Übungen zur Algebraischen Zahlentheorie I - 3. Blatt -

Prof. Dr. K. Wingberg

WS 2009/2010

J. Bartels

abzugeben bis Donnerstag, den 5. November 2009 um 9:15 Uhr in den Kästen neben dem Seifertraum

 $http://www.mathi.uni-heidelberg.de/{\sim}bartels/Vorlesung$

Name: /name/ Matrikelnummer: /nr/

Übungsleiter: /uebleiter/

 $2. \ Name: \\ /namezwei/ \\ 2. \ Matrikelnummer: \\ /nrzwei/$

Man achte auf eine saubere Darstellung und eine ordentliche Schrift. Bitte keine maschinell erstellten Lösungen abgeben.

Aufgabe	1	2	3	4	\sum
Punkte					

1 . Aufgabe (6 Punkte):

Es sei F ein Zahlkörper, p eine Primzahl und R ein Teilring von endlichem Index in \mathcal{O}_F . Man setze $N:=\{x\in R|x\mod pR \text{ ist nilpotent.}\},\ R':=\{x\in \mathcal{O}_F|xN\subseteq N\}$ und $R'':=\{x\in \mathcal{O}_F|px\in R\}$. Zeigen Sie:

a)

$$R' = R''$$
.

b) Es ist R = R' genau dann, wenn die Abbildung

$$m: R/pR \to End(N/pN), x \mapsto m_x,$$

wobei m_x die Multiplikation mit x bedeutet, injektiv ist. Wenn m nicht injektiv ist, gilt für jeden Vertreter $x \in R$ eines nichttrivialen Elements aus dem Kern

$$R \subsetneq R[\frac{x}{p}] \subseteq \mathcal{O}_F.$$

2 . Aufgabe (6 Punkte) (Anwendung der ersten Aufgabe):

Berechnen Sie den Ganzheitsring von $\mathbb{Q}(\sqrt[3]{17})$.

3 . Aufgabe (6 Punkte) (Wiedersehen mit 2. Blatt, 4. Aufgabe):

Es sei $K = \mathbb{Q}(\alpha)$, wobei α eine Nullstelle des Polynoms $f(X) = X^3 + X^2 - 2X + 8$ ist. Mit $\beta := \frac{4}{\alpha}$ ist der Ganzheitsring $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$ nach der 4. Aufgabe des letzten Blatts.

- a) Zerlegen Sie das Ideal (2) darin in seine Primfaktoren und folgern Sie, daß es keine über $\mathbb Q$ algebraische Größe γ gibt, für die sich \mathcal{O}_K als $\mathbb{Z}[\gamma]$ schreiben läßt.
- b) Für jedes primitive Element $\gamma \in \mathcal{O}_K$ gilt: $2|(\mathcal{O}_K : \mathbb{Z}[\gamma])$.

4 . Aufgabe (6 Punkte):

Es sei $K = \mathbb{Q}(\sqrt{D})$ der quadratische Zahlkörper mit Diskriminante D < 0 und $D \equiv 0, 1 \pmod{4}$.

a) Zeigen Sie, daß sich jedes Ideal I folgendermaßen schreiben läßt

$$\delta(a\mathbb{Z}+\frac{b+\sqrt{D}}{2}\mathbb{Z}) \text{ mit } a,b,\delta\in\mathbb{Z}, a>0,$$

wobei

$$b^2 \equiv D(mod\ 4a), |b| \le a.$$

Umgekehrt stellt jede solche Menge ein Ideal I dar, für dessen Index $(\mathcal{O}_K:I)=a\delta^2$ gilt und dessen Schnitt mit $\mathbb Z$ durch $I\cap\mathbb Z=\delta a\mathbb Z$ beschrieben wird. b) Es sei $c:=\frac{b^2-D}{4a}$. Zeigen Sie, daß

$$(c, \frac{-b + \sqrt{D}}{2})^{-1}.I$$

ein Hauptideal ist.