecke operator is self
adjoint with respect to the pairing {-,-} (up to a scalar factor). In particular, we have

{9, fIkTW)} = 7 {gl2T (1), f}

forge Sy i, and f € HI:EL'
Lemma 2.3.29 (Lemma 7.2, [BO10]). Let g € So—,, and assume that f € H,;%L satisfies
{9, f} =1, and {g', f} =0 for all ¢ € So_y,, orthogonal to g. Then & (f) = ||g]|~?g.

Let F' be a number field. Denote by Ss_y, ,, (F') the F-vector space of cusp forms having

coefficients in F'. Moreover, we write H,’ 5, () for the space of harmonic weak Maass forms
whose principal part has coefficients in F'.

Lemma 2.3.30 (Lemma 7.3, [BOI0)). Let g € Sy, (F). Then there is an f € H,', (F)
such that

&(f) = llgll 9.
Lemma 2.3.31 (Lemma, 7.4, [BOI0). Let f € H,[ ~and assume that &(f)l2xT(1) =
N&xk(f) with \y € F. Then

fIRT ) = P20 f € My, (F).

2.4. Twisting automorphic forms

In this section we recall work of Ehlen and the author [AE13] on twisting automorphic
forms with a genus character related to the lattice L defined in Section [I.2l We let the
setting be as in Section Since the lattice L is fixed from now on, we write p for pp,

(here and in the following).

We first define a generalized genus character for § = (b/ iN :ba/;yv> € L as in [GKZ8T].
From now on we let A € Z be a fundamental discriminant and r an integer such that
A =7r? (mod 4N).

Then

(%) , if Alp* —4Nac, (b* — 4Nac)/A is a
xa(9) = xa(la, b, Nc]) == square mod 4N and ged(a,b, ¢, A) =1,

0, otherwise.
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Here, [a,b, N¢] is the integral binary quadratic form corresponding to §, and n is any
integer prime to A represented by one of the quadratic forms [Nya, b, Noc| with NyNy = N
and Ni, Ny > 0.

The function xa is invariant under the action of I'g(/N) and under the action of all
Atkin-Lehner involutions. It can be computed via the following formula |[GKZ87, Section
1.2, Proposition 1]: If A = A A, is a factorization of A into discriminants and N = NN,
is a factorization of N into positive factors such that (Ay, Nja) = (Ay, Noc) = 1, then

wlonnd = (5) (32)

If no such factorizations of A and N exist, we have ya([a,b, Nc|) = 0.

Since xa(6) depends only on § € L' modulo AL, we can view it as a function on the
discriminant group D(A). Let pa be the representation corresponding to the discriminant
group D(A).

In [AE13] it was shown that we obtain an intertwiner of the Weil representations corre-
sponding to D = L'/L and D(A) via xa. This idea was due to Stephan Ehlen.

Proposition 2.4.1 (Proposition 3.2,|[AE13]). We denote by m : D(A) — D the canonical
projection. For h € D, we define

Var(en) = > xa(0)es. (2.4.1)
5eD(A)
w(6)=rh
Qa(d)=sgn(A)Q(h) (Z)
Then Ya, : D — D(A) defines an intertwining linear map between the representations p
and pa, where
~ Jp ifA>0,
P=\5 ira<o.

Remark 2.4.2. For a function f € A ,, Proposition directly implies that the func-
tion g : H — C[D], g = >, cp gnen With g, := (¥ar(en), f), is contained in Ay ;.

2.5. Poincaré series and Whittaker functions

We recall some facts on Poincaré series with exponential growth at the cusps following
Section 2.6 of [BO13|. Again we work in the setting that we introduced in Section

We let k € 1Z, and M,, () and W, ,(z) denote the usual Whittaker functions (see p. 190
of [AS84]). For s € C and y € R we put

Mi(y) =y M_x 1 (y).

M

We let I's, be the subgroup of I'y(N) generated by (¢ 1). For an integer k € Z, m € Z-~y,
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z=x+iy € Hand s € C with R(s) > 1, we define

Fo(z,s,k) = 2r(123> M%}(M (M, (drmy)e(—ma)] | 7. (2.5.1)

This Poincaré series converges for f(s) > 1, and it is an eigenfunction of A; with eigenvalue
s(1—s)+ (k* — 2k) /4. Tts specialization at so = 1 — k/2 is a harmonic Maass form [Bru02,
Proposition 1.10]. The principal part at the cusp oo is given by ¢~™ + C for some constant
C € C. The principal parts at the other cusps are constant.

The Poincaré series behave nicely under the Maass raising and lowering operator.

Proposition 2.5.1 (Proposition 2.2, [BO13]). We have that
k
RiF(z,8,k) =4mm (8 + 5) Fo(z,s,k+2).
Proposition 2.5.2. We have that

1 k
LiF,(z, 8, k) = — (s - —) Fo(z, s,k —2).

4mm 2

Proof. Since Lj commutes with the slash operator, it suffices to show the identity on the
corresponding Whittaker functions. We employ equations (13.4.11) and (13.1.32) in [AS84]
which imply the desired identity. [

We now define C[L’/L]-valued analogs of these series. Let h € L'/L and m € Z — Q(h)

be positive. For k € (Z — %)<1 we let

1
Foun(T,8,k) = 2T (25) Z (M k(dmmy)e(—mz)en]|,. , 7,
7€l \Mp,(Z)

and for k € (Z — %)>1 we let

1
Fonn(T,8, k) = 5 Z (M p(dmmy)e(—mz)en]], , -

€T o0 \Mpy (2)

The series F,,, 1(T, s, k) converges for R(s) > 1 and it defines a harmonic Maass form of
weight k for the group Mp,y(Z) with representation p. The special value at s = 1 — k/2
if k € (Z — %)<1, respectively s = k/2 if k € (Z — %)>1, is harmonic [Bru02, Proposition
1.10]. For k € Z — % the principal part is given by ¢~"¢, + ¢~ ™e_;, + ¢ for some constant

ce C[L'/L].

Remark 2.5.3. For k < 0 these Poincaré series span the space H ,:r p [Bru02, Proposition
1.12]. For k = 0 we have to add the constants to obtain a basis for Hgfp.
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We will also consider the W-Whittaker function

Wek(y) =y *Wija s 12(y),  y > 0. (2.5.2)
It behaves as follows under the Maass raising and lowering operator.

Proposition 2.5.4. For m > 0 and y > 0 we have that

LW, x(dmmy)e(-ma) = — ( - 5) (1 - g) Wosa(dmmy)e(—ma)

and
RW; p(dmmy)e(—max) = (—4mm)W; ko (drmy)e(—max).

Proof. For the first equation we use (13.1.33) and (13.4.23) and for the second one (13.1.33)
and (13.4.26) in [AS84]. O

2.6. Theta Functions

In this section we introduce the theta functions that we will employ as kernel functions
for the lifts we investigate in the upcoming chapters. We start with the definition of the
usual Siegel theta function in a slightly more general setting than the one explained in
Section Apart from the Siegel theta function, we will define the relevant theta kernels
only in the setting of this thesis as presented in Section More general constructions
can be found in [Bor98, [KMS&6] or [BE04].

2.6.1. The Siegel theta function

Let (V,Q) be a rational quadratic space of signature (b*,b7) and let L C V be an even
lattice of full rank with dual lattice L. We let Gr(L) be the space of b™-dimensional
positive definite subspaces of L ® R, i.e.

Gr(L) :={z C V(R) : dimz =b", Q|, > 0}.

For z € Gr(L) we let 2% be its orthogonal complement in V(R). Then 2t is a b~-
dimensional negative definite subspace of V(R) and V(R) = 2z & z*+. Therefore, we can
uniquely decompose any A € V(R) as A = A\, + A1, where \,, respectively A, denotes the
orthogonal projection of A to z respectively z+. We let

Q:(A) == Q(A:) — Q(A.1)
be the majorant associated to z € Gr(L). Then Q.(\) is a positive definite quadratic

form on V(R) for all z € Gr(L). Using this quadratic form we can employ the classical
construction of theta functions for positive definite quadratic forms as in [FB93, [KKOT7,
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BvdGHZ0§| (this construction does not work for an indefinite lattice L since the resulting
series does not converge).

Definition 2.6.1. The Siegel theta function 91(, z) associated with the lattice L is defined

Ip(r,2) =0T Ze (ET + At T) =T 26 (QNu + Q.(N)iv),

2 2
XEL AEL

where 7 = u+ v € H and z € Gr(L).

Now let V' be the rational quadratic space of signature (1,2) as in Section . Then the

majorant is given by
1

where A(z) is as in ((1.2.3)). Note that for A\ = (b/iN __ba/é%) € L'/L we have

1

N (cN|z|* — bz + a) (2.6.1)

(A M) = -

and

Furthermore, we define
1
R\ 2) = 5()\, A2))? = (M N).
We then let
(N, 2) 1= e 2RO (2.6.3)
and .
s\, 7, 2) 1= GA(VIA, )T, (2.6.4)
Then the Siegel theta function for the lattice L is given by

OLn(T,2,05) =v Z Z s\, T, 2)ep = v Z Z On(T, 2, ps)epn.

heL' /L AeL+h heL' /L AeL+h
It satisfies the following transformation properties (see for example [Bor98|, Bru02]).

Theorem 2.6.2. The Siegel theta function O (T, z, ps) is a non-holomorphic automorphic
form of weight —1/2 transforming with respect to the representation p for Mpy(Z) in the
variable 7 and a I'o(N)-invariant function in the variable z.

We now explain the construction of the twisted theta function ©Oa (7, 2, ps) using the
methods of Section Let pa be the representation corresponding to the discriminant
group D(A). We define by

PO AN, 2) 1= e 2RO/
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2.6. Theta Functions

and |
osa(A\, T, 2) = gogA(\/E)\, Z)€2mQA(/\)T

the twisted versions of (2.6.3) and (2.6.4). We let 6 € D(A) and define a theta function
Os(T, 2, ps) for 7,z € H via

65(7—727803) = Z SOS,A(/\7T7 Z)

AEALH6

By Theorem the vector valued theta series

Op(a)(T, 2, ps) Z O5(7, 2, ps)e

6eD(A

is a non-holomorphic automorphic form of weight —1/2 which transforms with respect to
the representation pa in the variable 7.
We obtain a C[L'/L]-valued twisted theta function by setting

@A,r<7'727§08) = Z Z XA(é)@(S(T,Z,SOS)eh

hel’/L deD(A)
w(8)=rh
Qa(8)=sgn(A)Q(h) (Z)

Recall that
- )p ifA>0,
P=\7 ita<o.

Proposition then directly implies the following theorem.

Theorem 2.6.3. The theta function Oa (T, 2, ps) is a non-holomorphic C[D]-valued mod-
ular form of weight —1/2 for the representation p in the variable T. Furthermore, it is
L'o(N)-invariant in the variable z € D.

2.6.2. The Millson theta function

We define a Schwartz function
1/}KM(A7 T, Z) - pz(A)e_%rQ()\Z)a

where p,(\) = (A, A(2)).

This function was recently studied extensively by Hovel in his PhD thesis [Hov12]. It
can be understood in the context of Borcherds’ definition of Siegel theta functions as in
[Bor9g|. Kudla and Millson were the first that considered this function [KM90]. We call
it Millson Schwartz function throughout this thesis.

We let

Para (A 2) = p(N)e 2O (26.5)
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and
Yrma(N T, 2) = w?(M,A(\/E)\, Z)e2m'QA()\)7—'

The associated theta function, that we call Millson theta function, has the following auto-
morphic and analytic properties.

Theorem 2.6.4. The theta function

Oa (7, 2, YkM) 1= 01/22 Z xa(0) Z Yrma(A, T, 2)ep (2.6.6)

heD 6eD(A) AEAL+S
w(8)=rh
Qa(8)=sgn(A)Q(h) ()

is a non-holomorphic C|D]-valued modular form of weight 1/2 for the representation p in
the variable 7. Furthermore, it is Uo(IN)-invariant in the variable z € D.

Proof. This is Satz 2.6 and Satz 2.8 in [Hov12]. Alternatively it can be deduced from
the automorphic properties of the theta functions Borcherds defined and investigated in
[Bor98| using the methods of Section O

Moreover, we have
Yrma(g-A, gz) = wKM,A(/\7 z)

for g € SLy(R).
The components of the Millson theta function are denoted by ©Oa , 4 (7, 2, ¥xm). We
investigate the growth of the Millson theta function at the cusps of I'y(V).

Proposition 2.6.5. For h € L' /L and for each cusp ¢, we have
Onrn(T, 002, im) = O(e V), as y — oo,

uniformly in x, for some constant C' > 0.

Proof. We proceed as Funke in [Fun02] when investigating the growth properties of the
Kudla-Millson theta function gxy. For simplicity we let A = N =1 (note that the theta
function vanishes in that case, nevertheless the argument we apply here works as in the

more general cases). Then L = Z* and h = (% 0) with b’ =0 or /' = 1/2. So we consider

On(T, 2, VxMm) = Z —E(c]z\z —bx + a)ef%(c\zllbwa)zesz(—b2/4+ac)_

a,cEZL
beZ+h

We apply Poisson summation on the sum over a. We consider the summands as a function
of a and compute the Fourier transform, i.e.

o)
v _Tv 2_yp 2 =12 ;
[ el b g ) v

—00

Y

o0
= _ye—m‘%bQ/2627rz‘(c%+w)(bx—0|z|2) / te—wt2€2m't\%(c%+w)dt

—00
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2.6. Theta Functions

. . _ 2 . . _ 2 .
where we set t = ‘/75(0|z|2 — bx + a). Since the Fourier transform of xe™™" is ize™ ™" this
equals

y? i7b2 (oF 2 w52 (g2
— 3 e—7rz7-b /2627rz(c7-+w)(bm—c|z\ )(07—_ + w)e—T(CT—‘rw)
Vu
2 = 2 ; 2 ry2 2
= 4 (07: + w)6—27rz7'(b/2—cx) 627rz(bxw—c:v w)e—T\CT+w| )
VU
We obtain that
y2 = 2 : 2 my? 2
eh(T’ % deM) - _\/_ j : (077' + w)e—Qm’r(b/Q—c;v) e%m(bxw—cx w)e—T|CT+w| '
v
w,cEZL
beZ+n'

If ¢ and w are non-zero this decays exponentially, and if ¢ = w = 0 it vanishes.
In general we obtain for h € L'/L and at each cusp ¢

0/7,(7-7 O0¢z, Q/JKM) = O(G—C?ﬁ)’ as y — o0,
uniformly in x, for some constant C' > 0. O]

Hoével investigated the behavior of ©a (7, z,¥ku) under the operation of the Atkin-
Lehner involutions.

Proposition 2.6.6 (Proposition 2.7 in [Hov12]). Let Q be an exact divisor of N. Then
we have

@A,r<T> Wgza 7w/}KM) = Z @A,T,Wg.h(T’ 2y wKM)eh'
hel'/L

By ¢ and ¢’ we denote the primitive isotropic vectors

68 ()

in L. We write K for the 1-dimensional lattice Z (§ %) C L. We have L = K + Z({ + Zl'
and L'/L ~ K'/K. Then we can rewrite the Millson theta function in terms of the smaller
lattice K. The following is Satz 2.22 in [Hov12).

Proposition 2.6.7. Lete =1 if A >0 and e =1 if A < 0. We have

Nyfex~ (A
On (T, 2, ¥xm) = — ZyZEZ”(—)

n

1 Nn2y? N
X Z [me (—22, |A|v) Z e (? AT — ZnN/\x> eM]

Y€ o0 \Mps (Z) AEK!

Y-
1/2,5%
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2.6.3. The Kudla-Millson theta function

Following Kudla and Millson [KM86] we define a Schwartz function valued in the differential
forms of Hodge type (1,1). We let

Prm(A, 2) 1= <()\, AM2))? — i) e~2mQN= )

27

where Q) = %%.

Mimicking the construction in the previous sections, we let

1

¢?(M,A(Aa Z) = <|A|(>\ )\( )) %) e_Qﬂ—R(sz)/‘A‘gL

and
‘;OKM,AOHT? z) = i@ SOKM A(\/_)‘ z).

Using the transformation properties of the untwisted Kudla-Millson theta function (see
[KMS86, BF04, BE06]) and the method presented in Section we obtain the following
theorem.

Theorem 2.6.8 (Proposition 4.1 in [AE13]). The Kudla-Millson theta function

On (T, 2, 0xM) Z Z xa(0) Z YrMA(N, T, 2)ey

heD 6eD(A) AEAL+6S
w(8)=rh
Qa(8)=sgn(A)Q(h) ()

is a non-holomorphic C|D]-valued modular form of weight 3/2 for the representation p in
the variable 7. Furthermore, it is o(IN)-invariant in the variable z € D.

Moreover, we have
erm,a(g-A, 92) = ermal(, 2) (2.6.7)

for g € SLy(R) (see [KMS8G, BF0G]).
Funke [Fun02] already investigated the growth of the Kudla-Millson theta function.

Proposition 2.6.9 (Proposition 4.1 in [Fun02], Proposition 4.1 in [BF06]). For h € L'/L
and for each cusp £, we have

@A,nh(T) O¢z, SOKM) = O(G—CyQ)’ as 'y — o0,
uniformly in x, for some constant C > 0.

Using the same arguments as Hovel in his thesis for the Millson theta function (see
Proposition [2.6.6)) we can show the following proposition regarding the operation of the
Atkin-Lehner involutions on Oa (7, 2, pxm)-
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2.6. Theta Functions

Proposition 2.6.10. Let Q) be an exact divisor of N. Then we have

O, (T Wy z i) = Y Oa iy (T 2, 0xm)en
hel!/L

Again, we rewrite the theta function with respect to the smaller lattice K. We can
either use the usual method of Poisson summation or twist the corresponding untwisted
expression which is derived in [BFO6]. An unpublished preprint of Ehlen [Ehl] explains
how to twist the reduction of ©a (7, 2z, kM) to the smaller lattice K.

Proposition 2.6.11. We have

N3/2 = A
On (T, 2, 0xM) = N Z Z n’ (E)
=1 yeToo\Mp,(2)
y: N
X [exp < An > _3/2 e (JA| QAN)T — 2N Anx) eM] v dxdy.
| | /\GK/ 3/2,0K

2.6.4. The Shintani theta function

Now we define the theta kernel of the Shintani lift. Recall that for a lattice element

N L/L we wite A= (2N TN ). et

_2 —
cNZ* — bj’ + @ ~2m0R(\2)/1A] 2miQa (N
4Ny

SOSh,A()\aT> Z) = -
The Shintani theta function transforms as follows.

Theorem 2.6.12. The Shintani theta function

@AT<TZ @Sh _1)/ Z Z XA((S) Z ¢Sh7A(A,T,z)eh (268)

heD 0eD(A) AEALH+S
w(8)=rh
QRa(8)=sgn(A)Q(h) (Z)

is a non-holomorphic automorphic form of weight 2 for T'o(N) in the variable z € D.
Moreover, ©a ,n(T, 2, 0sn) is a non-holomorphic C[D]-valued modular form of weight 3/2
for the representation p in the variable T.

Proof. The automorphic and analytic properties of the untwisted function are stated in

[BvdGHZ0§| on p. 142. Note that we already explicitly evaluated the function % in
our definition above. Using the methods described in Section we obtain the desired

result. O]
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2.6.5. Differential equations for theta functions

The theta functions we just defined satisfy some interesting differential equations. These
were already investigated in [AGOR] Bru02, BF04, Hov12, BKV13].

The Kudla-Millson theta function and the Siegel theta function are related by the identity
[BE04, Theorem 4.4]

1

A - Q. 2.6.
A O,ZGA,T(TVZ?SOS) ( 69)

L3/2,T@A,T‘ (Ta 2 SOKM) =

For the Kudla-Millson theta kernel we have [BO13| Equation (2.18)]

1
A3j2:09a,(T, 2, pxM) = ZAO’Z@A’T(T’ 2, OKM)- (2.6.10)

The Millson theta function satisfies [Hov12, Proposition 3.10]

1
A1/2,T@A,T(T7 Z, 77Z)KI\/[) = ZAO,ZGA,T(7—7 Z, 1/}KM) (2611)

The Millson and the Shintani theta function are related by the following identity [AGOR]
Lemma 3.4]

, 0
§1/2-0n,(T, 2, VM) = _4Zmy2£6A,r(77 Z, Psh)- (2.6.12)

All of these identities can be checked by a direct computation. The following identities are
essential

gy—z(chz —bz+4a) = —ivVNy ?p.(\),

0z ‘
%R(A, z) = —ﬁyﬁpz()\)(c]\fé2 — bz +a),

Yy 2(eNz* — bz +a)(cNz* — bz +a) = 2NR(), 2).

2.7. Twisted Heegner divisors and the modular trace
function

Recall that we defined L,, ) for m € Q and h € L'/L by
Lppn={NeL+h:QN\=m}.

Moreover, we considered the Heegner divisor Z(m, h) in Section m given by

1 .
Z(m,h)= ) ﬁZ(A) € Div(M)q,
AETO(N)\ Ly, 1 A
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where A € Z is a fundamental discriminant and r € Z is such that r* = A (mod 4N).

We define a twisted Heegner divisor Za ,.(m, h) by

Zny(m, h) = > XA(A)Z()\) € Div(M)g.

AELO(N)\Lpm|a|rh T

Here, xa is the genus character defined in Section 2.4 By Lemma 5.1 of [BO10] Za ,(m, h)
is defined over Q(v/A).

Moreover, we let

b/2N —a/N
LTA|m,'rh = {)\ = ( c —b/2N> € L|A|m,rh L a Z O} s

and similarly

_ b/2N —a/N
|Alm,rh — {A = ( /C —ba//2N> € Liapmen + a < 0} .

Obviously, we have Liajm - = LfA‘mmh U LA
We define Z3 .(m,h) and Zy .(m,h) correspondingly. Similarly as in Lemma 5.1 of
[BOT0] one can show that Za ,(m, h) = ZX (m, h)=Zx .(m, h) is defined over QWA, /m).

Let k > 0 and let F' be a harmonic Maass form of weight —2k for To(N) in H*,, (N).
We set OF := R*,, (F) which is automorphic of weight 0.

Definition 2.7.1. If m € Q.o with m = sgn(A)Q(h) (Z) and h € D we define the
following modular trace functions

xa(N)
tX (F;m,h) = F(z) = T P
A,r( m ) Z (Z) Z FA‘ ( /\)
2€Z% .(m,h) AELONNL 3,
A
AELO(NNL Ak ’
| - xa(M)
tA,r(F, m, h) _ Z _—3F(D/\)

AETo(N\L|A|m,rh

Now let F' be a harmonic Maass form of weight 0 in H"(N). We define the “traces” of

negative index.
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Definition 2.7.2. If m = 0 or m € Qg is not of the form = \AI ® with k € Q-o we let

5h() res dxdy . B
tar(F;m,h) = { f o(N)\IHI yz , if i ; 1
| ’ if 1.

Here the integral has to be regularized [BF04, Equation (4.6)].

Now let m = —Nk*/ |A| with k € Qs and A € Ly a|,n. We have Q(A) = —Nk?, which
implies that A\t is split over Q and c()\) is an infinite geodesic. Choose an orientation of V'
such that

for some s € Q. Then c, is explicitly given by
ecx=o, {z€H : R(z) =—s/2m}.

Define the real part of ¢(A) by R(c(\)) = —s/2m. For a cusp £, let

(F,c(N\) = — Z aZ(n)ez’rm(C(’\))”— Z azz)\(n)e%rié)%(c(—)\))n’

n€Q<o n€Q<o

where aZ (n) denotes the corresponding Fourier coefficient of F' at the cusp ¢. Then we

define
tar(Fsmh) = Y xa(A(Fe(N). (2.7.1)

AGFO(N)\LV‘h,\A\m

The modular trace functions and the traces for the geodesics will appear in the Fourier
expansion of the theta lifts that we compute in the following chapters.
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3. The Kudla-Millson theta lift

In this chapter we define the Kudla-Millson theta lift. We use the twisted Kudla-Millson
theta function defined in the previous chapter as an integration kernel to lift harmonic
Maass forms of integer weight —2k < 0 to harmonic Maass forms of half-integer weight.

This lift was first considered by Bruinier and Funke in [BE04, BF06]. In [BF06] they
showed that the holomorphic part of the lift of a harmonic Maass form F' of weight 0 is
the generating series for the traces of CM values of F. Ehlen and the author [AE13] later
considered a twisted version of this lift which is then a generating series for the twisted
traces of CM values of F'. Using the Maass lowering and raising operators Bruinier and
Ono [BO13| explained a modification of the lift that takes harmonic weak Maass forms of
negative weight —2k as an input. They explicitly worked out the lift of weight —2 harmonic
Maass forms to obtain algebraic formulas for the partition function p(n). Here, we extend
the Kudla-Millson lift to other weights and we include twisted traces.

In the first part of the chapter, we investigate the automorphic and analytic properties
of the Kudla-Millson lift. Let FF € H',, (N) be a harmonic Maass form of negative weight
—2k for I'o(N). Recall that p = pif A >0 and p=pif A <0. In the case that k is even,
the lift of F' is a weakly holomorphic modular form of weight 3/2 + k for p. In the case
that k is odd, the lift of F' is a harmonic Maass form of weight 1/2 — k for p in Hfr/z_kﬁ.
In this case, the lift is weakly holomorphic if and only if the twisted L-function of {_ox(F')
vanishes at s = k + 1. This gives an interesting new criterion for the vanishing of the
L-function in the critical point.

In the second part of the chapter we compute the Fourier expansion of the holomorphic
part of the Kudla-Millson lift using a method developed by Katok and Sarnak [KS93]. It
turns out that the coefficients of positive index of the holomorphic part are given by the
traces of the input function as defined in Section We will present applications of this
result in Chapter [7}

Throughout the chapter we assume the notation of Section In particular, V is a
rational quadratic space of signature (1,2) that we identify with the 2 x 2 matrices in Q
with trace 0. Recall that M is the modular curve Yy(N) = ['o(N) \ H. We frequently use
the identification between the symmetric space D and the complex upper half plane H as
in (L.2.2). As before, z is used as a variable for integer weight forms (corresponding to
automorphic forms on the Grassmannian D), and 7 is the symplectic variable that is used
for half-integer weight forms. Recall that we write ¢ = €™ and q = *™". Let L be the
lattice defined in Section let A € Z be a fundamental discriminant, and r € Z such
that A =72 (mod 4N). By p we denote the Weil representation associated to the lattice
L.
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3. The Kudla-Millson theta lift

3.1. Definition of the Kudla-Millson theta lift

We let Oa (T, 2, pxm) be the twisted Kudla-Millson function of Section . Recall that
it is a non-holomorphic C[L’/L]-valued modular form of weight 3/2 for the representation
p in the variable 7 and is I'g(/V)-invariant in the variable z € D.

Following Bruinier and Ono [BO13| we define the Kudla-Millson lift of a harmonic Maass
form as follows.

Definition 3.1.1. Let £ > 0 be an integer and let F' be a harmonic weak Maass form in
H™,, (N). For even k we define the Kudla-Millson theta lift by

IIA(}X[(,R F) = RI‘;;S,T /]V[(REQk,zF) (Z)@A,T’(T7 <, QPKM) (311)
and for k£ odd by
TN (7, F) = L) /M (RE 5y . F)(2)Oa(T, 2, 0x11)- (3.1.2)

Note that the rapid decay of the Kudla-Millson function (Proposition [2.6.9) implies
that the integrals in (3.1.1)) and (3.1.2) exist. In the following section we investigate the
automorphic and analytic properties of the lift.

3.2. Automorphic and analytic properties

In this section we investigate the growth of ZE}?(T, F') at the cusps and its behavior under
the Petersson slash operator and the Laplace operator. We obtain the following result.

Theorem 3.2.1. Let k > 0 be an integer and let N be square-free. Let F € H*,, (N) be
a harmonic Maass form of weight —2k for 'o(N). The Kudla-Millson theta lift of F' has
the following properties:

(i) If k is odd, the Kudla-Millson theta lift IX) (7, F) of F is a harmonic weak Maass
form of weight 1/2 — k transforming with respect to the representation p. Moreover,
the lift IE}X[(T, F) is a weakly holomorphic modular form if and only if the twisted
L-function of {_oi(F) € S3/241(IN) vanishes at s =k + 1.

(i) If k is even, the Kudla-Millson theta lift ZX\'(7, F) of F is a weakly holomorphic

modular form of weight 3/2 + k transforming with respect to the representation p.

The case k = 0 was treated by Bruinier and Funke [BF06] for A = 1. Using the methods
presented in Section Stephan Ehlen and the author generalized this result to arbitrary
fundamental discriminants.

Theorem 3.2.2 (Theorem 4.5, Corollary 4.8 in [BF06], Theorem 5.5, Corollary 5.6 in
[AEL3]). Let F be a harmonic Maass form of weight 0 for I'o(N) with vanishing constant
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3.2. Automorphic and analytic properties

coefficient at all cusps. The Kudla-Millson theta lift IIA(}X[(T, F) of F is a weakly holomor-
phic modular form of weight 3/2 transforming with respect to the representation p. If the
constant coefficients of F at all cusps do not vanish, the lift IIA{}X[(T, F) lies in the space

Hg/gﬁ.

To prove Theorem [3.2.1| we establish a series of results. Note that the transformation
properties of the twisted Kudla-Millson theta function ©a (7, 2z, pxm) directly imply that
the lift transforms with respect to the representation p. We first consider the behavior of
the lift IIA(}\f(T, F) regarding the weighted Laplace operator. After that we show that the
lift also satisfies the correct growth conditions at the cusps under the assumption that N is
square-free. We do this by computing the lift of Poincaré series and using the equivariance
of the lift with respect to the action of the Atkin-Lehner involutions. Then we investigate
under which assumptions the lift is weakly holomorphic.

Proposition 3.2.3. Let F' be an eigenform of A_sy ., with eigenvalue A. Then IX}}H/I(T, F)
is an eigenform of Ay sy, with eigenvalue % iof k is odd, and IK}X[(T, F) is an eigenform
of Agjaqr,r with eigenvalue % if k is even.

Proof. We prove the proposition for odd k. The proof for even £ follows analogously. Using
Lemma [2.3.9 we see that

A1/2fk,TIIA{,1\7ZI(Ta F)

k
— Lg’;;?/? /M(Rlizk,zF>(Z>A3/27T@AW(T’Zv YxMm) + Z<k + 1)IIA<}\T/I(T, F). (3.2.1)

By equation (2.6.10) we have AgjsOn (T, 2, xm) = }LA07Z@A7T(T, z, kM), which implies

that (3.2.1)) equals

1 k
T | (B P800, 72 ) + 0 DTS (7 ).

By the rapid decay of the Kudla-Millson theta function (Proposition [2.6.9) we may move
the Laplacian. Using Lemma we then obtain that

1
Ao I8 (r F) = LG5 /M (B3t 20, F) (20017 2, 10

Since F' is an eigenform of A_y; , with eigenvalue A this equals %IIA{}XI(T, F). ]

We now compute the lift of the Poincaré series F},,(z, s, —2k). Recall that e = 1if A > 0
and e = ¢ if A <0.
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3. The Kudla-Millson theta lift

Theorem 3.2.4. For k > 0 even we have

INN(T, Fiu(z, s, —2k))

A s 13
—(°. = —(k+1) R
=C) (n)n F .o |A|7_?T(r,2+4,2+k),

4Nn2
nlm

where

925+2k—1, 2k+1(3k—1)/2 ]A|(k+1)/2 el (; + 1)

= —

NF/2 T'(2s)
k—1 k/2—-1 s
- 5. )
XH(S—l—j k)‘ (2+ +7),
7=0 7=0

and for k > 0 odd we have that

A s 11
KN _ o, - k 9 2 - -
Iny (7 Fn(z, 5, —2k)) = C Z(n)”“ m? |A|,—:'ZT(T’2+4’2 k)

nlm

where

22k— S|A| k—1 (k—1)/2 s 1
C° = TN(k“)/2 kﬂsH s+j—k) H (————j).
F(§+§) §=0 j=0

Proof. For the explicit evaluation of the lift of Poincaré series we generalize the proof of
Bruinier and Ono [BO13]. Repeatedly applying Proposition implies by induction

[ (B Faeos. =200, 5.2 ) 3:22)
M

k—1
= (4rm)* [ [(s +7 — k) / Fin(2,5,0)0a,(T, 2, oxum).-

=0 M

Using the definition of the Poincaré series (2.5.1) and an unfolding argument we obtain

MS,O (47Tmy)e(_mx)®A,r<Ta 2 QDKM) .

= Coo\H

By Proposition [2.6.11] this equals

N3/% (drm)e 5 (A
BRI (F(Qs)) [Ts+i-0Y (E) nt ) Imsmin)lg v,
j=0 =t

n vET o0 \Mpy (Z)
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3.2. Automorphic and analytic properties

where

00 1 2N 9
I(7,s,m,n) :/ / yM o(dmmy)e(—mx) exp <_7rn y >
y=0 J =0 |A| (%

x p3/? Z e (JA| QN)T — 2N Anx) e,ndzdy.

AEK'

Identifying K’ = Z (1/§N 71?2]\,) we find that

D e(JAJQNT —2NAnz) ey = Y e (— A %7" - nbx) erp.

AEK! beZ

Inserting this in the formula for (7, s, m, n) and integrating over z, we see that I(7, s, m,n)
vanishes whenever n 1 m and the only summand occurs for b = —m/n when n | m. Thus,
I(1,s,m,n) equals

2

0 2N 2
320 (A7) . / M, o(4 _T AV ) g . (323
v e ( |A| 4Nn27—) y:(]y S,0< Tmy) exp Alv Y € rm/n ( )

To evaluate the integral in (3.2.3)) note that (see for example (13.6.3) in [AS84])
1
M o(4mmy) = 27T <s + §> drmy - Is_q12(2mmy).

Substituting t = 3? yields

o mn?Ny?
yM; o(dmmy) exp (— ) dy
/ otimmy) BE

1 [e%¢) QN 2
=227 (g4 = / y\/Ammy Is_q2(2mmy) exp _m ey dy
2) Jy=o |A|v

1 * Nt
= 2%-1Ip <s + —> \/mﬂ/ t1/4fs_1/2(27rmt1/2) exp (_wn ) dt.
2 =0 |Alv

The last integral is a Laplace transform and is computed in [EMOT54] (see (20) on p. 197).
It equals
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3. The Kudla-Millson theta lift

Inserting this and using that M, x(y) = y_k/ZM_g’S_%(y) we obtain that

I(1,8,m,n) =2*7'T <§ + 1) (mm) 2 (%)

mm? |Alv m?|Alu
M\ Ty )\ gy )

Therefore, we have that (3.2.2)) equals

N32_ 1 e A\
- 2’A|€ F(QS) (47rm) H(S+J _k)z ; n Z I(Ta37m7n>|3/2,ﬁ1{’7' (324)

j=0 njm €T o0\ Mp, (2)

For k > 0 even we write for equation ((3.2.4])

1 AN mm? |Alv m?|Alu
¢ 5%(5)” I G

’Yefoo \Mp,(Z)

f)/
3/2,pK

with k .
C = _223+2kz—1 mk+1 7T_k—l/Q |A E H s "’] .
7=0

We now apply the differential operator Rgg . to this expression. By the commutativity
of the raising and the slash operator, Proposition [2.5.1| implies

2 2
k)2 ™m*|A|v m?* Al u
/o (MH (n—N \"Tmen

m?|Al kZREL o 3/2 + 2j m?|Alv m?|Alu
~ (i) IG5 M (Man) e ()

J=0

(NI

We collect terms to obtain C* as in the statement of the theorem.

For odd k we rewrite (3.2.4]) as follows
1 A
Cl L - - -1
o ()
m? | Al v m? |A|u
< 2 Mg (T e (e ) o]

7€L 0 \Mpy (2)

v
3/275K

where -
22k—s / A —= -
C = ——‘ |€mk+1 T2 H(8+j—k).

L(;+3) g
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3.2. Automorphic and analytic properties

A repeated application of the lowering operator on /\/l%Jri’% (%) e (—%) as in

Lemma yields the statement in the theorem since the lowering and slash operator
commute. O

We now investigate the operation of the Atkin-Lehner involutions on the Kudla-Millson
lift.

Proposition 3.2.5. For an Atkin-Lehner involution Wév as in Deﬁm’tion hel/L
and F € H_o(N), we have

IKTWC]?V (T7 F) IIAG)"/Ih (7—7 F‘*Qk(Wé)V)il) :

Proof. This follows from Proposition [2.6.10} ]

Using the action of the Atkin-Lehner involutions and the fact that the Poincaré series
generate the space of harmonic Maass forms of weight less than zero, we are able to prove
that the Kudla-Millson lifts of harmonic Maass forms are again harmonic Maass forms.

Corollary 3.2.6. Let N be square-free and k > 0. If F € H", (N) is a harmonic
Maass form of weight —2k for To(N), then IX)(7, F) belongs to M?;,/2+k:,ﬁ if k is even
and IXN(7, F) belongs to H1/2 ry U K is odd.

Proof. For f € H3/2+kp, where k > 0, we have &321x(f) € S, )5 5 Since dim(S, 5 ;. 5) =0
for k > 0, this implies that f € M. 3/2+k 5

For odd k the proof is similar to the proof of [BO13, Corollary 3.4]: For m € Z-q
the Poincaré series span the subspace H f;,}:(N ) of harmonic Maass forms whose principal
parts at all cusps other than oo are constant. By Theorem |3.2.4] we find that the image of
H*3°(N) is contained in ]\/[3/2”?~ for even k, and H;, , - for odd k. Let W denote the
group of Atkin-Lehner involutions. Then,

HT,\ ( Z ’VH—%

yEW

1/2—k,p

since the group W acts transitively on the cusps of I'o(N) for square-free N. Applying
Proposition [3.2.5 now implies the result. O

A natural question is under which conditions the Kudla-Millson lift of ' € H*,, (N) with
k odd is weakly holomorphic. We obtain the following interesting criterion that relates the
weak holomorphicity of the lift to the vanishing of the twisted L-function of £ o (F') at the
critical point.

Theorem 3.2.7. Ifk is odd, N is square-free, and F € H™,, (N), then IKM(T F) is weakly
holomorphic if and only if we have

L(é_gu(F), Ak +1) = 0.

In particular, this is true when F is weakly holomorphic.
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3. The Kudla-Millson theta lift

Proof. Here we partly follow the proof of Bruinier and Ono in [BO13|. Since the Atkin-
Lehner involutions act transitively on the cusps, it suffices to consider the case when the
principal parts of F' at all cusps other than oo are constant. Again, we obtain the result
for the entire space H,, (N) by using Proposition For ' € H';;°(N) we denote the
Fourier expansion of the holomorphic part at the cusp oo by

z) = Z ar(m)e(mz
meZ

Then we can write F' as a linear combination of Poincaré series

ZaF Fo(z, 1+ k, —2k).

m>0
By Theorem m the principal part of ZX (7, F) is given by
(o) A k m2 |A|
ce. mZ>OCLF(—m> lz (E) n-e (—mz (erm/n + e_rm/n),

where C° is as in Theorem [3.2.4]

We use the pairing between the spaces Hfr/Q_kﬁ and S35 > (see Equation (2.3.9))). To

prove that the lift is weakly holomorphic we have to show that { g,IKM (1, F) } = 0 for
every cusp form g € S, Jo+k5- Denoting the Fourier coefficients of g by b(n h), we have

A m?|A| m
KM 02 E k
{g,I T F =2C (ZF n (g)b(4NTL2 ,ET')

m>0 nlm

=2C°{F,Sa,(9)} = 2C°(§ax(F), Sar(9))art2,

where Sa,(9) € Sori2(N) denotes the Shimura lift of ¢ as in [Sko90al. If F' is weakly
holomorphic this expression vanishes, since _o(F) = 0.

If F e HY,, (N)\ M',,(N), we have by the adjointness of the Shintani and Shimura
lift (see for example Section I1.3 of [GKZS&T], and [Sko90al [Sko90b|] for the case of skew-
holomorphic Jacobi forms)

€2k (F), Sar(9))2k+2 = (SA - (E-2k(F), 9)3/2+k:

where S} . denotes the Shintani lift (this notation differs from the one we will use in the
next chapter, but is consistent with the notation in [GKZS87]). This equals zero for all cusp
forms ¢ if and only if the Shintani lift of £ o, (F') vanishes. In terms of Jacobi forms we
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3.3. Fourier coefficients of the holomorphic part

have that
N
* G n ~ro
SA(Ean(F)) = <ﬁ) Z Tkt 1N, A(r2—4nN) ro,a (28 (F)) " (™, (3.2.5)
n,ro€Z
7’(2)<81sz

where 7441 N A(2—4nN)ro,a 18 @ certain cycle integral defined in [GKZ81].
Now by the Theorem and Corollary in Section 1.4 in [GKZ87] we have

2 k+1/2 _
Tk+1,N,A(rgf4nN),rro,A(5*2’6(}?)) = |A’k+l/2 ‘7’8 - 4”N‘ / (k’!)zN g
x 222U L(E g (F), Ak +1) - L(E ok (F), 75 — 4nN, k + 1).

From Theorem B of [LR97] we know that L(£_ox(F),rd —4nN,k + 1) = 0 for all ry and
n implies that £ o (F) vanishes. Therefore, since ry and n vary in (3.2.5)) the Shintani lift
SA (62 (F)) vanishes if and only if L(_ox(F), A, k + 1) vanishes. O

3.3. Fourier coefficients of the holomorphic part

Now we turn to the computation of the Fourier coefficients of positive index of the holo-
morphic part of the theta lift. Recall that the modular trace function is defined as

ta (Fymh)= X2 yp(p,),

AELo(N)\L| Ajmrh I

where OF := R*, (F) for F € H*',(N) with & > 0, h € L'/L and m € Qs with
m = sgn(A)Q(h) (Z) (see also Section [2.7)).

Theorem 3.3.1. We let k > 0 be an integer, F € H',,(N), h € L'/L, and let m € Qg
with m = sgn(A)Q(h) (Z). We obtain the following results:

(i) Let k be even. The (m,h)-th Fourier coefficient of the holomorphic part of IR (7, F)

equals
drm\ "
(—W) tAm(F;m,h).

(it) Let k be odd. The (m,h)-th Fourier coefficient of the holomorphic part of TN (7, F)

equals
(k—1)/2
A NERREE gy
(47rm H 9 7)1\ 5 ta,(EF;m,h).

J=0
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3. The Kudla-Millson theta lift

Remark 3.3.2. As described in Section we can identify the elements of L'/L with
binary quadratic forms. Combining work of Miller and Pixton [MP10] and of Bruinier and
Ono [BO13] one can show algebraicity results for the numbers (R*,, . F)(aq) occurring in
the traces above.

To be more precise, let N be square-free and D be a positive discriminant that is coprime
to N. Moreover, let r € Z with r* = —D (mod 4N). By Qp,n we denote the set of
positive definite integral binary quadratic forms |[a, b, ¢| of discriminant —D with N|a and
b = r (mod 2N). Then we let ag = %ﬁ be the Heegner point corresponding to
Q € Qp,n. We write Op for the order of discriminant —D in Q(v/—D).

Using the work of Miller and Pixton [MP10] and of Bruinier and Ono [BO13] it is shown
in [AIf14, Theorem 6.1]) that for FF € M',, (N) with integral coefficients at all cusps and
primitive @ € Qp,n the number 3*D*(1)¥(RF,, .F)(aq) is an algebraic integer in the
ring class field for the order Op C Q(v/=D). The multiset of values R*,, f(ag) is a union
of Galois orbits.

Proof of Theorem |(3.53.1. We first prove the result for A = 1. Using the methods developed
in [AE13] we then deduce the general result.

Proof for A =1: We consider the Fourier expansion of [, 0F(z)O(7, z, k), namely

> | 2 /MaF(Z)sO%M(\/EA,Z) C (3.3.1)

heL’/LmeQ \AELy,

We denote the (m, h)-th coefficient of the holomorphic part of (3.3.1) by C(m,h). Using
the usual unfolding argument we find

commy= Y \f_li | oF Gt ),

)\EFU(N)\Lm’h

Following Bruinier and Ono [BO13| Proof of Theorem 3.6] we employ an argument of
Katok and Sarnak [KS93]. We rewrite the integral over M as an integral over G(R) =
SLy(R). Here, we normalize the Haar measure such that the maximal compact open
subgroup has volume 1. Then we have

Clm,h) = >

)\GFO(N)\L’HL,}L

1 . .
. / OF (gi) (VM. 9i)dg.
FA’ G(R)

Note that SLy(R) does not act transitively on elements of the same norm as it is assumed

in [KS93]. But when splitting the elements A\ = <b/ iN :1;7/2%

on whether a > 0 or a < 0 as described in Section 2.7, we see that SLy(R) acts transitively
on these subsets. There is a g; € SLy(R) such that g;.A = /mA(i) if a > 0. If a < 0, we
have g1.(—\) = v/mA(i) and use that ¢%,, is an even function in the first variable. For the

) into two subsets, depending
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3.3. Fourier coefficients of the holomorphic part

element g; € SLy(R) we find

1/2 -1/2
ANQ(N) b ANQ(N)
2cN 2cN 2cN

INQ(N) 12
O < 2cN )

Then, g,gi is the Heegner point corresponding to D).

a1 =

By the invariance of the Haar measure we obtain
Clm, h) = L oF(gigi) s (Vovimg ), 1) d
(m,h)= > s (919%) et (Vov/mg™ . A(i),4) dg.
AEFO(N)\Lm7h| A} G(R)
We set
= [ PP ehas (Vivg™ X)) do.
G(R

and
f(g) == 0F(q:197).

Using the Cartan decomposition KATK of SLy(R) and the K-invariance of the function
WYt (Vo/mg=t\(i),4), we then find as in [KS93] that

Mmzm[E@W%MWHmw

24
(/ / Fkio(a)ks) dkldk;g) ——a
/ / f l{ilOé ]{32 dk’ldl{ig

has the same eigenvalues as 0F(gi) under the action of the Laplace operator and is right
and left K-invariant. By using the uniqueness of spherical functions we obtain

The function

flg) = (1) - welg) = OF (D) - welg)
where w.(g) is the standard spherical function of eigenvalue ¢ = —k(k + 1). We find
1(0) = OF(Dy) - V(o)

where

Y.(t) = dr /1 T (tala) (), iwe(a(a) =t (3.3.2)

and a(a) = (& % ). Note that w.(a(a)) = w. <M>

2
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3. The Kudla-Millson theta lift

By evaluating ol (ta(a)™t.A\(7),4) using (2.6.1) and (2.6.2) and substituting a = €’/2
we obtain that (3.3.2)) equals

27r/ (4152 cosh(r)? — 2—) we(cosh(r)) sinh(r)e_‘m2 Snh(r)® . (3.3.3)
0 s

In this case the standard spherical function is given by the Legendre polynomial Py(z) =
2%19!%(352 — 1)* [Iwa02, Chapter 1]. By substituting x = sinh(r)? we obtain that ({3.3.3)
equals

%0 1
At / VIF 2P (VT +z)e 2 dy — B Pu(VT+w)e " de.  (3.3.4)
0

V1+x

To evaluate the first integral in (3.3.4) we use the following recursion formula for the
Legendre polynomial (see for example equation (8.5.3) in [AS84])

VIt aP(WVIta) = ((k F VP (VI 2) + kP (VI T x)) .

2k +1

Thus, we are left with

© ka1 k
Art? P..1(V1 —
g /0 <2k+1 (VI o) + 5y

P (V1+ 3:)) ey, (3.3.5)

which is a Laplace transform computed in [EMOT54] (see equation (7) on page 180). It

equals

(47Tt2) 1/4, 27t? < k+1 Wh

2
ok 1 ey (mt) +

1 4A7t?) ) . 3.
Vs (m)) (3.3.6)

The second integral in can be evaluated in the same way (see equation (8) on page
180 of [EMOT54]) and equals

1
4

— S(4mt?) Ry, (Ant?). (3.3.7)

M\zs-

+1
t1

i

l\DI»—

Using (13.1.33), (13.4.17), and (13.4.20) in [A884] together Wlth Equatlon it is not
hard to show that the sum of the expressions in and (| is equal to

2N (4mt?).

[STES

3 3
T132

Thus, C(m, h) is given by

Clm,h)= > —8F( NET W

3 (4mmu).
1Y 2
ANEL,, h

3
4

We now have to apply the iterated raising respectively lowering operator to the Fourier
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3.3. Fourier coefficients of the holomorphic part

expansion in (3.3.1]), which boils down to evaluating it on

qm€2ﬂ'mvwg+%’%(4ﬂ-m0) = W%_i_%’g (47va)€<mm)

By Proposition [2.5.4] we obtain

RI;;;,T <W§+%7% (47va)e(m:z:)>

— (—47rm)k/2W k/2 m

oo s (dmmu)e(ma) = (~dxm) g,

Nlw

since W, .(y) = y*/2e7¥/2 for y > 0, v = k/2, and p = k/2 — 1/2 [AS84, Chapter 13].
For the lowering operator a repeated application of Proposition yields

33
2t

(k+1)/2 (k=1)/2
1 ko N(. k+1
- () I (5+9) 0=57) s

Again the Whittaker function simplifies, namely Wg 3 ’%7k(47rmv) = e 2o,

Lg’;;?m (W@ (47va)e(mx)>

_(dmmu).

N

Thus, we obtain that C'(m, k) is given by
C(m, h) = (=4xm)** Y~ ——0F (D)) = (—4zm)**t(F;m, ), (3.3.8)
)\GLm’h

in the case that the input function F' has weight —2k with k even. In the case that k is
odd, we obtain

Clm, h) = (L)(kﬂwﬁ (g + j) (j - %) o(Fm ). (3.3.9)

4d7m .
Jj=0

Proof for A # 1: Replacing the theta function O(r, z, pxm) by Oa (7, 2, Yxm) We can
write

217, 1) = 3 (vsnlen). | OF (280 )
heD M

In general the group I'y(N) does not act trivially on D(A). However, the Kudla-Millson
theta function ©pa)(7, 2, pxum) is always invariant under the discriminant kernel I'n =
{veTo(N) : vd=dforall 6 € D(A)} C I'o(N). Since F (2)Opa)(7, 2, oxm) is To(N)-
invariant by we obtain by a standard argument

TNy (r, F) =

,T

heD
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3. The Kudla-Millson theta lift

Now we are able to apply the result for the coefficients in the case A = 1 to the integral
above. Note that we have to replace m by m/|A| in (3.3.8) and (3.3.9).

For m € Q we then obtain that the (m, h)-th Fourier coefficient of the holomorphic part
of ZXM (7, F) is given by 1/[To(N) : ['a] times

<¢Ar en), Z C(m,h)e > Z Xa(d) t(F;m,0) (3.3.10)

5eD(A 5eD(A)
w(6)=rh
Qa(0)=sgn(A)Q(h) (Z)
k/2
(—%) if k is even,
X
(k+1)/2 k1
(£5) TILE (5+0) (G- 5 ifkisodd

(3.3.11)

Here, the traces are taken with respect to I'a and the discriminant group D(A). Note that

t(Fm,0) = )

AELAN(AL)s,m ‘FAA‘

OF(Dy). (3.3.12)

where (AL)s., = {X € AL+ : Qa(A) =m}. If m = sgn(A)Q(h) (mod Z) the right
hand side in (3.3.10) is equal to ta ,.(F; m, h) and we obtain the result stated in the theorem.
]

3.4. Fourier expansion in the case k£ =0
For the sake of completeness we briefly state the Fourier expansion of the lift in the case
k = 0. It was derived by Bruinier and Funke in [BE06] for A = 1 and by Ehlen and the

author in [AE13] for A # 1.

Theorem 3.4.1 (Theorem 4.5 in [BF06], Theorem 5.5 in [AET3]). Let F € Hf (N) and

write
Floz)= Y af(n)¢"+ > a;(n)q
neaiez neaiez
n>=>—oo n<0

for the Fourier expansion of F at the cusp . Assume that F has vanishing constant term

at every cusp of Uo(N). Then the Fourier expansion offf\fh(ﬂ F) is given by

Iavn(T F) = > tas(Fim h)g" + > " tan(F; =N [A]m?, h)g NIAM,
meQ>o meQxo
m=sgn(2)Q() (2) —N|AJm?=sgn(A)Q(k) (2)

If the constant coefficients of F' at the cusps do not vanish, the following terms occur in
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3.4. Fourier expansion in the case k =0

addition:

V |A| 3
=l a6 h) e at (0)
2 ZGFo(N)\ Iso(V)

ag, (0) +a;_, (0 TuNmM*\ A
WYY aw Sl (et

m>0 XL, _n2
Qa(N)=sen(2)Q(h) (2)

where B(s) = [ t7%2e~**dt and 0 is defined in Remark-

Remark 3.4.2. The coefficients of the principal part of ZX)(7, F') can be computed ex-
plicitly in terms of the coefficients of the principal part of F' (see [BF06, Proposition 4.7]
and [AE13], Proposition 5.7]).

Remark 3.4.3. We briefly explain the nature of the constant d as defined in [AE13]. For
he L'/L and ¢ € Iso(V), we let

Wz)z{l’ if 0N (L+h)#0, (3.4.1)

0, otherwise.

If 0,(h) = 1, there is an hy such that ¢ N (L + h) = ZX; + hy. Now let s € Q such that
he = sA,. Write s = £ with (p, ) = 1 and define d(¢, h) := g, which depends only on ¢ and

h. Moreover, we define hj = d(e B —— M\, which is well defined as an element of D.
Then da (¢, h) is defined as follows

de(h), if A=1,
a0 h) =< xal(rh),), if A1, §(rh) =1and A|d(¢,rh), (3.4.2)
0, otherwise.

In fact, the constant da (¢, h) always vanishes in the case that N is square-free [AE13]
Proposition 5.4].
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4. The Bruinier-Funke theta lift

In this chapter we define the Bruinier-Funke theta lift. The construction is similar to the
one in the previous chapter but now we employ the Millson theta function as an integration
kernel. This lift was first considered by Bruinier and Funke in their fundamental paper
[BE04]. The Bruinier-Funke lift behaves like the Kudla-Millson lift in many aspects. In
the next chapter we show that the lifts are in some sense dual to each other.

We let F € H',,(N) be a harmonic Maass form of weight —2k < 0 for ['o(N). Recall
that p = pif A > 0 and p = p if A < 0. The Bruinier-Funke lift is a weakly holomorphic
modular form of weight 3/2 + k transforming with respect to p if k is odd. If k is even, it
is a harmonic Maass form in H 1+/2_ 1.5 and is weakly holomorphic if and only if the twisted
L-function of & o4 (F') vanishes at s = k + 1.

The case k = 0 is special. In this case the Millson theta function satisfies a differential
equation with respect to the Shintani theta function leading to a relation between the
Bruinier-Funke and Shintani theta lift. We make use of this in Chapter 6 to prove results
on L-series of weight 2 cusp forms.

We also compute the coefficients of the holomorphic part of the lift which are again given
by the twisted traces of CM values of the input function as in Section

Especially in the case k = 0, it would be interesting to compute the Fourier expansion
of the non-holomorphic part as well. However, we can not employ the methods of [BF06]
directly which rely on the existence of a Green current for the Kudla-Millson Schwartz
function. In our case no such function is known.

As in the previous chapter, we assume the notation of Section [1.2] In particular, V is
a rational quadratic space of signature (1,2) that we identify with the 2 x 2 matrices in
Q with trace 0. Recall that M is the modular curve Yy(N) = I'o(N) \ H. We frequently
use the identification between the symmetric space D and the complex upper half plane
H as in (1.2.2). As before, z is used as a variable for integer weight forms, and 7 is used
for half-integer weight forms. Recall that we write ¢ = €?™* and ¢ = €?™". Let L be the
lattice defined in Section let A € Z be a fundamental discriminant, and r € Z such
that A = r? (mod 4N). By p we denote the Weil representation associated to the lattice
L.

4.1. Definition of the Bruinier-Funke theta lift

In this section we define the Bruinier-Funke theta lift. Let ©Oa (7, 2, ¢¥xm) be the Millson
theta function defined in Section [2.6.2] It is a non-holomorphic C[L’/L]-valued modular
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4. The Bruinier-Funke theta lift

form of weight 1/2 for the representation p in the variable 7. Furthermore, it is I'o(NV)-
invariant in the variable z € D. We then make the following definition.

Definition 4.1.1. Let £ > 0 be an integer and let F' be a harmonic weak Maass form in
H*,, (N). For even k we define the Bruinier-Funke lift of F' by

IE;(T, F) = Llng/ (R’isz)(Z)@A,T(T,Z,LDKM)d,u(Z) (4.1.1)
M
and for k odd
X (r, F) = RV} )" / (R* 51, . F)(2)On (7, 2, dicn) dpa(2). (4.1.2)
M

Since the Millson theta function is rapidly decaying at the cusps (Proposition [2.6.5]), the
integrals above exist.

4.2. Automorphic and analytic properties

Here, we study the Bruinier-Funke lift ZR¥ (7, F') with respect to its transformation behav-
ior under the Petersson slash operator and the analytic conditions it satisfies on H and at
the cusps. We have the following theorem.

Theorem 4.2.1. Let k > 0 be an integer and let F € H,, (N) be a harmonic Maass form
of weight —2k for T'o(N). The Bruinier-Funke theta lift of F' has the following properties:

(i) If k = 0, the Bruinier-Funke lift of F is a harmonic Maass form of weight 1/2
transforming with respect to the representation p.

(ii) For square-free N and odd k > 0 the Bruinier-Funke theta lift of F is a weakly
holomorphic form of weight 3/2 + k transforming with respect to the representation

p.

(iii) For square-free N and even k > 0 the Bruinier-Funke theta lift of F' is a harmonic
Maass form of weight 1/2 — k transforming with respect to the representation p.
Moreover, the lift IIA(}X[(T, F) is a weakly holomorphic modular form if and only if the

twisted L-function of §_opx(F) € S3/044x(N) vanishes at s =k + 1.

Note that the transformation properties of the twisted theta function ©a (7, 2z, ¥xum)
directly imply that the lift transforms with representation p. First we investigate how the
lift behaves under the action of the Laplace operator. As in the case of the Kudla-Millson
theta lift, we then show that the lift satisfies the correct growth conditions at the cusps if
N is square-free by computing the lift of Poincaré series and using the equivariance under
the action of the Atkin-Lehner involutions.
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4.2. Automorphic and analytic properties

The case F' € H, (N) is special. Then the Bruinier-Funke lift is related to the Shin-
tani theta lift via the differential equation between the two theta functions (see Equa-
tion (2.6.12)). This directly implies that the lift is a harmonic Maass form (for all N) if
the constant coefficients of F' at all cusps vanish. In this case, we compute the lift of the

constant function to show that the resulting function is contained in H 172 5

Lemma 4.2.2. Let F' be an eigenform of A_qy . with eigenvalue X. Then the Bruinier-
Funke lift of F' is an eigenform of eigenvalue % of Ayja_pr if k is even and of Agjoypr if
k is odd.

Proof. For even k we have by Lemma [2.3.9

Moo (B, [ (B PO b))
M

(k + 1)12@(7, F).

e~

= Llfgr/ (Rlizk,zF)(Z)Al/z,T@A,r(T,Z,IbKM)d,u(z) +
M

The relation of the action of Ay, and Ajjs . on Oa (7, z,¥km) (see Equation (2.6.11)))
implies that

1 k
Buan T F) = 005 [ (B F)(:) 0. (2, b)) + 4 DIRE (7, ).

By the square exponential decay of the Millson theta function (Proposition we may
move the Laplacian to (R, ,F)(z). Using that Ag. (R, .F) = RFy, (A_g . —k(k+1))
(Lemma [2.3.9) and that F' has eigenvalue A under A_y; , we then obtain the result. For
odd k we proceed analogously. ]

As for the Kudla-Millson lift, we compute the lift of Poincaré series. Recall that e = 1
if A>0and e=17if A <O.

Theorem 4.2.3. For even k we have

A 11
I Fnters =200 =T ()P, (5 55 8)

nlm

where

2%—stle k/2+41/2 nrk/2+1/2 1/2—k/2 - il s—1
CEZ_NS—/QMW/+/N/+/|A| H<3+J—k)H< —])7
j=0 j=0

and for odd k we have

A 11
IR Fiulz 5, —28)) = Ca ) (5) nE e <T7 § t13” /f) :

4Nn2
nlm

69



4. The Bruinier-Funke theta lift

where

+i).

Proof. We first compute the lift of the weight 0 Poincaré series F,(z, s,0) and prove that

2s5+2k—1 € g i
e e N ) (SR
St
j=0 =0

2 s+1

s 11
Inr (T, Fn(2,5,0)) \/7TN|A € Z ( ) RN (7’, 3 + T 5) . (4.2.1)

Using the definition of the Poincaré series (2.5.1)) and an unfolding argument we obtain

1
['(2s) Lo \H

By Proposition this equals

EN (A
- T(25)2i ; (E) w0 Amsmn)lg v,

’YEFOO\MP2(Z)

In, (7, F(2,8,0)) = M o(dmmy)e(—mx)Oa (T, 2, Y ) dp(2).

where
- 2 N o/2
I(,s,m,n) :/ / y2./\/ls,o(47rmy)e(—mx) exp (_7m Y )
y=0 J z=0 |A|
x v Y2 37 e(JA| QT — 2N Ana) emdwdy
y

AEK'’

Identifying K’ = 7Z (1/§N _1(/)21\/) we find that

Z e (JA| QAT — 2N Anx) e\ = Z ( |A| —7' - nbx) erb-
AEK! bez

Inserting this in the formula for (7, s, m, n), and integrating over x, we see that (7, s,m,n)
vanishes whenever n 1 m and the only summand occurs for b = —m/n when n | m. Thus,
I(1,s,m,n) equals

m? o mn2Ny?
a . — _ . 4.2.2
v ( |A| N2 ) /y:O M o(dmmy) exp ( N ) dy e_pm/m ( )

As in the proof of Theorem [3.2.4] we use that

1
M o(dmmy) = 22s=1p <s + 5) drmy - I_q1/2(2mmy).
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4.2. Automorphic and analytic properties

Substituting ¢ = y? yields

o] 7T.?ALQ.]\[in
M o(dmmy) exp (— ) d
. Meatimna Ao

1\ [~ Ny
_ 22571F (S + 5) /;0 47Tmy [s—1/2<277my) exXp (_WTA| Uy ) dy

1 > *Nt
= 2% (8 + —) \/mﬂ/ tYA T pp(2mmtt?) exp (—L> dt.
2 t=0 |Alv

Again, the last integral is a Laplace transform and is computed in [EMOT54] (see (20) on
p. 197). It equals

r(+14 2\ "4 2IA 21A
(2 + f) ()1 (ﬁn > exp (7rm 2| \v) Mo <7rm 2\ |v) '
I'(s+1) |Alv 2n’N 271 n?N

Therefore, we have that (7, s, m,n) equals

25-1 A m? Al u T |Alv
i F(2+2) wane(_ mey ) M Ty ) e

Putting everything together we obtain the following for the lift of F,,(z, s,0)

222 s/2—|—1/2 \/MZ( )

N

m* Al u mm? |A|v
<D {6 (—m> Msiis (W frmin %
'YEFOO\MPQ(Z) 1/27.51(
which implies the formula in (4.2.1)).
A repeated application of Proposition yields that
k-1
I8 (7, o5, ~28)) = (amm)* T[(547 = ) [ P, 5.000, (20 b di(2).

§=0 M

For even k we have by Proposition

m?|A|v m?|Alu
Vo <M;+i,; (W) ¢ (—m))

_ Nn? k/2kﬁ1 s—1 . Mo i mm? |Alv . _m2]A|u
mm? | Al 2 J ERE T n?N 4Nn? )~

Jj=0
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4. The Bruinier-Funke theta lift

Since the lowering and the slash operator commute, we obtain

A 11
Tar(r Fnlz5,~26)) = Co 3 <E> (R NINEES (ﬂ A ’“) ,

4Nn?2
njm

with

92k—s+1g sk 2k—1 k/2—-1 1
C, = _ka/2+l/2]\7k/2+1/2 A /2=k/ H(S+j — k) H ( —j) '
j=0 j=0

For odd k£ we compute

2 2
(k+1)/2 ™m*|A|v ~m |A|u
Bajas M‘z“*i’%( 2N )\ ann?

B WmQ’A‘ (k+1)/2(kﬁ/2 8+1+. Mo 7Tm2‘A’U ) _mQ\A|u
" Nn2 o ) Mg\ T aN ANn? )

=0
and get
Ias(T, Fo(z,s,—2k)) = C; - mzm <%> nf(kﬂ)fﬁw,—%r (T, g + le’ % — k) ;
with
C = _22s+2k—1§];2(z)/2.2 + 1/2>7T3k/2N—k/2 |A|k/2+1 2k kl_[l(s P (k1_1[/2 (3 —g 1 +j) '
3=0 j=0

O

From Proposition 2.6.6| we can directly deduce the following Proposition on the action
of the Atkin-Lehner involutions on the Bruinier-Funke theta lift.

Proposition 4.2.4. For an Atkin-Lehner involution Wg as in Deﬁm’tz’on hel/L
and F € H_o(N), we have

Igiwg,h(ﬂ F) = IEE,h(ﬂ F‘—2k(Wév)_l)-

The following two results follow completely analogous to the corresponding results in
the previous chapter (Corollary and Theorem [3.2.7)).

Corollary 4.2.5. Let N be square-free, k > 0 an integer and F € H', (N). Then the
Bruinier-Funke lift of F is a weakly holomorphic modular form of weight 3/2 + k if k is
odd. If k is even, then the lift is a harmonic Maass form of weight 1/2 — k.
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4.2. Automorphic and analytic properties

Theorem 4.2.6. Let N be square-free and k # 0 be even. For a harmonic Maass form
F € HY,,(N) the lift is weakly holomorphic if and only if

L(E_on(F), Ak +1) = 0.

In particular, this is the case when F' is weakly holomorphic.

Proof of part (ii) and (iii) of Theorem |4.2.1. Combining the results proved above we ob-
tain the second and third part of Theorem [4.2.1] O

4.2.1. Relation to the Shintani lift

The Bruinier-Funke lift of a harmonic Maass form of weight 0 and the Shintani lift of £y(F")
are closely related as we will explain now.

We let ZX".(7, G) be the Shintani lifting of a cusp form G of weight 2 for To(N). It is
defined as

9 (1.G) = / G(2)Oar (7. 7, pon)du(z)
M

and is a vector valued modular form of weight 3/2 transforming with respect to the
representation p.
We then have the following relation between the two theta lifts.

Theorem 4.2.7. Let F € Hy (N) with vanishing constant term at all cusps of To(N).
Then we have that

6er (2507 ) = 5 TR 0.
Proof. By Stokes’ theorem and Lemma 1| we have that

I (v, o (F /go ))Oa (7. 2, )y dp(2)

- /M (22O (r. 2 ps))du(z) + lim [ F()Onr (7,2, pan)dz.

t—o00 OF:

where F; = {z € H : (z) <t} denotes the truncated fundamental domain. The differ-
ential equation between the Shintani and the Millson theta function (Equation (2.6.12))
implies that

_ /M F(2)62.(Oa (7, 2, psn))dp(2)

1 _
= o MF(Z)fl/zT(@A,r(TaZM/JKM))d/L(Z) = -

It remains to show that

1
mfl/gﬂ— (125(7', F)) .

lim F(2)Oa. (7,2, psn)dz = 0.

t—o0 OF;
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4. The Bruinier-Funke theta lift

We have to investigate the growth of the Shintani theta function at the cusps. Again, we
let A= N =1, L =73 and I/ = 0,1/2 for simplicity and obtain

Z — bz ta — 25 (clz |2 br+a) omiF(—b2/4
“+ac
Onr(T,2, sn) = E —— ¢ v emiT(b/arac),
4y
a,cEZ
beZ+h'

As in the proof of Proposition [2.6.5] we apply Poisson summation to the sum over a. Thus,
we consider o B

/ B cz® — bz + a6—;%’(c|z|2—bx+a)e27ri’F(—b2/4+a,c)627riwada'
492

Proceeding as in the proof of Proposition [2.6.5] we obtain

—00

On(T, 2, Psn) = W

2 2
X (052 + biy — c|2f? +i%(c7 + w>> e~ " lerul?
v

If ¢ and w are not both equal to 0 this vanishes in the limit as ¥ — oco. In this case, the
whole integral vanishes. But if ¢ = w = 0 we have

Z be TiTh? /2

b€Z+h/

Thus, we are left with (the complex conjugate of)

Z be™ T’ /2/ F(x +it)dx.

b€Z+h’

/ F(2)O(T, z, psn)dz =
OF¢

We see that )

lim [ F(x+it)de =0,

t—o0 0

since the constant coefficient of F' at the cusp oo vanishes. Therefore,

lim F(2)O(r, z, osn)dz = 0.

t—00 OF;

Generalizing to arbitrary N, similar growth estimates hold for the other cusps of M. [J

The relation to the Shintani lifting directly implies

Proposition 4.2.8. Let F € HJ (N) with vanishing constant term at all cusps and let
&.(F) = G € S3(N). The lift IR (7, F) is weakly holomorphic if and only if the
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4.2. Automorphic and analytic properties

Shintani lift of G vanishes, i.e. if
L(G,A,1) = 0.

In particular, this happens if F' is weakly holomorphic.

4.2.2. The lift of the constant function

We now turn to the computation of the lift of the constant function. We follow the strategy
of Bruinier and Funke [BF06] and first compute the lift of the (normalized) real-analytic
Eisenstein series &(z,s) of weight 0 for To(N) and then take residues at s = 1. The
Eisenstein series &y(z, s) is given by

Eo(s) = 5C@s+1) Y (SGE)T

’YEFOO\FO(N)

where s
¢'(s) =7 () (s)
17

denotes the completed Riemann Zeta function. Here, I'o, = ({ %). The Eisenstein series
&o(z, s) converges for R(s) > 1 and has a meromorphic continuation to C with a simple
pole at s = % with residue

T 1

6Vol(To(N) \H) ~ on T, (1 " i) .

For the computation of the lift of a constant we need the following results on the Eisen-
stein series of weight 1/2 defined by

1 1igyl
Epx(ms) =5 >, (02 )z

Y€ o0 \Mpy (Z)

Here, K is the sublattice Z (§ °; ). Note that & /o (7, s) vanishes if px = pg, i.e. if A > 0.
This can bee seen by replacing v by Z+ in the sum, where Z = (—1,i) € Mp,(Z) and using
that eg|1/2,0,Z = —¢o. Combining Theorem 6.2, the results of Section 6.4 and Equation
(5.19) in [BFI13] we obtain the following proposition.

Proposition 4.2.9. The residue of & /25, (7,5) at s = % s given by

12 B(1) ~
T e
LeTo(N)\Iso(V)

Here, By(s) is a holomorphic function associated to the Fourier expansion at the cusp ¢
of a weight 0 Eisenstein series (see [BFI13, Section 5.5.]) and Ok,(T) is a theta series
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4. The Bruinier-Funke theta lift

associated to the cusp { (see [BFI13, Section 2]).

Theorem 4.2.10. Let A < 0. For the lift of the weight 0 FEisenstein series we obtain

)
)

e I(
2iy/m T (

1
x A (EA, s+ 5) 51/2,ﬁK(T> 5).

_I_
_|_

TR (7,80(2,5)) = —C"(25 + NVAT2 A1

[V VY
NN

Remark 4.2.11. Note that the vanishing of the Millson theta function for some values
of N and A implies the vanishing of the Bruinier-Funke lift as well. For example, if
N = A =1, the lift vanishes. The same holds for N =1 and A > 0.

Proof. The proof follows the one in [BF06, Theorem 7.1, Corollary 7.2] and [AE13, Theo-
rem 6.1]. Using the standard unfolding trick we obtain

T3 (1. Ey(2,5)) = C*(25 + 1) / O (. 2, reat)y ™ da(2).

oo \H

By Proposition this equals

Ne A 1 ~ 1
_g*(QS_I_l)Q_Z_Zn(E) Z mpK (V)W

nzl 7€l \Mpy(Z)

> 1 N7m2y2 >
X Ftrexp [ ——nu=2— | d
/yoy p( A[S(r7)
1
> e(JA]QNT — 2N Anz) epada.

X

The integral over x equals ¢q and the one over y equals

1 s 3 ~ 5.3 _s_3 _g, 3
T (5+3) (a1samyiviem s-tnt,

Thus, we have

(s+%)eo)

N

1 1
x L (GA,S + 5) B Z (v |1/2,K’7

vET o0 \Mpy (Z)
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4.3. Fourier coefficients of the holomorphic part

For A > 0 this vanished and for A < 0 we find that this equals
e I(
2i\/7 T (

)
;-

L +
—("(2s+ 1)A (eA, s+ 5) Erjox (T, 8)N1/4—S/Q‘A’s/2+3/4 -

Nlw [(N]w
e Ll B [9N)

]

We now take residues at s = % in Theorem |4.2.10| to compute the lift of the constant
function.

Theorem 4.2.12. For A < 0 we have

2N Ly (1+1

IEF;"(IR 1) - - i

>€|A|A<EA y oy PWe o
L€l (N)\Iso(V) \/N

Remark 4.2.13. Note that Z3".(7,1) € My/s5, .

Remark 4.2.14. This might be interpreted as a first term identity in the sense of Kudla
and Rallis.

Proof of part (i) of Theorem |4.2.1. Combining the preceding results we obtain the state-
ments in the first part of Theorem [4.2.1] O

4.3. Fourier coefficients of the holomorphic part

Now we turn to the computation of the Fourier coefficients of positive index of the holo-
morphic part of the theta lift. Recall that the modular trace functions ty .(F;m,h) and
ta,(F;m, h) are defined as

A
6, (Fm i)=Y X‘%—(,)aF(DA)
,\eFO(N)\L‘*A‘mM A
_ A
tA,T<F;m7 h’) - Z XAF( ’)aF(D)\)7
AETo(NN\L A i A

where OF := R*, (F) for F € H*,,(N) with & > 0, h € L'/L and m € Q- with
m = sgn(A)Q(h) (Z) (see Section [2.7)).

Theorem 4.3.1. We let k > 0 be an integer and F € H*,, (N). Moreover, let h € L' /L
and m € Qo with m = sgn(A)Q(h) (Z). We obtain the following results:
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4. The Bruinier-Funke theta lift

(i) Let k > 0 be even. Then the coefficient of index (m,h) of the holomorphic part of
the lift IRY.(7, F) is given by

VIA[ < N )W ’“/ﬁl <ﬂ _|_j> <]’ _ ﬁ) (6% (F;m. h) — t5(Fym, ) |

2y/m \4rm o 2 2

(i1) Let k be odd. Then the coefficient of index (m,h) of the holomorphic part of the lift
IRN(1,F) is given by

TA] [ dwm) B2 -
2/m \_ 14| (X, (Fym, h) —t3  (F;m, b)) .

Proof. The proof is very similar to the one of Theorem [3.3.1] and we frequently omit some
arguments that are completely analogous to the ones in the proof of Theorem [3.3.1} Again,
we first prove the result for A = 1. Using the methods developed in [AE13] we then deduce
the general result. We write

P = Y 3| X [ oGk due) | e

heL/ /L meQ \AELy, 1

_ Z Zom’he%rimr

heL’/L meQ
for the Fourier expansion of ZR" (7, F). By the usual unfolding argument we obtain

Clm,h)y= >

XeTo(N)\L}}

+ Z

)\EFQ

/ OF(2)\/50s (vON, 2)dp2)

\A\

/ OF ()i (VIA, 2)du(2).

~n
For the latter sum we find that it equals

Sy RV ),

XeTo(N)\L_

m,h

Note that we have to distinguish between elements in L , and L, , here since ik is an
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4.3. Fourier coefficients of the holomorphic part

odd function in the first variable. Proceeding as in the proof of Theorem [3.3.1| we obtain

comh = Y = [ 0F(gi)Veula(VoX gidg

sergni,, 1A Jo@

3 / OF (gi)v/Tlng (—v/DA, 9i)dg

AELo(N\L,, 1, _’\‘

Since the group SLy(R) acts transitively on L, ,, there is a g1 € SLy(R) such that g; A=
VmA(i) for A € L . Also, there is a g € SLy(R) such that gt (=N) = VmA(i) for
A€ L, ;. We then have

Clm.h)= > ﬁ . OF (g191)V vy (Vo/mg ™t A(i), 1) dg
XeTo(N)\L} R)
> ‘/ IF (g190) Vo (Vov/mg ™ A(i),4) dg.
AeTo(N\L;, , T

Using the Cartan decomposition of SLy(R) we find

C(m,h) = Z

AeTo(N\L;,

S OF(DIWIY(m) — S e OF(D )Y (),

T3

with
a’ —a?da

0 = 4n /1 T (tla) " A, Dwela(a)) 92

2 a

As before, w.(a(a)) = w, (“22—“72> is the spherical function of eigenvalue ¢ = —k(k + 1)
given by the Legendre polynomial Py(z). Substituting a = ¢’/? we obtain

Yo(t) = 47Tt/ cosh(r) Sinh(r)Pk(COSh(r))e_47rt2 sinh(r)? .
0
Vi) =2nt [ R(VIFD)e ",
0

This is a Laplace transformation computed in equation (7) on page 180 in [EMOT54]. It
equals

ot
"Wy e (4)e

T EDCERTE
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4. The Bruinier-Funke theta lift

We have

(NI

)

and

LAY e Nk
B <m> [l (T”) <J - 5) We g y-wldmmole(ma)

Moreover,

1
v

(k+1)/2 2mimr
) e :

RgI;;rl)/Q (Wg+%7%(47rmv)e(mx)> = (—dgm) T2 §+%é_k(47rmv)e(mx)
= (—4mm

We now twist this result as described in the proof of Theorem to obtain the results
stated in the theorem. O
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5. Duality results for the Kudla-Millson
and Bruinier-Funke lift

In this chapter we consider Kudla-Millson and Bruinier-Funke theta lifts that are weakly
holomorphic of weight 3/2 + k. We show that the lifts are orthogonal to cusp forms with
respect to the Petersson inner product in this case.

Recall that p = pif A > 0 and p = p if A < 0. We obtain that the bilinear pairing
defined in Section of the Kudla-Millson or Bruinier-Funke lift Z(7, F') € M, ,,, > with

/2+k,p
a harmonic Maass form f in the dual space H' 2 k7 vanishes, i.e.

{Z(r.F). f} = @7, F). 6ol )i = 0.

Recall that & /o—x(f) is a cusp form of weight 3/2 + k transforming with respect to p.
Together with the formula for the bilinear pairing given in Proposition we obtain

formulas for the coefficients of the holomorphic part of f in terms of the coefficients of the

holomorphic part of Z(7, F'), thus in terms of twisted traces of CM values of F.

Choosing f = I¥M(7, F) € H;FQ p5 and IPH(1, F) € My, 5 (or vice versa) we obtain
duality results in the spirit of [Zag02]

Recall that M is the modular curve Yo(N) = T'o(N) \ H. As before, z is used as a
variable for integer weight forms, and 7 is used for half-integer weight forms. Recall that
we write ¢ = 2™ and ¢ = ¢*™". Let L be the lattice defined in Section [1.2.1), A € Z be
a fundamental discriminant, and r € Z such that A = r? (mod 4N). By p we denote the

WEeil representation associated to the lattice L.

5.1. Orthogonality to cusp forms

In this section we show that the Kudla-Millson and the Bruinier-Funke lift are orthogonal
to cusp forms with respect to the regularized Petersson inner product. Recall that for
g € S3/241,5 We have

(IKM(T F),g(t ))reg = lim <IKM (T)>v3/2+kdu(7'),

3/2+kvﬁ t—o00

where F; denotes the truncated fundamental domain F;, = {r € H : (7)) < t}.
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5. Duality results for the Kudla-Millson and Bruinier-Funke lift

Theorem 5.1.1. For IXM(7, F) € M,

,T

o1k Where k>0, and g € S3/9+k,5 we have

(T, F), (7)) = O

The same holds for IR" (1, F) € Mé/ﬂk’ﬁ, where k >0, and g € S3jo1k;, i-€.

(ZR5 (7. F).9(7)) g = O-

Proof of Theorem[5.1.1. We only prove the statement for the Kudla-Millson theta lift since
the arguments carry over directly for the Bruinier-Funke lift. To simplify notation we prove
the theorem in the untwisted case. Since the twisted lift is essentially a linear combination
of untwisted ones the arguments carry over directly (see the proof of Theorem .

Using the dominated convergence theorem it is tedious but straightforward to show that
interchanging the integration with respect to z and 7 is allowed. That is

lim <IIA<M(T, F), g(T)> vy (T)

T
t—o00 Fi

=t [ (R, [ (@00 ) alr) ) o ()
Fi M

t—o00

— / (Rli2k7ZF)(z) lim <R§;;T@(T, z, goKM),g(T)> U3/2+kdu(7').
M t

t—o00 T

We consider the cases k£ = 0 and k& > 0 separately.

Proof for k > 0: We first show that for k£ > 0

lim <R§;§7T@<T, Z, PKM)s g(r)> o dp(r) = 0.

t—o00 F

Following the proof of Theorem 4.1 in [BOROS| we let

H = vk_l/QRl;g;l@(T, 2, PKM)

and
h = RS@,@(T, Z, PrM) = U_k_S/ZLl/sz,rH-

Note that ngﬁ;l@(ﬂ z,pkm) is only defined for £ > 0. We obtain

/ <R§;§,T@(7, 2, PKM), g(T)> V3R dp(r) = / <vfk73/2L1/2_k,TH, 9(1)) VR ().
F 7,
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5.1. Orthogonality to cusp forms

We have that (see also Lemma [2.3.11))

- 0 dudv
—k— k .
< 3/2111/2 ke H,g(T >U3/2+ du(t) = <22U2—6FH79(7)> 02
= — —aH() (1) )drdT (5.1.1)
= 7= 7), g(T TdT. 1.

By the holomorphicity of ¢ we obtain that (5.1.1)) equals

(S t1().010) ) drir = 0 (gt ) = ~a ((H.9(r)) 7).

We now apply Stoke’s Theorem. Since the integrand is SLo(Z)-invariant the equivalent
pieces of the boundary of the fundamental domain cancel and we obtain

/ <R§;;,T®(T7 <, SOKM)7 g(T>> 1)3/2+kd,u(7')

Fi

- _/ < - UQRZ; 'o(r, , @KM)79(7)> dr
OF:

1/2
S / /2tk V2RE2 G, (0 + it 2, ) gn( & i) du. (5.1.2)
her' /LY 1

Plugging in the Fourier expansions of the two series and carrying out the integration over
u we see that (5.1.2)) equals

Z tk UQanh nh 747rnt

heL'/L

where b(n,h) and a(n,h) denote the Fourier coefficients of g, and R3 Tor '0,, respectively.
By classical results these coefficients grow very moderately and thus, the main contribution
comes from the exponential terms, implying that the limit tends to 0 as ¢ — oo.

Proof for k = 0: For k = 0 we use an argument for harmonic forms on Riemann surfaces
to show that

im [ 0n(7, 2, pxm)gn(T)0* 2dp(r) = 0,

t—o00 Fi

where we consider the components of the Petersson inner product separately now.

2
% and

a 9 of ff 0, (7, 2, excn) gn (T)v¥/2dpu(T) converge locally uniformly in z as t — co, we can
mterchange differentiation and the limit.

We first show that A, annihilates this expression. Since the partial derivatives
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5. Duality results for the Kudla-Millson and Bruinier-Funke lift

Recall that we have Az -O(7, 2, prum) = $80,:0(T, 2, ¢xm) by (2.6.10)), which implies

/]-'Aozeh(T 2, i) gn (7) 0 2dp(7)
/]-'A3/27‘9h(7— 2, i) g (T)0* 2dpu(r).

By Lemma 4.3 of [Bru02] we find

As)2 00 (T, 2, o1c) gn ()0 2 dpu(7)

Ft
:/ eh(T,Z,@KM)A3/27Tgh(T)U3/2d/L(T) (5.1.3)

Fi
1/2

+/ [eh(T,Z,QOKM)Lg/Q’Tgh(T)’USQ] ltdu (5.1.4)
—1/2 v=
1/2

—/ |:L3/277—8h(7727@KM)gh(T>U3/2i| tdu. (5.1.5)
—1/2 v=

The holomorphicity of g implies that the integrals in (5.1.3) and (5.1.4) vanish. When
plugging in the Fourier expansions of g, (u+it) and Ls/s -0, (u+it, z, oxm) and integrating
over u we see that the resulting expression is exponentially decaying as t — oo, which then
implies

AV tlim / On(T, z, goKM)gh(T)U?’/Qdu(T) =0.
—00

Writing limy_, o ff 0 (7, 2, xcn) gn (T) 0¥ 2dpu(1) = h(2)dz A dz for a smooth function on
M, we have Ag.h(z ) = 0. By the square-exponential decay of the Kudla-Millson theta
function (see Proposition[2.6.9) Ag.h(z) = 0 implies that i(z) is constant [Bru02, Corollary
4.22]. So it remains to show that this constant is zero. We do this by showing that for
z € H and o, as in Section [1.2.3| we have

lim h(o,2) =0. (5.1.6)

Y—+100

For simplicity, we only consider the cusp ¢ = co. A careful analysis yields that we can
interchange the limit processes with respect to ¢t and y. The square exponential decay
of 0(7, z, pxm) implies that lim, ;o0 04 (7, 2, oxm) = 0. Therefore, the limit lim, ;o h(y)
vanishes. [

5.2. Duality and Hecke action

The orthogonality of the two lifts together with Proposition [2.3.20] and Remark [2.3.16
directly implies the following duality results.
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5.2. Duality and Hecke action

Corollary 5.2.1. Let k = 3/2 + k if k is odd and k = 1/2 — k if k is even. We let
f be a harmonic weak Maass form of weight k transforming with representation p and
denote the (m, h)-th Fourier coefficient of the holomorphic part by c;[ (m, h). Moreover, let

F e M, (N), such that TN (7, F) is weakly holomorphic of weight 2 — k and transforms
with representation p. We denote the Fourier coefficients of TN (7, F) by aficu(m, h).

Then we have

Z i (=m, h)aziu(m, h)
hel’/L m>0
m=sgn(A)Q(h) (Z)
=) > ¢} (N |Alm? h)at (=N |Alm?, h).
heL'/L m>0

—N|A|m?=sgn(A)Q(h) (Z)
The same result holds for the Bruinier-Funke lift.

Corollary 5.2.2. Let k = 3/2+ k if k is even and k = 1/2 — k if k is odd. We let [ be
a harmonic weak Maass form of weight r transforming with representation p and denote
the (m, h)-th Fourier coefficient of the holomorphic part by c}r(m, h). Moreover, let F €
M! . (N), such that IR".(7, F) is weakly holomorphic of weight 2 — . and transforms with
representation p. We denote the Fourier coefficients of the lift ZR".(1, F) by afe(m, h).
Then we have

Z Z i (=m, h)ages (m, h)

heLl'/L m>0
m=sgn(A)Q(h) (Z)
= — Z Z (N |A|m?, h)ater (=N |A|m?, h).
hel'/L m>0

—N|A|m*=sgn(A)Q(h) (Z)

Remark 5.2.3. These results can be rephrased in terms of the two lifts, i.e. choosing
f= IEE"(T, F) in Corollary 5.2.1L respectively f = ZkM(7, F) in Corollary , we obtain

a duality result for the two lifts. With these formulas We can recover duality results between

Poincaré series as in [Zag02, BOO7| (also see the introduction).

Using the action of the Hecke algebra we also obtain formulas of such type for a wider
class of coefficients.

Proposition 5.2.4. Let the hypotheses be as in Corollary|b.2.1. Then we have

> > ¢t (=m h)tas(Fim,h)

heL'/L m=>0
m=sgn(A)Q(h) (Z)
= Z Z c}“*(N |Alm?, h)atiu (=N |A|m?, h),
heLl!/L m>0

—N|Alm2=sgn(A)Q(h) (Z)
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5. Duality results for the Kudla-Millson and Bruinier-Funke lift

where ¢ (n, h) is as in (2.3.10).
Remark 5.2.5. An analogous result holds for the Bruinier-Funke lift.

Proof. We can assume that g € S3°% > such that &.(f) = g/|[g|[*. Then we have

{ (1, F), f|.T(¢ )} (I (7' F), & A(fIT)(r >]);G:gﬁ7ﬁ
= (IR (7, F), %7 (&l )]o-eT(0)) (7)),

by equation (7.2) in [BO10]. This equals

(20t L)

2_Hvﬁ

Since g is an eigenform we obtain

reg
A (I ) ||2) ’

where )\, is the eigenvalue of g under T'(¢). But this vanishes since the lift is orthogonal to
cusp forms. ]
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6. Elliptic curves and harmonic Maass
forms

In this chapter we study the relation between the central value and central derivative of the
Hasse-Weil zeta function of twists of an elliptic curve E over Q and the Fourier coefficients
of a harmonic Maass form of weight 1/2 associated to E.

The starting point is a theorem by Bruinier and Ono [BO10, Theorem 7.8|. They consider
weight 1/2 harmonic Maass forms f whose image under &/, is equal to a real multiple of
a weight 3/2 newform ¢ that maps to G under the Shimura correspondence. That is, we
have the following picture

G € Sy(N) (6.0.1)

Shimura

§1/2
f E H;_/Zﬁﬁg G 53/2’?.

Employing deep work of Shimura and Waldspurger they proved that the Fourier coefficients
of the non-holomorphic part of f as above give exact formulas for L(G, D, 1), where D is
an appropriate discriminant. Using the theory of Borcherds products and the Gross—
Zagier Theorem they show that at the same time the coefficients of the holomorphic part
of f encode the vanishing of the central derivatives L'(G, D’,;1) (where D’ is again an
appropriate discriminant). However, the harmonic Maass form f does not directly arise
from the cusp form G.

In this chapter we show that we can complete the diagram by constructing a
canonical preimage Wy of a newform G € Sy (Ng) associated to an elliptic curve E over
Q and employing the Bruinier-Funke lift. We obtain the following commutative diagram

Wi € Ho(Np)—2 =Gy € S3ev(Np) (6.0.2)
IEFT‘ Shintani

§1/2
:Z:giﬁ;(’T} ]/\)[;) € ]ﬁff}Q’;;

Recall that for an elliptic curve E : y? = 23 +ax+b over Q and a fundamental discriminant
d, the d-quadratic twist of E is defined by E; : dy? = 23 + ax + b.

The above diagram leads to a connection between the vanishing of L(FEy4, 1) and the
vanishing of the d-th coefficient of the non-holomorphic part of ZR%.(7, Wg). Here, d # 1
is a fundamental discriminant that we choose depending on the discriminant A which is
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6. Elliptic curves and harmonic Maass forms

used to twist the Bruinier-Funke lift.

Moreover, we prove that the algebraicity of the d-th Fourier coefficient of the holomorphic
part of the Bruinier-Funke lift of Wy as above encodes the vanishing of L'(E4, 1) (again
d depends on A). Note that our proof is independent of the results in [BO10]. Moreover,
it also applies to the coefficients of the Kudla-Millson lift of Wy (or more generally a
harmonic Maass form of weight 0 that maps to a newform of weight 2 under &).

In the first part of the chapter we briefly introduce the theory of elliptic curves and
explain the connection between L-functions of weight 2 cusp forms and of elliptic curves.
Moreover, we discuss the notion of differentials of the first, second and third kind on a
complex Riemann surface. We then turn to the construction of the harmonic Maass form
Wr associated to an elliptic curve E. The last part of the chapter is devoted to the proof
of the relation between the Fourier coefficients of IEF;(T, WEg) and the central values and
derivatives of the Hasse-Weil zeta function of E. Moreover, we present some implications
of this result for periods of differentials of the first and second kind associated to Weg.

6.1. Elliptic curves and modular forms

In this section we summarize some results on elliptic curves and their relations to modular
forms. Most of the material is taken from [DS05, [Sil09].

6.1.1. Elliptic curves and Weierstrass functions

Let E be an elliptic curve over Q, i.e. a non-singular curve defined by an equation of the
form
2 _ 3
Yy =a"+ar+b
with a, b € Q. The condition that E is non-singular is equivalent to the non-vanishing of
the discriminant A = —16(4a> + 27b?).
Over C every elliptic curve is isomorphic to C/Ag, where Ag is a certain lattice in C.

To define the corresponding isomorphism we introduce the Weierstrass p-function. For a
lattice A in C and z € C\ A we let

1 1 1
p(A,Z) .:;—F Z (m—ﬁ>
weA\{0}

The Weierstrass p-function converges absolutely and uniformly on compact subsets of C
away from A. It is an even A-invariant function and is holomorphic on C\ A. In points of
A it has poles of second order with residue 0.

For an integer k > 0 we let Gor(A) be the standard weight 2k Eisenstein series defined

as
Ga(A) = Y w™™

weA\{0}
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6.1. Elliptic curves and modular forms

This series converges for £ > 1. For k = 1 we will consider its analytic continuation
(see (6.2.3))).
We obtain the following isomorphism between E and C/Ag.

Proposition 6.1.1. Let E be an elliptic curve given by the equation
E(Ag) : y* = 42® — 60G4(Ap) — 140G¢(AR)
with Ag a lattice in C. The map

2= (p(Ag; 2), ¢ (Ag; 2))

18 an isomorphism.

The Weierstrass p-function has a Laurent expansion of the form
1 = 2n—2
p(A;z) = = + 22(271 —1)Gan(A)z

for all z satisfying 0 < |z| < inf{|w| : w € A\ {0}}.
We are also interested in the Weierstrass (-function

C(A;2) = é + ) <; +ot i?) B % — > Gapya(A)2*H (6.1.1)
h=1

Z—w w w

It satisfies
p(A; 2) = =C'(A; 2).

6.1.2. Modularity of elliptic curves

Let £/Q be an elliptic curve over Q with conductor Ng (an integer divisible by the same
prime numbers as the discriminant of E). Let s € C with R(s) > 1 and define the
L-function (or Hasse-Weil zeta function) of E by

L(E,s)= ][] Lu(E.s),

p prime
where
(1—alp)p~*+p'2)"' pf{Ng,
Ly(E,s)=1{ (1 —alp)p )" pINg, p* { Ng,
1 P*|NE.

Here a(p) = p+ 1 — (#of points of E modulo p).
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6. Elliptic curves and harmonic Maass forms

In the mid-1950’s Taniyama conjectured that the L-function of an elliptic curve agrees
with the L-function of a weight 2 newform that has eigenvalues a(p) under the action of
the Hecke operators. One direction of this conjecture was proved in the 1960’s by Eichler
and Shimura, who showed that given a Hecke eigenform G in Sy(N) with integral Fourier
coefficients, there is an elliptic curve F/Q such that L(F,s) = L(G, s).

The other direction was finally proved in the 1990’s by Wiles, Breuil, Conrad, Diamond,
and Taylor [Wil95, BCDTO0I] (see [DS05] for an overview of the different versions of the
modularity theorem and [CSS97] for an overview of the proof of Fermat’s last theorem
involving the proof of the modularity of elliptic curves).

Theorem 6.1.2 (Modularity Theorem). Let E/Q be an elliptic curve of conductor Ng.
There is a weight 2 newform Gg(t) =Y~ ap(n)q® € So(Ng) that satisfies
L(Gg,s) = L(E,s), s € C.

Remark 6.1.3. Let the notation be as above. The theorem implies that all the properties
of L(Gg,s) also apply to L(FE, s), i.e. it can be holomorphically continued to C, it can be
written as

L(E,s)=Y “’2(8”).

and it satisfies a functional equation in s as in Proposition [2.1.7]

A different version of the modularity theorem above is the following theorem (stated as
Theorem 2.5.1 in [DS05]).

Theorem 6.1.4. Let E/Q be an elliptic curve of conductor Ng. There is a surjective
holomorphic function of complex Riemann surfaces from the modular curve Xo(Ng) to the
elliptic curve E of conductor Ng,

This function is called the modular parametrization of E.

6.1.3. The Birch and Swinnerton-Dyer Conjecture

Throughout let £/Q be an elliptic curve of conductor Ng over Q. We consider the group
E(Q) of rational points on E. Mordell proved the following famous theorem.

Theorem 6.1.5 (Mordell-Weil). We have
E(Q) — E(Q)tors D r

for some integer r > 0 called the rank of E. Here, E(Q)"" is a finite abelian group.

The Birch and Swinnerton-Dyer Conjecture relates the rank r to the analytic properties
of the L-function of the elliptic curve. It is one of the most famous open problems in
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6.1. Elliptic curves and modular forms

number theory. It was named after Bryan Birch and Peter Swinnerton-Dyer who came up
with the conjecture in the 1960’s with the help of extensive computer-based computations.
We state the original version of the conjecture.

Conjecture 6.1.6. The Taylor expansion of L(E,s) at s =1 is of the form
L(E,s) =c- (s —1)" + higher order terms

with ¢ # 0 and r = rank(FE).

There is a more detailed version of this conjecture predicting the value of L) (E, 1),
namely

LB 1)=c-Q-R.

Here, Q = | E(R) dx/y is the real period, and R is the regulator, the determinant of a
r X r-matrix whose entries are given by a height pairing applied to a system of generators
of E(Q)/E(Q)*™. The number ¢ is a non-zero rational number involving the order of the
Tate-Shafarevich group and several other expressions (see for example [KZ01l, Wil06] ).

The conjecture has only been proved in the case that the analytic rank is equal to 0 or
1 in [GZ86] and [Kol8§].

Theorem 6.1.7 (Gross-Zagier, Kolyvagin). If L(E,s) = c(s — 1)" + higher order terms
and r =0 or 1, then the Birch and Swinnerton-Dyer conjecture is true.

The remaining cases are still unknown, however, by recent results of Bhargava and
Shankar combined with results of Nekova, the Dokchitser brothers and Skinner and Urban
it is known that a positive proportion of elliptic curves over Q has analytic rank zero and
thus satisfies the Birch and Swinnerton-Dyer conjecture [BS| [Nek01l, [DD10], [SU14].

An interesting question is if one can compute L(FE,s) and L'(E,s) at s = 1. In fact,
this was done by Gross and Zagier in their part of the proof of Theorem [6.1.7. Roughly,
they proved (if L(E, 1) = 0) that L'(F, 1) is given by a multiple of the height of a Heegner
point (see [GZ86] and (6.3.7)). Here, we recall results of Waldspurger as well as Kohnen
and Zagier saying that the coefficients of half-integral weight cusp forms are essentially the
square roots of central values of quadratic twists of modular L-functions.

In order to state these results, we first define quadratic twists of elliptic curves. For an
elliptic curve F : y? = 2% + ax + b over Q and a fundamental discriminant A, we consider
the A-quadratic twist of F

En: Ay? =2 +ax +b. (6.1.2)

The corresponding twisted L-function is given by

L(Ea )= (%) afm)n™

n=1

and this corresponds to the twisted (modular) L-function L(Gg,A,s) with Gg as in
Theorem [6.1.2]

91



6. Elliptic curves and harmonic Maass forms

Building upon results of Waldspurger [Wal81] Kohnen and Zagier proved the following
theorem in [KZ8&1].

Theorem 6.1.8 (Waldspurger, Kohnen—Zagier). Let G € Sor(1) be a normalized Hecke
eigenform and let g € S:H/Q(él) (the Kohnen plus-space) be the form that corresponds to
G under the Shimura correspondence. We denote the n-th coefficient of g by c(n). Let D
be a fundamental discriminant with (—=1)*D > 0. Then

(DD _ (k= 1)!|D|k—1/2L(G7D7k)
gl mk 1GIJ?

6.1.4. Differentials on Riemann surfaces, modular and elliptic curves

In this section we introduce the identification between modular forms and differential
forms on X, (V) following the exposition in [Sil94, [DS05]. Moreover, we define the notion
of differentials of the first, second and third kind on compact Riemann surfaces and present
a theorem by Scholl on the transcendence of differentials of the third kind.

By M (N) we denote the space of meromorphic modular forms f : H — C. These forms
satisfy the following conditions:

(i) (fley) (2) = f(z) for all v € To(N).
(ii) f is meromorphic on H.
(iii) f is meromorphic at the cusps of I'g(IV).

Let X be a compact Riemann surface. By Qx we denote the C(X)-vector space of
meromorphic differential 1-forms on X. The space of meromorphic differentials of degree
k is the k-fold tensor product

k k
QX — Q?} .
We have the following identification between meromorphic differentials and meromorphic

modular forms.

Proposition 6.1.9 (Proposition 3.7 in Chapter 1 of [Sil94] and Theorem 3.3.1 in Chapter 3
of [DS05]). Let f € Moy (N). The k-form f(7)(d7)* on H descends to give a meromorphic
k-form wy on Xo(N). That is, there is a k-form wy € Q’)“(D(N) such that

¢*(wy) = f(7)(dr)",

where ¢ - H — Xo(N) is the usual projection.

Next we introduce the notion of differentials of the first, second, and third kind. A
differential of the first kind on X is a holomorphic 1-form. A differential of the second kind
is a meromorphic 1-form on X whose residues all vanish. A differential of the third kind
on X is a meromorphic 1-form on X whose poles are all of first order with residues in Z.
Later we will relax the condition on the integrality of the residues.
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6.1. Elliptic curves and modular forms

Let v be a differential of the third kind on X that has poles at the points P; with residues
a;, and is holomorphic elsewhere. The residue divisor of 9 is defined by

res(y) := Z a; P;.

J

The restriction of res(¢) to any component of X has degree 0. Conversely, if D =" ¢; P;
is a divisor on X whose restriction to any component has degree 0, then the Riemann-
Roch theorem and Serre duality imply that there is a differential of the third kind ¢p with
res(¢p) = D (see for example [GH94| p. 233]). The differential ¢p is determined by this
condition up to addition of a differential of the first kind.

Using the Riemann period relations, one can show that there is a unique differential of
the third kind np on X with residue divisor D such that

o([v)-

for all v € Hi(X\{P;},Z). It is called the canonical differential of the third kind associated
with D.
A different characterization of np is given by Scholl.

Proposition 6.1.10 (Proposition 1 in [Sch86]). The differential np is the unique differ-
ential of the third kind with residue divisor D which can be written as np = Ohp, where
hp is a harmonic function on X \ {P;}.

Remark 6.1.11. By Corollary 8.2 (ii) of [Spr57] we have (in the setting of Proposi-

tion [6.1.10))

ho(2) = ¢ log |z — Py| + H{(2)
for a local variable z near P; and a smooth function H(z).
Example 6.1.12. (i) Let G € S3(N) be a cusp form of weight 2 for I'((N). Then

wg =21 G(z)dz (6.1.3)
is a differential 1-form of the first kind on Xy(NV).
(i) Let F' € My(N) with vanishing constant coefficient. Then

2miF (2)dz (6.1.4)
is a differential 1-form of the second kind on X(NV).

(iii) Let D be a degree 0 divisor on X,(/V) that is coprime to the cusps. Let D(z) be a
meromorphic modular form of weight 2 for I'((/N) whose poles lie on D C Yy(N) and
are of first order with residues in Z. Then

2miD(z)dz (6.1.5)
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6. Elliptic curves and harmonic Maass forms

is a differential of the third kind with residue divisor D on X(V). The constant
coefficient of the Fourier expansion of D(z) = >~ d(n)q™ at co is the residue of np
at co. We have analogous expansions at the other cusps of I'g(IV). We refer to d(n)
as the n-th coefficient of np at the cusp co.

Remark 6.1.13. For a geometric approach to harmonic Maass forms see [BE04l, Proof of
Theorem 3.7] and the work of Candelori [Canl4]. Using different descriptions of the de
Rham cohomology attached to modular forms one can show that there are differentials of
the first and second kind, denoted by w and ¢, such that ¢ — w is exact. For harmonic
Maass forms of weight 0 this is reflected in Lemma [2.3.14]

Scholl proved an interesting criterion on the transcendence of differentials of the third
kind. From now on we assume that X is defined over Q. By Q we denote the algebraic
closure of Q in C. We assume that D is a degree 0 divisor on X which is defined over a
number field F C Q. Using results of Waldschmidt [Wal87] Scholl proved the following on
the transcendence of a canonical differential of the third kind np with residue divisor D
[Sch86].

Theorem 6.1.14 (Scholl). If some non-zero multiple of D is a principal diwisor, then np
1s defined over F. Otherwise, np is not defined over Q.

The g-expansion principle directly implies the following corollary if we take X = Xy(N)
(see also [BO10, Theorem 3.3)).

Corollary 6.1.15. If some non-zero multiple of D is a principal divisor, then all the
coefficients d(n) of np at the cusp oo are contained in F. Otherwise, there is an n such
that d(n) is transcendental.

We now describe differentials of the first and second kind on an elliptic curve. Let E

be an elliptic curve of conductor Ng over Q and let wg = dy—w be the Néron differential

of E. By Gg € S3(Ng) we denote the cusp form corresponding to F under the modular
parametrization. Multiplicity one implies that the pullback of wgr under the modular
parametrization is given by

¢*(wp) = cE WG,

where cg denotes the Manin constant (see for example [Cre97]).

Example 6.1.16. (i) The Néron differential wgp = %‘” is of the first kind. Its pullback
under the complex uniformization C/Ag of E equals dz.

(ii) The differential
T WEg.

is of the second kind. The pullback of x wg under the complex uniformization C/Ag
of F is equal to p(z)dz.
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6.2. Canonical Weierstrass harmonic Maass forms

6.2. Canonical Weierstrass harmonic Maass forms

In this section we show that there are canonical preimages of weight 2 newforms Gy for
the group I'g(Ng) related to an elliptic curve E over Q of conductor Ng. This is joint work
with Michael Griffin, Ken Ono, and Larry Rolen [AGOR] and is based on an idea of Pavel
Guerzhoy [Guel3, [Gue]. Note that the results in this section were worked out by Michael
Griffin, Ken Ono, and Larry Rolen.

We write Gg = >~ ag(n)q” for the Fourier expansion of Gg and define the Eichler
integral £g(z) of Gg by

Ep(z) == —2mi /ZOO Gg(r)dr = Z aEyin) -q". (6.2.1)

Recall the Weierstrass (-function defined in (6.1.1)

1 1 1 2\ 1 > "
C(AE,Z) = ;—f‘ Z <Z_w +E+E> = —;G%—W(AE)Z .

weAp\{0}

It is not lattice invariant, but Eisenstein [Wei76] observed that a suitable modification is.
Namely, he considered

C"(Ap;2) = C(Ap; 2) — S(Ap)z — ) (6.2.2)
where |
weAp\{0}

and a(Ag) is the area of the fundamental parallelogram for Ag. For a new and short proof
of the lattice invariance of (* by Zagier see the first chapter of the (not yet finished) book
by Bringmann, Folsom and Ono [BFO]. Zagier [Zag85] and Cremona [Cre94] showed that
we can express a(Ag) in terms of the degree of the modular parametrization as follows

_ 4Ar?|Ggl)?
alfe) = deg(op)

Evaluating (*(Ag, z) at the Eichler integral £g(z) we obtain a modular object of weight
0. The Eichler integral is not modular, however its obstruction to modularity is easily
characterized. The map Wg: I'g(N) — C given by

Vp(y) = Ep(z) — Ep(v2)

is a homomorphism of groups. Its image in C turns out to be the lattice Ag as in Propo-
sition [6.1.1. Hence, since (*(Ag; z) is invariant on the lattice, the map (*(Ag;Ep(z)) is
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6. Elliptic curves and harmonic Maass forms

modular of weight 0.
We define

deg(¢r)
4| G pl”
We write Wy (z) for the holomorphic part of Wi(2) (which is given by ¢*(Ag, Ex(2))).
This form satisfies the following properties.

Wi(2) = ((Ap; Ep(2)) — S(Ap) — Eu(2).

Theorem 6.2.1. Assume the notation and hypotheses above. The following are true:
(1) The poles of the holomorphic part of Wy (2) are precisely those points z for which

(2) If the holomorphic part of Wy,(2) has poles in H, then there is a canonical modu-
lar function Mg(z) on To(Ng) with algebraic coefficients for which Wy (2) — Mp(z) is
holomorphic on H.

(3) We have that Wi (z) — Mg(z) is a weight 0 harmonic Maass form on I'y(Ng).

Definition 6.2.2. Assuming the notation above we define a Weierstrass harmonic Maass
form for the cusp form G by

We(2) = Wi(z) — Mp(z) = Wi (2) + Wx(2), (6.2.4)
where

Wi (2) = C(Ag; Ep(2)) — S(AR)ER(2) — Mp(2), (6.2.5)

W) =~ el (6.2:6)

Remark 6.2.3. Note that the choice we make for Wg(z) is not unique. Note also, that

every such Wg(z) satisfies
1 Gg

degop HGEH2

Remark 6.2.4. In [AGOR] we referred to the holomorphic part of Wj,(2) as the Weier-
strass mock modular form for E. It is a simple task to compute this form. Using the
two Eisenstein numbers G4(Ag) and Gg(Ag), one then computes the remaining Eisenstein
numbers using the recursion

SoWk(z)) =

32/ —1)(2n — 25 —
(2n+1)(2n —1)(n —3)

n—2 . )
Gon(AR) ==

- G2j(Ag)Gan—2;(AE).

“M

Armed with the Fourier expansion of Gg(z) and S(Ag), one then simply computes the

functions in and ( -

Proof. First note that we already proved the modularity (of weight 0) for Wi (2).
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6.2. Canonical Weierstrass harmonic Maass forms

Part (1) of Theorem follows by noting that (*(Ag, z) diverges precisely for z € Ag.
This divergence must result from a pole in the holomorphic part, i.e. in {(Ag, z) — S(Ag)z.

In order to establish part (2), we consider the modular function p(Ag; Ep(z)). We observe
that p(Ag; Ep(2)) is meromorphic with poles precisely for those z such that Eg(z) € Ag.
We claim that p(Ag;Eg(z)) may be decomposed into modular functions with algebraic
coefficients, each with only a simple pole at one such z and possibly at cusps. This
follows from a careful inspection of the standard proof that M)(N) = C(j(z),j(Nz)).
For example, following the proof of Theorem 11.9 in [Cox11], one obtains an expression
for the given modular function in terms of a function G(z) and a modular function with
rational coefficients. The function G(z) clearly lies in Q (j(2),j(Nz)) whenever we start
with a modular function with algebraic coefficients at all cusps, from which the claim
follows easily.

These simple modular functions may then be combined appropriately to construct the
function Mg(z) to cancel the poles of Wi (2), and the remainder of the proof of (3) then
follows from straightforward calculations. ]

We also state the Fourier expansion of Wj,(2) at cusps. Let Ng be square-free and recall
that the Atkin-Lehner involutions act transitively on the cusps of Xo(Ng). By Atkin-
Lehner Theory, there is a A\ € {£1} for which GE|2W$7E = A\oGE.

Theorem 6.2.5 (Theorem 1.2 in [AGORI). If Q is an exact divisor of Ng, then

« d
OVHIVE®)(2) = Wit alEx(z) — Ua(Gel)) — £ty - RalEaz] — NG
where we have i
Qo(Gg) = —27Ti/ N Gg(2)dz.
(WQE)_lioo

Remark 6.2.6. In particular, we have Qo(Gg) = L(GE, 1). By the modular parametriza-
tion, we have that p(Ag;Er(2)) is a modular function on I'y(Ng). We then have for each
Q|Ng that Qg(GEg) € rAg, where r is a rational number. This can be seen by consid-
ering the constant term of p(Ag;Ep(2)) at cusps. The constant term of (Ag;Ep(2)) is
©(Ap;Qo(GE)). More generally, if Ng is square-free, then 2o(Gg) maps to a rational
torsion point of F.

Remark 6.2.7. The expansion of W5 (z) at cusps can be explicitly computed using the
addition law for the Weierstrass (-function

19" (Ag;21) — 9 (Ag; 22)

C(AEQ z1+ 22) = C(AE7 Zl) + C(AE7 22) + 5 @(AE§ Zl) — Q(AE;ZQ) :

Remark 6.2.8. The function Wj,(z) admits special p-adic properties under the action of
the Hecke algebra that were also investigated in [AGOR], Theorem 1.3]. Namely, we have:
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6. Elliptic curves and harmonic Maass forms

If pt Ng is ordinary, then there is a constant &g(p) for which

[0£¢(h; Ex(2)) | TG

6.3. Lifts of Weierstrass harmonic Maass forms and
Hasse-Weil zeta functions

In this section we study the connection between the vanishing of the central twisted L-
values and L-derivatives of elliptic curves and the Fourier coefficients of the associated
harmonic Maass form of weight 1/2.

Let E be an elliptic curve over Q of conductor Ng and Gg € SyV(Ng) the newform
corresponding to F as described in Theorem [6.1.2]

Recall the Weierstrass harmonic Maass form

deg(¢p) 7——

Wi(2) = C(Ag: E5(2)) = S(Ap)Ex(2) = Mu(z) = i oEule)

We assume that the principal parts of Wg at all cusps other than oo vanish. This can
be obtained by choosing a suitable function Mg(z) in Theorem . In particular, this
choice of Wg implies that the constant coefficients of Wg vanish at all cusps of T'o(V).
Moreover, we normalize W such that it maps to Gg/||Gg||> under &. By slight abuse of
notation we denote this form by Wg(z) again.

Let A # 1 be a fundamental discriminant and r € Z such that A = r? (mod 4Ng). By
fe = fe.ar = IRN.(T,Wg(2)) we denote the twisted Bruinier-Funke theta lift of Wg(z) as
in Section We then have the following Hecke-equivariant diagram by Theorem [4.2.7]

Wrp——Gpg
jIBF LShintani

fEiRgE,

where gg is the newform that maps to Gg under the Shimura correspondence.
In this section we prove the following theorem.

Theorem 6.3.1. Assume that E/Q is an elliptic curve of square-free conductor Ng, and
suppose that Gg|oWy, = e¢Gp. Denote the coefficients of fu(7) by cg(n,h). Then the
following are true:

(i) If d # 1 is a fundamental discriminant and r' € Z such that d = sgn(A)Q(r')(Z),
and ed < 0, then
d
L(Ea1) = 822G Pllgel Py | 10 - 5 ed. )2
E
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(i1) If d # 1 is a fundamental discriminant and v’ € Z such that d = sgn(A)Q(r')(Z) and
ed >0, then

L'(E; 1) =0 <= ch(ed,r)€Q <= chled,r') €Q.

Remark 6.3.2. This theorem can be seen as a more intrinsic version of Bruinier’s and
Ono’s main theorem in [BO10]. Note that our method of proof (for part (i)) is independent
of the results of Bruinier and Ono. The proof also differs from the one given in [AGOR].
There, we showed that we can construct a harmonic Maass form corresponding to an elliptic
curve that satisfies the hypotheses in Bruinier’s and Ono’s theorem.

The first part of Theorem follows from the inspection of the Fourier expansion of
&1/2(fe) and Kohnen’s theory of half-integral weight newforms (see Corollary 1 on page
242 of [Koh8&5]).

The second part is harder to prove. We will use the fact that the coefficients of fg
are given as twisted traces of CM values of Wg, i.e. the evaluation Wg[Z] of Wg at a
certain twisted Heegner divisor Z (depending on A and d). We relate this quantity to
the coefficients of a certain differential of the third kind associated to Z. Using results
of Scholl on the algebraicity of such differentials and introducing the action of the Hecke
algebra we find that Wg[Z] is algebraic if and only if the image of the projection of Z
to the G-isotypical component vanishes in the Jacobian. The Gross—Zagier Theorem then
establishes the connection to the vanishing of the twisted L-derivative.

In the last part of the section we indicate implications for the algebraicity of periods of
differentials of the first and second kind.

Remark 6.3.3. Note that we can also prove an analogue of part (i) of Theorem m
using the Kudla-Millson lift of Wg and Theorem Our proof only exploits the relation
between the algebraicity of the evaluation of Wg at the Heegner divisor and the vanishing
of the projection to the G g-isotypical component of this Heegner divisor in the Jacobian.

The similarity of the arithmetic information that the coefficients of ZKM (7, Wpg) and
IBY(7, W) encode is also explained by the duality results in Section .

6.3.1. A relation between differentials of the first, second and third
kind

In this section we derive a relation between differentials of the first, second and third kind
defined on a compact Riemann surface X. We then specialize this result to the compactified
modular curve Xo(V).

We let X be a compact Riemann surface. Moreover, let D = > ¢; P; be a degree 0 divisor
on X. Let np be the canonical differential of the third kind with residue divisor D. From
now on, we relax the condition on the integrality of the residues of np. We write Ohp = np
for a harmonic function hp as in Proposition and Remark [6.1.11]

Let 2o € X be a point on X that is not contained in D. We choose a differential of
the first kind w and a differential of the second kind ¢ that only has poles at xg such that
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there is a function F,, € C*(X) that satisfies dF,, = ¢ — @ (see [Canl4] for a rigorous
approach to this construction).
We write Fy, [D] for Y " | c;Fxo(P;).
Theorem 6.3.4. Assume the notation above. Then we have
1

Fo [D] = i 11—{% 9B (z0) Fat:

Proof. We consider the pairing of F,, and np defined by

[FxmnD] = /);(51710) “1D-

Let € > 0. We can write
[me TID] = lim (EFﬂUo)(ahD)?
e—0 X!
with hp as in Proposition |6.1.10|and X! = X \ (B.(zo) UJ;_, Be(P;)). We have that
d((0Fy,) - hp) = (0Fy)(0hp) and  d(Fy,(0hp)) = (0Fy,)(9hp).

Therefore, Stoke’s Theorem implies that

[Fro,np] =1im [ (OFy,) - hp (6.3.1)
e—0 X!
and, at the same time,
[Fyo,np] = lim F,,(0Ohp). (6.3.2)
e—0 X!

We first show that the integral in (6.3.1)) vanishes. We compute the integrals

lim OF, )h 6.3.3

Ly MG (6:3.3)
and

lim (OFy)hp (6.3.4)

e—0 836(1120)

separately. By Remark [6.1.11) we can write hp(2) = ¢;log |z — P;| + H(z) for a smooth
function H near P;. We obtain that the integral in (6.3.3]) is equal to

lim (OF,,)(cilog |z — P| 4+ H(z)).

Note that both, log |z — P;|(OF,,) and H(z)(OF,,) are continuously differentiable and thus
bounded on 0B,(P;). Therefore, the integral vanishes as e approaches 0.
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We have 5Fx0 = —w, with w a holomorphic 1-form. Therefore, 5Fx0 does not have
a pole in xy. Neither has Gp, so the integral in (6.3.4) vanishes. Thus, the integral in

Equation (/6.3.1)) is equal to 0.

We now turn to the evaluation of the integral in (6.3.2). Note that

lim F,,(0hp) = —lim F,,(0Ohp) — lim C,;O(GhD). (6.3.5)

e—0 X! e—0 8Be(z0) 6*)0 OB (P

We consider

lim F,,0hp = lim F,,0(cilog|lz — P+ H(z)).
e—0 aBE( ) e—0 8Be(PZ)

Let U be a neighborhood of 0 in C and consider a chart
U X
0— P,.

Then we have
c; dz

0¢*(hp) = ¢"(Ohp) = 2 + 0H(2),

Therefore,
/ F,,0(cilog|z — P| + H(2))
aBe(P')
— [ SR @@l - R+ [ 6B, HE)
8B.(0) 9B.(0)

The second integral again vanishes by similar arguments as before. For the first integral
we find

& 1
G o (F, )= dz. 6.3.6
N ARCHE (6:36)

Changing to polar coordinates we have that (6.3.6]) equals

2 Jo

Thus, the integral is independent of € and as ¢ — 0 we have

lim F,,0hp = mic;F, (P;).
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Summarizing, we find that

0 = —mic; Fyy (P;) — lim F,,0hp.
e—0 636(:1:0)

We now specify Theorem to the situation when X = Xy(N) is the compactified
modular curve and F' € Hy (N) is a harmonic Maass form of weight 0 for ['y(/N') whose prin-
cipal parts at all cusps other than oo are constant. By Lemma and Theorem [2.3.13]
dF is equal to the sum of a differential of the second kind whose poles are only supported
at oo and the complex conjugate of a differential of the first kind. We write

F(z)= ) af(n)g"+ ) ap(n)e™.

n>>>—oo n<0

for the Fourier expansion of F'.

We let D be a degree 0 divisor on Xo(N) that is coprime to the cusps of Xo(N). We
let np be the associated canonical differential of the third kind with residue divisor D. We
write np = 2mi Y~ d(n)q"dz with a meromorphic modular form »">°, d(n)¢" of weight
2 as in Equation (/6.1.5)).

Corollary 6.3.5. Assume the notation above. We have

F[D] = —22@}(—n)d(n).

n>1

Proof. By Theorem [6.3.4| we only have to evaluate the integral over F'np in a neighborhood
of oo, which is equal to

1 =1
—— lim F(x + it)np(x + it)dx.
T t—o0 2=0
We plug in the Fourier expansions of F' and np. The integral over F*np picks out the
constant coefficient, that is
-2 Z ay(—n)d(n).

n>1

For the integral over F'~np we obtain similarly

—2) e ™ag(—n)d(n),

n>1

which vanishes as t — 0. ]
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6.3.2. Hecke eigenspaces and the restriction to isotypical components

We now describe a refined version of Corollary that can be obtained by considering
the action of the Hecke algebra on Xy(V).

Recall that the compactified modular curve Xy(N) is defined over Q. We let J be the
Jacobian of Xy(N) and write J(k) for its points over a number field k. Then, J(k) is a
finitely generated abelian group. By Abel’s Theorem the Jacobian can be described as the
quotient of the group Div(Xy(N), k)° of degree 0 divisors on X(N) which are rational over
k modulo the subgroup of principal divisors div(f) for f € k(X)*.

Let K C C be a subfield of C and write k - K for the compositum of £ and K (where
we fix an embedding of £ < C such that k- K € C). We let J(k)x = J(k) ®z K and
Div(Xo(N), k)% = Div(Xo(N), k)’ @z K.

Following Bruinier [Brul3] we denote by D(Xo(N), k)x the group of meromorphic dif-
ferentials on X, (/N) defined over k - K whose poles are all of first order and whose residue
divisor belongs to Div(Xy(N),k)%. Let P(Xo(N),k)x be the subgroup of differentials
which are finite K-linear combinations of differentials of the form % with f € k(X)*.
Then we define

CL(Xo(N), k)i = D(Xo(N), )1/ P(Xo(N), k).

Note that the Hecke algebra T of I'g(N) acts on Xy(/V) by correspondences which are
defined over Q. This induces compatible actions on CL(Xy(N), k), J(k) and the space of
holomorphic differentials whose Fourier expansions are defined over k.

Let G € S3°V(N) be a newform of weight 2 for I'g(NV). Then G is a normalized eigenform
for all Hecke operators. We write K = K for the number field generated by the Hecke
eigenvalues of G. By Proposition 2.2 of [Brul3] the G-isotypical component of J(k)c
corresponding to G is defined over K.

Moreover, if D € Div(Xy(N), k)% is a divisor in the G-isotypical component, there is a
canonical differential of the third kind np € D(Xo(N), k)x with residue divisor D whose
class belongs to the G-isotypical component of CL(Xo(N), k)x [Brul3l Proposition 2.2].
Welet L =F- K.

Lemma 6.3.6. Let G € S3*(N) be a newform of weight 2 for I'o(N) and D be a divisor in
the G-isotypical component of Div(Xo(N),k)%. We assume that the divisor D is coprime
to 0o. Let np € D(Xo(N), k) be the canonical differential of the third kind with residue
divisor D whose class belongs to the G-isotypical component of CL(Xo(N), k). Denote
the n-th Fourier coefficient of np by d(n). Then we have

d(n) = \d(1) + ap,
where N\, is the eigenvalue of T'(n) corresponding to G and a; € L.

Proof. Let T'(n) be a Hecke operator and write A, for the eigenvalue of G under the action
of T'(n). Since the class of n7p be belongs to the G-isotypical component we find that

T(n)np — Annp € P(Xo(N), k) k.
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6. Elliptic curves and harmonic Maass forms

Note that we can identify the differential in P(X¢(V), k) x with a meromorphic differential
whose Fourier coefficients are contained in L. Analyzing the action of the Hecke operator
on the first Fourier coefficient of np, we find that

d(n) — A\ d(1) = ay,
with a,, € L. O
Lemma 6.3.7. Let the hypothesis be as in Lemmal6.3.6. Then the following are equivalent:
(i) The first Fourier coefficient d(1) of np is contained in L.
(ii) Some non-zero multiple of D is the divisor of a rational function.

Proof. 1f some non-zero multiple of D is the divisor of a rational function Corollary
implies that all the Fourier coefficients of np are contained in L. In particular, d(1) is
contained in L.

Now let d(1) € L. We can apply the same strategy as Bruinier and Ono in the proof
of Theorem 7.6 in [BO10]: Assume that D is not a principal divisor. By Corollary
there is a positive integer n such that d(n) is transcendental. Let ny be the smallest of
these integers. We have to show that ng = 1.

Assume that ng # 1 and p is a prime dividing ny. By A, we denote the eigenvalue of
the Hecke operator T'(p) corresponding to G. Then Lemma implies that there is an

an, € L such that
o o
d(n()) = )\pd <?) - pd <E) + Ang

with a,, € L. Since ng/p,no/p* < ng, and ng was the smallest integer with the property
that d(ng) is transcendental, d(ng) is a linear combination of algebraic numbers, contra-
dicting our assumption. O

We let H;">(N)g be the space of harmonic Maass forms of weight 0 for I'o(N) whose
principal parts at all cusps other than oo vanish and whose coefficients of the principal
part at co are in K.

Recall that the pairing of F' with a cusp form G as in Section m equals (in particular
see the formula for the pairing in Equation ([2.3.9)))

{G.F} =) ap(n)ag(n),

n>1
where we denote the n-th Fourier coefficient of G by ag(n).

Theorem 6.3.8. Let G € S3*V(N) be a newform of weight 2 for T'o(N) and D be a divisor
in the G-isotypical component of Div(Xo(N), k)% . We assume that the divisor D is coprime
to co. Let F € Hy ™ °(N)g be a harmonic Maass form such that {G,F} = 1. Then the
following are equivalent:
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(i) F[D] is contained in L.
(i1) Some non-zero multiple of D is the divisor of a rational function.

Proof. Let np € D(Xo(N), k) be the canonical differential of the third kind with residue
divisor D whose class belongs to the G-isotypical component of CL(Xo(N), k) k.

If some non-zero multiple of D is the divisor of a rational function Theorem [6.1.14]implies
that np is defined over L and by Corollary the Fourier coefficients d(n) of np are
contained in L for all n. Recall that the coefficients of the principal part of F' are contained
in K. Together with Corollary it follows that F'[D] is contained in L.

If F'[D] is contained in L, then by Corollary we also have > _, af(—n)d(n) € L.
Let T'(n) be a Hecke operator in T. We write A, for the eigenvalue of T'(n) corresponding
to GG. Since the class of np belongs to the G-isotypical component Lemma [6.3.6] implies
that

d(n) — A\d(1) = ap,

with a,, € L. Therefore (we omit —2 since this is not important for the algebraicity results
we are looking for),

F[D] =) af(~n)d(n)

n>1

—d1) Y ap(-n)ag(n) + 3 anap(~n),

n>1 n>1

since A\, = ag(n). Using that {G, F'} = 1 we find

d(1)Y " ap(—n)ag(n) + > apaf(—n) = d(1) + Y _ anaf(—n).

n>1 n>1 n>1

By assumption we have that F[D] and )7, -, anai(—n) are in L, thus d(1) € L.
Lemma [6.3.7| now implies the statement in the theorem. O

Now we let Za,.(m, h) = ZX (m,h) = Zx .(m, h) be the twisted Heegner divisor defined
in Section 2.7} Here, A # 1 is a fundamental discriminant and r € Z is such that 72 = A
(mod 4N). Moreover, h € L'/L and m € Qs with m = sgn(A)Q(h) (Z). Recall that the
divisor ZAJ(m, h) is defined over Q(vA, \/m).

Corollary 6.3.9. Let G € S¥V(N) such that K = Q and let G = Gy, Go, ..., G, be a
basis of simultaneous eigenforms for So(N). We let F € H{ "™ (N)q with the property that
&o(F) = G/||G| .
Then the following are equivalent:
(i) i
F | Zan(m,h)] = F(z) € QWA, Vm).
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6. Elliptic curves and harmonic Maass forms

(i)
%F [ZA7’I‘(m, h)} e Q.

(i1i) The projection ng(m, h) of the divisor Za,.(m, h) to the G-isotypical component of
Div(Xo(N), Q(WVA, VM) is a non-zero multiple of the divisor of a rational function.

Proof. We first show that (i) implies (ii7). Let F[Za,(m,h)] € Q(VA,\/m). By The-
orem some non-zero multiple of ZAJ(m, h) is a principal divisor. Since the group
of degree 0 divisors Div(Xo(N), Q(WA, v/m))g decomposes into G-isotypical components
corresponding to the basis G, G, ..., G, it follows that a non-zero multiple of Zgr(m, h)
is a principal divisor.

Now we show that (ii7) implies (7). Recall that &(F) = G/||G||? for a newform G implies
that {G,F} =1 and {G’, F'} = 0 for all G’ orthogonal to G (see Lemma [2.3.29)). Assume
that the projection of ZA,T(m, h) to the G-isotypical component is a non-zero multiple of
the divisor of a rational function. We write

Zn(m, h) = ZZgrmh

By Theorem (6.3.8 F[ZKT(m, h)] is contained in Q(v/A, v/m).
We now compute F [ngT(m, h)] for i # 1. By Corollary [6.3.5| we have (again omitting
the factor —2)

FIZ (m, b)) = afi(—n)di(n),

n>2

where d;(n) is the coefficient of the corresponding differential of the third kind whose
class is in the G-isotypical component of CL(Xo(N), Q(vA, v/m))g. Let T(n) be a Hecke
operator and A, ; be the eigenvalue of T'(n) corresponding to G;. By Lemma we have

di(n) — Anidi(1) = ay,,

with a,; € Q(v/A,/m). Therefore, we find that

F[Zgrmh ZaF —n)

n>2

= Z ap(—n)Ani + Z ap(—n)a,;
n>2 n>2

= af(—n)ag,(n) + D af(—n)a,.
n>2 n>2

since {Gy, F} = 0, we have ) ., ap(—n)ag,(n) = 0. The quantity >_ -, af(—n)ay; is
contained in Q(v/A, \/m) since F € H*°(N)q.
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Obviously, (ii) implies (i). Assume that F[Za,(m,h)] € Q(vA,/m). Then, we also
have vV AmE[Za,(m, h)] € Q(WA, /m).
By Lemma 5.1 of [BOI0] we have for the non-trivial automorphism o of Q(v/A)/Q (and

similarly Q(,/m)/Q) that o/(Za,(m,h)) = —Za,(m, h). Therefore,

o (F [Z“M(m, h)]) —F {ZM(m, h)]
which then implies the desired result. O]

Proof of part (ii) of Theorem . Assume that £/Q is an elliptic curve over QQ of con-
ductor Ng, and suppose that Ggl|sWy, = €¢Gg. Then the Hecke L-series of G satisfies
a functional equation under s — 2 — s with root number ¢z = —e. Note that for a fun-
damental discriminant D that is equal to a square modulo 4Ny the sign of the functional
equation of L(G, D, s) is sgn(D)eg.

Recall that A # 1 is a fundamental discriminant and r € Z such that > = A
(mod 4N). Moreover, we let d # 1 be a fundamental discriminant and ' € Z such
that d = sgn(A)Q(r')(Z).

We first consider the case that deg < 0 (that is de > 0). Then the L-series L(G,d, 1)
vanishes.

Recall that

deg(¢p) 7——

Wi (z) = ((Ag; Ep(2)) — S(AR)Ee(2) — Mp(z) — 47THGEH25E(Z),

where Mg was chosen such that the principal parts of Wy vanish at all cusps other than
0o. Moreover, Wg(2) was normalized such that & (Wg(2)) = Gg/||GE||*. The coefficients
of the principal part of Wg(z) at oo are contained in Q by construction. Note that the
freedom in the choice of Mg does not influence our results.

For the (ed,r)-th coefficient of fz = fga, = Z3".(T,Wg(z)) we find

E

cpled,r) = 2/l (t5, We(2);ed, 1) — ty,(We(2);ed, 1))
= —|A| N Za(ed,

By Corollary the coefficient cg(ed,r) is rational if and only if the projection of
ZA,r(d, 7') to the G g-isotypical component of Div(X,(N), Q(VA, \/c_l))fJQ is a non-zero mul-
tiple of the divisor of a rational function.

By the Gross—Zagier formula (see Theorem 6.3 of [GZ86]) the Néron-Tate height on

J(H) of Z$®(d,r") is given by

hKU,2

872||Gr| 2 [dA|L(G g, A1) - L (GE, d, 1), (6.3.7)

(Z$e(d,r"), Z8E(d, 1)) =
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6. Elliptic curves and harmonic Maass forms

where H is the Hilbert class field of K = Q(v/dA), and 2u is the number of roots of unity
in K and hy denotes the class number of K.

Consequently, the class of the divisor ngi(d, ') vanishes in the Jacobian if and only if we
have L(Gg,A,1) =0 or L'(G,d, 1) = 0. By Proposition [£.2.§| the vanishing of L(Gg, A, 1)
is equivalent to Wg(z) being weakly holomorphic, which is obviously not the case. This
completes the proof of Theorem [6.3.1] O

Remark 6.3.10. Note that the same method of proof works using the Kudla-Millson lift
of Wg. Moreover, the proof can be generalized to harmonic Maass forms F € Hy"*(N)
mapping to a newform G € S§*¥(N) in the straightforward way.

6.3.3. Periods of differentials of the first and second kind

In this section we explain how the results of the previous section imply conditions on the
transcendence of periods of differentials of the first and second kind.
Recall that we have for a C'"*°-function F' by Lemma [2.3.14]

dF = &o(F)dzZ + 2miD(F)dz.

1

21
Then & (F)dz € So(N) is a differential of the first kind and D(F)dz € My(N) is a differ-
ential of the second kind (see (6.1.3]) and (6.1.4))). We then have

F(z) = (—% /pzmd,%—k%m’/pz D(F)dz),

for an arbitrary basepoint p.
Using the results in the previous section we directly obtain the following corollary.

Corollary 6.3.11. Assume the notation of part (ii) of Theorem|6.5.1. Then the following
are equivalent:

(i) Some non-zero multiple of Zgﬁ(d, ') is the divisor of a rational function.
(ii) The sum of periods of differentials of the first and second kind
1 ZA,r ZA,r
> (——,/ EoWg)dz + zm/ D(WE)dz>
£ 2 J, »
ZA,TGZA,r(dv"J)
1s rational.

Remark 6.3.12. For the Weierstrass harmonic Maass form Wg as in Theorem [6.3.1] we
find that

1 ZA,r 1 ZA,r
I dz=——— | " Gpz)dz
5, SO g GO
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and
. /A DOWp)dz = —2mi /A (p(Ag, E6(2))Gr(z) + S(Ap)Gr(z) + D(Mg(2))) d=.

Note that the differentials of the first and second kind we obtain above correspond to the
differentials of the first and second kind on the elliptic curve E as in Example [6.1.16]

Remark 6.3.13. It would be interesting to relate these results to an expression Bruinier
[Brul3] obtained for the coefficients cj(de, r) in terms of periods of a certain differential of
the third kind associated with the Heegner divisor Za ,(fg).

6.4. An example - the elliptic curve 37al
We consider the elliptic curve 37a given by the equation
E:y* =42 — 4o + 1.

The sign of the functional equation is —1 and E(Q) has rank 1.
The g-expansion of G € S3°V(37) is given by

Gp(2) =q¢—2¢* —3¢° +2¢* — 2¢° +6¢° — ¢" 4+ 6¢° + 4¢"° — 5¢" + --- € 53 (I'1(37)) .
Using Remark and Sage [ST14] we find
Wih(z) = ¢+ 1+ 2.1132...¢ + 2.3867...¢> + 4.2201...¢°> + 5.5566...¢" + 8.3547...¢° + O(¢°).

It turns out that
fe(z) =I5 (1, W(2))

corresponds to the Poincaré series P_s with principal part ¢=3/148(ey + ¢_o1) (Where we
normalized the lift by dividing by v/3).

Using Sage [S*14] Bruinier and Stromberg [BS12] computed the coefficients ¢}, (d) for
fundamental discriminants d < 15000 of P_3 and compared them with the corresponding
values of L'(Gg,A,1) = L'(Ea, 1).

Stephan Ehlen numerically confirmed that

1

cp(d) = i (t5sWp(2):d) — t2,(Wp(2);d))

using Sage [ST14].

Note that in the case d = 1 one has to pay attention to a contribution to the trace
coming from the constant term of Wg. Also note that the v/3 does not appear in the
denominator, since we normalized fr to have principal part in Q. The following table
illustrates Theorem [6.3.1] It was computed by Stromberg.
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6. Elliptic curves and harmonic Maass forms

d| cg(d) L'(Eq41) rank(£,;(Q))
1 —0.2817617849 . .. 0.3059997738 ... 1
12 —0.4885272382 . .. 4.2986147986 . . . 1
21 —0.1727392572 . .. 9.0023868003 . . . 1
28 —0.6781939953 . .. 4.3272602496 . . . 1
33 0.5663023201 . .. 3.6219567911 . .. 1
1489 9 0 3
4393 66 0 3

Remark 6.4.1. In general, the task of computing the weight 1/2 harmonic Maass forms
appearing in the main theorem of Bruinier and Ono [BO10, Theorem 7.8] has been non-
trivial. Natural difficulties arise (see [BS12]). These weight 1/2 forms are preimages under
&1/2 of certain weight 3/2 cusp forms, and as mentioned earlier, there are infinitely many

such preimages.

Using the methods of this thesis gives an alternative approach for the computation of

the holomorphic part of a canonical harmonic Maass form.
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7.1. Powers of the Dedekind n-function

In the spirit of Bruinier and Ono who proved algebraic formulas for the coefficients of the
inverse of the Dedekind n-function in terms of traces of a certain Poincaré series using the
Kudla-Millson lift in [BO13], we consider n(7)~2® here.

We let x12 be the Kronecker character (2) and define

Gos(7) = > xua(r)n(r) e,

rez,/127

Using the transformation properties of the Dedekind n-function one easily sees that Gos is
a weakly holomorphic modular form of weight —25/2 for the representation p. We prove a
formula for the coefficients of Gas(7) in terms of traces of weight —26 Poincaré series using

Theorem B.3.11
We define

F = —F5(-, 14, —26) + F5(-, 14, —26)|Wy
+ Fy(-, 14, —26)|W3 — F5(-, 14, —26)|W¢,

and

F=(25+5%) (Fi(-, 14, -26) — Fy(-, 14, —26)|W§
—Fi(-, 14, —26)|W5 + Fi(-, 14, —26)|W¢)

where the Poincaré series F; and Fjy are defined as in ([2.5.1]).

Corollary 7.1.1. For n > 0 the coefficient of index (2434’1, 1) of Gas, and therefore the
24”4_1 -th coefficient of n(1)~?°, is given by

2
185725 1 T
4429185024713 \ 24n — 1

24n — 1 . 24n —1
(o2t o (52,

Remark 7.1.2. This corollary can be rephrased in terms of traces of CM points associated
to quadratic forms instead of lattice elements. See the example on p. 4 of [AIf14].
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Proof. The principal part of Gas(7) is equal to (¢2°/2* 4+ 25¢71/24)(e; — e5 — ¢7 + e11).
For the lift ZzZ"M(7, F) of the Poincaré series F' we obtain (where C° is as in Theo-

rem F2.)

29 25 29 25
13 13 6
- E n }“2522’% (7-7_’_7> + E n ]-"2522’% (7-7_7_?> |5

n|5 nl5
29 25 29 25
13 6 13 6
+¥n ./_"2575127% (T,Z,—?> ’WS—%H Fﬁ;},% <T,Z,—?) ‘WG

This has principal part 2(qi25/24 —5B¢7 ) (1 — e5 — e7 + e11).
The lift ZZ"M(7, F) of F' is given by

29 25 29 25
(25 + 513) (]:214’1 (T, Z, _?> - fiJ (7—7 Zo _?> |W26

29 25 29 25
_-/T_.i,l (7', Z,—?) |W36 +JT'.%,1 (T, Z,—?) |W66) .

This has principal part 2(25 + 5'3)g~"/?*(e; — ¢5 — ¢7 + ¢11). Then the sum

2LC'° (IKM(T, F) 4+ T"M(r, F))

has principal part (¢=2%/%* 4 25¢7Y/?4)(¢; — e5 — ¢ + ¢11). Thus,

1 .
G25<T) = Q_Cvo(IKM(Tu F) +IKM(7-7 F))u
which implies the formula in the corollary. [

Remark 7.1.3. More generally, one can deduce formulas for the coefficients of n(7)~™,
where i =1 (mod 24). Here we let

Gi(r) ==Y xul)n() .

reZ/127.

Then, similarly as above, one has to construct a linear combination of twisted lifts of
Poincaré series whose lift has the same principal part as G;(7).

7.2. A formula for the coefficients of Ramanujan’s f(q)

In this section we present another application of Theorem [3.3.1]
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We consider Ramanujan’s mock theta function

o 2

flg) =1+ Z ¢ =1+ iaf(n)q".

—(1+q)P(L+¢2)% - (1+qm)?

We let A < 0 be a fundamental discriminant with A =1 (mod 24). We define

1 Ey(z) + 4E4(22) — 9E4(32) — 36E4(62)
40 1(2)?n(22)*n(32)?n(62)?

which is a weakly holomorphic modular form of weight 0 for I'y(6).

F(z) = =q ' —4+8%g+--,

Corollary 7.2.1. We have

Al+1 1
af<| |+ ) [ (tAjl(F,l,]-)_tA,l(F71a5>

24 8iv/|A

+ta1(F;1,7) = taa(F;1,11)).

Remark 7.2.2. These formulas were checked numerically by Stephan Ehlen using Sage
[ST14].

Proof. Here we employ the duality results between weight 1/2 and 3/2. Note that the
function ¢~/?* f(q) can be realized as the component of the holomorphic part of a vector
valued harmonic Maass form H of weight 1/2 with representation p [BOI10, Lemma 8.1].
More precisely,

H = (0, ho, ha — h1,0, —hy — ha, —ho, 0, ho, h1 + he,0, hy — ho, —ho)t,

where the holomorphic part of hg is ¢7*/?*f(q) and the holomorphic parts of h; and hey
are given by Ramanujan’s mock theta function w(q). The non-holomorphic parts are given
by certain unary theta series [BO10, Section 8.2]. The principal part of H is given by
q’1/24(21 —e5+er —eqq).

In terms of Poincaré series we have

F(2) = Fi(2,1,0) + Fi(2,1,0)|WS — Fy(2,1,0)|W$ — Fi(z,1,0)|[W¢,

where = means up to addition of a constant.

By Theorem we see that IIA(}\{I(T, F) is a weakly holomorphic modular form. Note
that the non-holomorphic part vanishes since 6 is square-free and for A < 0 we have
Xa(=A) = —xa(A). To determine the principal part of IK}\{[(T, F) we compute the lift of
the Poincaré series. Note that the lift of a constant vanishes in this case.

By Theorem the function F(z) lifts to a vector valued Poincaré series having
principal part

2 | A[M2 1A (e — o5 + 07 — eyy).
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Therefore, by Proposition [2.3.20| we obtain that {ZXY(r, F)), H} = 0, which implies

(1, Dtan (F3 1, 1) + ¢ (=1, 5)tar (F; 1, 5)
+ (=1, T tban(F31,7) + ch(=1,11)ta (F; 1,11)

= —2i\/|A] (c}} (%,1) 14 (%,5) (-1)

A A
+cf; (%,7) 1+ (% 11) : (—1)) :

Since we can identify the coefficients in the different components of H we obtain the
formula in the corollary. O]

Remark 7.2.3. For A =72 (mod 24), where r = 5,7,11 (mod 12), we consider

1 By(2) £ 4E4(22) £ 9E4(32) £ 36E4(62)
40 n(2)?n(22)?n(32)?n(62)?

and have to arrange the +’s in such a way that we obtain (up to a constant) ¢~121/24(¢; —
¢5 + ez — e11) as the principal part of the lift.

F(z) = =q¢ ' —4+8q+---

Remark 7.2.4. A priori the lift of a constant is not a harmonic Maass form in the +-space.
Therefore, it is not possible to obtain the same results using the Bruinier-Funke lift right
away.

Remark 7.2.5. In general, given a scalar valued form one has to realize it as the component
of a vector valued harmonic weak Maass form to be able to obtain a formula as above for its
coefficients. For a detailed discussion of this problem see a preprint of Fredrik Stromberg
[Str]. If the corresponding vector valued form is known, one can construct the input
function using Poincaré series.

7.3. The example I'y(p) of the introduction

We explain how to obtain the theorems in the introduction. Let p be a prime and let
A > 1 be a fundamental discriminant satisfying (A,2p) = 1 and let r € Z with A = 2
(mod 4p). Moreover, let F' € H',, (p) be a harmonic Maass form of negative weight —2k
for I'y(p) that is invariant under the Fricke involution.

The group I'g(p) has two cusps oo and 0. These two cusps are interchanged by the Fricke
involution.

Via mapping > ¢ p/p, fr(T)en to 32y cph/p, fu(4pT) we obtain an isomorphism between the
spaces H,y  and Hy, (4p) and Mj )y, 5 and My, (4p) if & is odd. If & is even, we

3/2+k,p
obtain isomorphisms between H;Qik 5 and Hf/sz(élp) and M§/2+k,p and M§/2+k(4p). For
M, Ja,, this is Theorem 5.6 in [EZ85]; the isomorphism extends to H, ,j/Q )
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The assumption (A, 2p) = 1 guarantees that we can choose r € Z as a unit in Z/4pZ.
Therefore, the sum ), ;. /; X}, does not depend on r. Here, we wrote ZX}!, for the h-th
component of the theta lifts.

Recall that —d is a negative fundamental discriminant such that —d and A are squares
modulo 4p. By Q_ja, we denote the set of integral binary quadratic forms [a,b,c] =
ax?®+bxy+ cy? of discriminant —dA such that ¢ = 0 (mod p). We assume that (A, 2p) = 1
if p#£ 1.

As described in Section we identify lattice elements with integral binary quadratic
forms. Recall that the action of the group I'y(p) on both spaces is compatible. Notice that
we have to consider positive and negative definite quadratic forms. For positive A we have
Xa(—Q) = xa(Q) which yields for m = 4% > () that

3 3 Xa) gy - 3 X8(9) 5 pag).

heL’/L AeTo(P)\Lyn,|A|m ‘ | QETo(P\Q_gia|,p |F0(p)Q|
For the coefficients of the holomorphic part of ZXE (7, F') we proceed analogously, now

assuming that (d,2p) = 1. (Moreover, we require that the constant coefficients of F vanish
at all cusps if the weight of F' is zero.)

7.4. The lift of log(||A||)

In this section we compute the lift of log(||A[]). We let

o
H 1-q")
be the Delta function. We normalize the Petersson metric of A such that

1AG)]] = |A(2)y°).

Theorem 7.4.1. Let N =1 and A < 0. Then we have

~ 5 TEE 08(1AND) = 15l8lA(es: 1) (6(r)  Z6u(r)(y —loglam)))

where G(T) is as in Proposition[A.0.5

Remark 7.4.2. This might be interpreted as a second term identity in the sense of Kudla
and Rallis.

Remark 7.4.3. The Kudla-Millson lift of log ||A|| was computed in [BF06] and [AEI13].
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7. Applications and examples

Proof. Recall that
1 1
+ (v —log(4m)) + O(s — 1/2),

1
C*<28):§s—l 2

and
0(2,5) = 5 —1 + 5y — log(4m)) — 25 log(IAG=)) + O(s — 1/2)

by the Kronecker limit formula.

5 loa(1A(2)5°)

——1lo .
12 °8 z)Yy

Therefore

lim (& (2, s) — ¢*(2s)) =

53
So we have

1 ) *
~ 5285 (7 og(1A(2)y) = lim (285 (. En(z,5)) — ' (29)Z8% (7. 1)
We let {
C .= E’A|A(€A, 1)

and obtain that

1
LT (. Log(|A (")
s= & )
=C - hn% ((res l/z 1/21,K<T 3) + CT5:1/2<51/2,K(7', S)) + O(S — 5))
573 T2
Ly S - toglan) + 06— ) )

1
2

— 2(1"685:1/281/2,[{(7—7 5)) (S 1
2

=C- (CT5=1/2(51/2,K(T> s)) — 2(ress=1/2&12,x (T, 8)) 5 (7 — 108?(47T)))

By using Proposition [4.2.9 and [A.0.5| we obtain the result.
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8. Outlook

There are several open problems closely related to the results in this thesis that we did
not work out at the time finishing this thesis. In this chapter we briefly describe some of
them.

The coefficients of the non-holomorphic part of IKFT(T, F) Tt remains to compute
the coefficients of the non-holomorphic part of the Bruinier-Funke lift IEE,(T, F) € Hyy 5 of
a harmonic Maass form F' of weight 0. In view of Theorem these coefficients encode
information in terms of F" on the coefficients of the cusp form & jo(ZR5.(7, F)) € S, o5

It might be possible to construct a Green current for the Millson Schwartz function
similar to the ones for the Kudla-Millson and Siegel Schwartz functions as in [KMS86,
BE06, BFI13].

Relation to the Shintani lifting Another interesting question is if the Bruinier-Funke
lift is related to the Shintani lift when the weight of the input function is negative. That
is, we are looking for a relation similar to the one in Theorem {4.2.7]

Lifts of other types of automorphic forms In Theorem we computed the
Bruinier-Funke lift of the non-holomorphic weight 0 Eisenstein series. It would be inter-
esting to consider the lift of other types of automorphic forms, for example log||f|| for a
meromorphic modular form f (see also the work of Funke on the Kudla-Millson lifts of

such forms [Fun07]).

Relation to a result on p-adic modular forms The alternative proof we gave for Bru-
inier’s and Ono’s main theorem (see the proof of Theorem [6.3.1)) might help to understand
the relation of this theorem to its p-adic analog of Darmon—Tornaria [DT08, Theorem 1.5].
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A. The non-holomorphic Eisenstein
series of weight 1/2

Let 7 € H and s € C with R(s) > 1. We compute the Fourier expansion of the weight 1/2
non-holomorphic Eisenstein series

1
Poo(T,s) = B} Z [Usfl/%o} |1/2,p’7 : (A.0.1)

7€T o0 \Mpy(2)

This Eisenstein series is a special case of the vector valued Poincaré series P, (T, s) con-
sidered in [BFI13]. To the best knowledge of the author the Fourier expansion of the
Eisenstein series has not been computed yet. However, the Fourier expansion of similar
Poincaré series has been computed by Bruinier in [Bru02] whose strategy we follow here.

We let

1
[n|=HT (5 + %) (470) "W pasgn(ny a-1/2(4[nlv) - if n £ 0,

925-3 3/4—s ; _
(2571)1*(2;1/2)” / it n=0,

Wh(v, s) =

where W, ; denotes the usual W-Whittaker function.
Proposition A.0.4. We have

Poo(T,s) =20°" Ve + Z Z b(n,vy, $)Wh(v, s)e 27”'"%7,

~eL' /L n€Z+q(y

where
b(n ~ U) _ (—271') (47T|n|)1/4—s(27.rn)23—1 Zc;é() ‘C|1_25H:(0, O7 5, n) Zf n # O’
T AT @s = 1025 X Jef 2 H (0,0,7,0) fnoo
Here, we denote by
) e O/ ;\; ma + nd
Hc(ﬁ7m7’yan)—T %‘ p’Y,B(C d)e< - )

(@ b)eree\SLs(2)/To

the generalized Kloosterman sum. The sum runs over all primitive residues d modulo c.
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A. The non-holomorphic Eisenstein series of weight 1/2

Moreover, (%) is a representative for the double coset in I's \ SLa(Z) /T with lower row
(¢,d") such that d = d (mod c).

Proof. We proceed as in [Bru02, Theorem 1.9]. We split the sum in equation (A into
the sum over 1, Z, Z% 73 € T, \ Mpy(Z) and (M, ¢) € T, \ Mp,(Z), where M (cd)
with ¢ # 0. Since ¢ ‘1/2%2 = ¢g we find for the first part

27]8_1/460

We now compute the Fourier expansion of the latter part, which we denote by G(7,s).
Since ¢ is invariant under the action of Z2, we can write G(7, s) in the form

—_—

. a b
Z v 1/430”1/2,5 (c d)'

(2 b)ere\SLa(2)
c#0

Welet v € L'/L and n € Z+q(v) and we write ¢(n, vy, v) for the (n,y)-th Fourier coefficient
of G(1,s). Then we have

1
c(n,vy,v) :/ <G(7’, s),e%i”“e7> du
0
s—1/4 o 4
= > / (et 4 d)~'/? <|c7'—|—d|2> <ﬁ’1(‘g3)eo,ezm’“‘ew> du.

c#0
(@ b)ere\SLy(2)/Too

Since p is unitary we have

Therefore,

oo s—1/4
c(n,y,v) = E pro(28) / (e + d)_1/2 (—) e Zminu gy,

g o leT + d|?

(2 5)erac\SLa(Z)/Too
Using (cr + d)'/? = sgn(c)\/c\/T + d/c and substituting u by u — d/c we obtain

c(n,,v) = > pro( & 5)e”™ e |72 sgn(c) '/
c#0
(9 0)eree\SLa(z)/Tee

X/ 7_—1/2( : 2) e_Qm’wdu.
oo e[|
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Using the definition of the generalized Kloosterman sum we obtain

00 s—1/4
. * — v —2Tinu
c(n,v,v) = Z |c|V/%i 2 | (0,0,%”)/ T2 <|c]2\7|2) e du

c#£0
—1/4 oo op T v \° :
— 1/2H* (2) 0 —27rmud ‘
%éo |C| 0(07077771) 2 _\=7 02|7_|2 € U

The latter integral equals

oy — g\ A v \°
—2minu
d A.0.2
[.G)  (apm) oo (4.02)

and by substituting u = 5 we find

v 5T (2mn) ! / (2mn — ix) V475 (2mn 4 i) VA e

[e.9]

This integral is a Fourier transform for n # 0, which is computed in [EMOT54, p. 119, eq.
(12)]. It equals

2w
- 4 n]) 50" W s sn _s(4m|n|v).
r (5 + Sgn(n)i) (4n[n) 1/asgn(n).1/2-s (47 [12[0)

In the case n = 0 we find that (A.0.2)) equals

c’2sv1’3\/2ﬂs((22j:;)) if R(s) > 1,

0 otherwise.

02%18/ (1-— ix)’l/‘l’s(l + z':c)l/‘l’sdx = {

[e.9]

Thus,

o0y = AT n) We 0,5) 5 e HE0,07,m) im0,
VAT (25 = 1)272 W, (v, 5) 3- 40 el " HZ(0,0,7,0) if n=0.

]

To compute the constant term of &£/25, (7,5) = Py (7’, 5+ %) at s = % note that

w, (v, Z) — Wi(y)

for n # 0, where
In|~Y2B(4n|njv) if n <0,

Wn — —2mnv
(v) =e {n_1/2 if n > 0.
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A. The non-holomorphic Eisenstein series of weight 1/2

For n = 0 we have Wy(v,3/4) = 1.

Proposition A.0.5. The constant term of &1 /25, (T, s) is given by

G(1) = 20'%eo + Z V2rCT,_1 <Z\c|1 > H*(0, o,w))

~eL'/L c#£0

+ Z Z -1/2 —3/4CT (Z‘ |1 2sH* 0,0,7, )) qne’y

~YEL' /L n€Z+q(7) c¢#£0
n>0

+ Z Z —2m)(4) 1/2|n| 3/4CT (Z| "% H*(0,0,7v,n )) B(4r|njv)q"e.,.

yeL' /L n€Z+q(7y) c#0
n<0

Remark A.0.6. Using the strategy of Bruinier and Kuss in [BK01] and Proposition
we can explicitly evaluate the Kloosterman sums H*(0,0,7,n) and the resulting L-series

2 ero el T HZ(0,0,7,n).
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List of Symbols

The bilinear form associated to @, later (A, u) = —N tr(\ - p),
= gcd(a, b), the greatest common divisor of @ and b

The signature of a quadratic space

The regularized Petersson inner product of f and g,

The Petersson inner product of f and g,

A bilinear pairing of f and g,

A binary quadratic form,

An element of L

The space of functions that transform of weight k& with respect to the
representation py,, [30]

The field of complex numbers

The group algebra of a lattice L,
={z€D:zL\},[2]

The coefficients of fg,

The coefficients of the holomorphic part of a harmonic Maass form f
The coefficients of the non-holomorphic part of a harmonic Maass form f
A fundamental discriminant

The hyperbolic weight k& Laplace operator,

Usually the real hyperbolic space of dimension 2,

A fundamental discriminant

= L9 ¢ 4 differential operator,

~ 2mior

The Eichler integral of a cusp form G,
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List of symbols

EA eAzlifA>OandeA:z'ifA<O
Eo(z, ) The (normalized) real-analytic Eisenstein series of weight 0 for I'o(N),

E1/9,k(T,5) A real-analytic Eisenstein series of weight 1/2,

en, The standard basis elements of C[L'/L]

e(z) _ 2z

E An elliptic curve over Q,

EA The A-quadratic twist of an elliptic curve F,

Fo(z,s,k) A Poincaré series,
Fonn(T,8, k) A Poincaré series,

F Usually a harmonic Maass form of weight —2k for I'o(V)

fr The holomorphic part of a harmonic Maass form f,

f~ The non-holomorphic part of a harmonic Maass form f,

fe The Bruinier-Funke lift of Wy,

fn The h-th component of a function f: H — C[L'/L],

['(a,) The incomplete I'-function,

0 Usually an element of I'g(V), later also the Euler-Mascheroni constant
g An element of SLy(R)

G(T) The constant term of & s x (7, s) at s = 3,

g.A = gA\g~!, conjugation,

Gg A cusp form of weight 2 for I'g(Ng) associated to an elliptic curve £
G, The weight 2k Eisenstein series,

Fo(V) — {(2}) €SLa(Z) : ¢=0 (mod N)}

L. ~{(31) i n ez}

Ty The stabilizer of A in the image of I'g(N) in PSLy(Z),

To The stabilizer of ) in the image of I'o(N) in PSLy(Z),

T —{((41),1) : nez}, T
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s}
H

h
H,5(N)
H+

kvpL

H.(0,0,7,n)
Hi(N)

HkvpL

IXN(T, F)

IR" (1, F)

X1, G)

A canonical differential of the third kind with residue divisor D,
The complex upper half-plane, H = {z € C : &(z) > 0}

An element of L'/L

The space of harmonic Maass forms of weight & for T'o(N),

The space of harmonic Maass forms of weight k with respect to the rep-
resentation py, and the group Mp,(Z),

A generalized Kloosterman sum,
The space of harmonic Maass forms of weight & for T'o(N),

The space of harmonic Maass forms of weight k with respect to the rep-
resentation py and the group Mp,(Z),

The Kudla-Millson theta lift of a function F,

The Bruinier-Funke theta lift of a function F,

The Shintani theta lift of a function G,

The set of isotropic lines in V,

The imaginary part of z

The space of holomorphic Jacobi forms of weight £ and index m,
A subset of Ljapm, 4,

A subset of Liajm,rh,

An element of Iso(V)

A lattice in C

A lattice in C corresponding to an elliptic curve F,

A lattice, later L = {<l; _f/bN) ca,b,c €L},
The dual lattice of L,
= (L,Q7),

The Maass lowering operator,

The iterated Maass lowering operator,

125



List of symbols

I

PL

126

={AeL+h:QN\ =m}[9

The twisted L-function of an elliptic curve F,

The twisted L-function of a cusp form f,

The L-function of an elliptic curve,

The L-function of a cusp form f,

=y "M i 1 (y),

The metaplectic group,

The metaplectic group over the integers,

The modular curve I'o(N) \ D,

Usually m € Q, later m € Qs such that m = sgn(A)Q(h) (mod Z)

The space of weakly holomorphic modular forms of weight & for I'y(V),
24!

The space of weakly holomorphic modular forms of weight & with respect
to the representation p;, and the group Mp,(Z),

The space of modular forms of weight &k for I'g(N),

The space of modular forms of weight k with respect to the representation
pr, and the group Mpy(Z),

A positive integer
The orthogonal group of —,
= QU {oo},
The Weierstrass g-function,
The principal part of a harmonic Maass form f,
A quadratic form, later Q(A) = N det()),
2mir 2miz

Usually ¢ =€ orq=ce

The dual representation of p
= py, for the lattice L = {(l; _a_/bN> ta,b,ceZ}

The Weil representation on C[L/L’],



STy (2)
Spv(V)
SP4(N)

SO(—)

On (7,2, PrM)
OL(7, 2, ps)
O (T, 2, Yxm)
Oar (T, 2, Psn)
O, (7)

T(p)

-
tA . (F;m, h)
tZ’T(F; m, h)

tAm(F; m, h)

=pif A>0and pif A <O

An integer satisfying > = A (mod 4N)

An integer satisfying r? = d (mod 4N))

= LG - (),

The Maass raising operator,

The iterated Maass raising operator,

The real part of z

The space of 2 x 2-matrices with real entries and determinant 1
The space of 2 x 2-matrices with integer entries and determinant 1
seC

The space of newforms of weight k for I'o(V),

The space of oldforms of weight k for I'o(V),

The space of cusp forms of weight &k for I'g(N),

The space of cusp forms of weight k& with respect to the representation py,
and the group Mp,(Z),

The special orthogonal group of —,
The Kudla-Millson theta function,
The Siegel theta function,

The Millson theta function,

The Shintani theta function,

A theta series associated to a cusp /,
A Hecke operator,

T=u+iweH

A modular trace function,

A modular trace function,

A modular trace function,
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List of symbols

P&
v

erm(A, 2)
es(A, 7, 2)
Psna(A, T, 2)
Wk (y)

We

Wy

Wy

xa(9)

XD

&k (f)
X

Xo(N)
Yrm(A, 7, 2)
Yo(NN)

¢*(s)

Z

C(A;2)
Zar(m,h)
Z(N)

Z(m, h)
Zn(m, h)
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The modular parametrization of F,

The rational quadratic space of signature (1,2) realized as the space of
2 x 2-matrices with rational entries and trace 0,

The Kudla-Millson theta kernel,

The Siegel theta kernel,

The Shintani theta kernel,

e yik/QWk/Q,s—l/Z(y)v

The Weierstrass harmonic Maass form for a cusp form G,
The Fricke involution,

An Atkin-Lehner involution,

A generalized genus character for § € L/,

= (2), the Kronecker character associated to a fundamental discriminant

D,

= v*2L, f, a differential operator,
A compact Riemann surface,
=Yy(N)U (To(N) \ P1(Q)) the compactified modular curve
The Millson theta kernel,

= I'y(N) \ H, the modular curve

The completed Riemann Zeta function,

The ring of integers

The Weierstrass (-function,

z=x+1y e H

A twisted Heegner divisor,

A Heegner point,

A Heegner divisor,

A twisted Heegner divisor,
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