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ABSTRACT. Integrally oriented normally nonsingular maps between singular spaces have
associated transfer homomorphisms on KO-homology at odd primes. We prove that such
transfers preserve Siegel-Sullivan orientations, defined when the singular spaces are com-
pact pseudomanifolds satisfying the Witt condition, for example pure-dimensional compact
complex algebraic varieties. This holds for bundle transfers associated to block bundles with
manifold fibers as well as for Gysin restrictions associated to normally nonsingular inclusions.
Our method is based on constructing a lift of the Siegel-Sullivan orientation to a morphism of
highly structured ring spectra which factors through L-theory.
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1. INTRODUCTION

Let KO∗(−) denote topological KO-homology and let M be a smooth n-dimensional
closed oriented manifold. In his MIT notes [56], Sullivan introduced a class ∆SO(M) ∈
KOn(M)⊗Z[ 1

2 ], which is an orientation and plays a fundamental role in studying the K-
theory of manifolds. For instance, Sullivan showed that topological block bundles away
from 2 are characterized as spherical fibrations together with a KO[ 1

2 ]-orientation. He went
on to point out in [57] that given a class of oriented piecewise-linear (PL) pseudomanifolds
equipped with a bordism invariant signature that extends the signature of manifolds and sat-
isfies Novikov additivity and a product formula, an analogous procedure (based on suitable
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transversality results in the singular context) still works to determine a canonical orienta-
tion in KO∗(−)⊗Z[ 1

2 ]. Goresky and MacPherson’s intersection homology allowed for the
construction of such signature invariants when the pseudomanifolds have only strata of even
codimension, or more generally, if they satisfy the Witt condition introduced by Siegel in [55].
An oriented PL pseudomanifold is a Witt space, if the middle-perversity, middle-dimensional
rational intersection homology of links of odd-codimensional strata vanishes. This class con-
tains all complex algebraic varieties of pure dimension. The class of Witt spaces is contained
in a yet larger class of pseudomanifolds, introduced in [3], [4], that support a bordism in-
variant signature. Roughly, these are spaces that admit a Lagrangian subsheaf in the link
cohomology sheaf along strata of odd codimension. The present paper, however, will focus
only on Witt spaces.

Thus Sullivan’s general framework implies that n-dimensional closed Witt spaces X have
a canonical orientation ∆(X) ∈ KO∗(X)⊗Z[ 1

2 ]. The construction of this element was de-
scribed in detail by Siegel in [55], and is recalled in the present paper. We shall refer to it as
the Siegel-Sullivan orientation of a Witt space. In [17], Cappell, Shaneson and Weinberger
extended this orientation to an equivariant class for finite group actions satisfying a weak
regularity condition on the fixed point sets. Under the Pontrjagin character, ∆(X) is a lift
of the Goresky-MacPherson L-class L∗(X) ∈ H∗(X ;Q). The latter already contains signifi-
cant global information on the singular space X (see [18], [60]) and its concrete computation
is correspondingly challenging. For complex projective varieties X it is often possible to
obtain information on L∗(X) by cutting down to transverse intersections of X with smooth
subvarieties using Gysin homomorphisms. For example it is possible to reduce L-class com-
putations for singular Schubert varieties entirely to signature computations of explicitly given
algebraic subvarieties. This approach, introduced in [7] and pursued systematically in [11],
requires a thorough understanding of how characteristic and orientation classes for singular
spaces transform under Gysin restriction.

Let g : Y ↪→ X be an oriented normally nonsingular codimension c inclusion of closed
Witt spaces. Thus Y has an open tubular neighborhood in X which is endowed in a stra-
tum preserving manner with the structure of an oriented rank c vector bundle. Since SO-
bundles are KO[ 1

2 ]-oriented, g has an associated Gysin homomorphism g! : KO∗(X)⊗Z[ 1
2 ]→

KO∗−c(Y )⊗Z[ 1
2 ]. We prove (Theorem 8.2):

Theorem. Let g : Y n−c ↪→ Xn be an oriented normally nonsingular inclusion of closed Witt
spaces. The KO[ 1

2 ]-homology Gysin map g! of g sends the Siegel-Sullivan orientation of X to
the Siegel-Sullivan orientation of Y :

g!
∆(X) = ∆(Y ).

An important class of morphisms in algebraic geometry is given by local complete inter-
section morphisms ([25]) Y → B. By definition, they admit a factorization Y → X → B, where
Y →X is a closed regular algebraic embedding and X →B is a smooth morphism. The regular
embedding has an associated algebraic normal vector bundle and the smooth morphism has
an associated relative tangent bundle, so that l.c.i. morphisms possess a virtual tangent bun-
dle. A parallel topological notion of normally nonsingular map Y → B has been considered
by Goresky-MacPherson [29, 5.4.3] and Fulton-MacPherson [26]. By definition, these admit
factorizations Y → X → B into a normally nonsingular inclusion Y → X followed by a fiber
bundle projection X → B with manifold fiber. A complete picture should therefore include
an understanding of how the Siegel-Sullivan orientation behaves under Becker-Gottlieb type
bundle transfer ([12]). We shall thus also consider bundle transfers ξ ! associated to block
bundles ξ over compact Witt spaces B ([19]). These do not require a locally trivial projection
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map X → B, but merely a decomposition of X into blocks over cells in B. (A fiber bun-
dle is a special case of a block bundle.) Thus, let ξ be an oriented PL F-block bundle with
closed oriented d-dimensional PL manifold fiber F over a closed Witt base B. Then, since the
stable vertical normal block bundle of ξ is KO[ 1

2 ]-oriented, there is a block bundle transfer
ξ ! : KOn(B)⊗Z[ 1

2 ]→ KOn+d(X)⊗Z[ 1
2 ]. We prove (Theorem 7.4):

Theorem. If ξ is an oriented PL F-block bundle with closed oriented PL manifold fiber F
over a closed Witt base B, then the Siegel-Sullivan orientations of base and total space X are
related under block bundle transfer by

ξ
!
∆(B) = ∆(X).

Rather than using Siegel’s original construction of ∆ directly to prove the above transfer
results, we give a new description of ∆ based on a homotopy theoretic perspective relating K-
to L-theory: We provide here a lift of the Siegel-Sullivan orientation to a ring spectrum level
morphism

∆ : MWITT −→ KO[ 1
2 ],

where MWITT denotes the ring spectrum representing Witt space bordism theory, constructed
as in [10] via the ad-theories of Laures and McClure. A particularly important aspect of ∆ for
our present purposes is its multiplicativity. On homotopy groups, ∆∗ sends the bordism class
of a closed Witt space X4k to its signature σ(X). In order to obtain our ring spectrum level
description of ∆, we use results of Land and Nikolaus [33] to construct in Proposition 2.1 an
equivalence of highly structured ring spectra KO[ 1

2 ] ≃ L(R)[ 1
2 ] which maps the element in

π4(KO)[ 1
2 ] whose complexification is the square of the complex Bott element to the signature

1 element in π4(L(Z)), where L(R) denotes the (projective) symmetric algebraic L-theory
spectrum of a ring R with involution, introduced first by Ranicki. Under this equivalence,
the Siegel-Sullivan orientation ∆(X) of a Witt space corresponds to the L(Q)-homology ori-
entation [X ]L of Laures, McClure and the author, which generalizes Ranicki’s L-homology
orientation of manifolds to singular spaces. This then enables us to use L-theoretic transfer
results established in [7] and [8]. For a PL F-fiber bundle p : X → B over a PL manifold base
B, the transfer formula p![B]L = [X ]L ∈ L(Z)n+d(X) was stated by Lück and Ranicki in [37].

From the analytic viewpoint, Sullivan’s orientation ∆SO(M) is for a (closed, oriented)
Riemannian manifold M closely related to the class of the signature operator in Kasparov’s
model K∗(M) =KK∗(C(M),C) of the K-homology of M, see for example [52] and [34, Prop.
8.3]. Modulo 2-power torsion, the two classes differ by certain powers of 2. For smoothly
stratified Witt spaces X equipped with an incomplete iterated edge metric on the regular part,
Albin, Leichtnam, Mazzeo and Piazza construct in [1] a signature operator ðsign and a K-
homology class [ðsign] ∈ K∗(X). Again, it is possible to go well beyond Witt spaces: The
topological cohomology theory of [3] and the analytic L2 de Rham theory have been treated
from a common perspective in [2].

In view of the algebraic results of [7] and [11], the conclusions of the present paper are also
relevant in the context of a question raised by Jörg Schürmann in [54]: Is the Siegel-Sullivan
orientation ∆(X) of a pure-dimensional compact complex algebraic variety X the image of
the intersection homology (mixed) Hodge module on X under the motivic Hodge Chern class
transformation MHC1 : K0(MHM(X))→ Kcoh

0 (X) of Brasselet-Schürmann-Yokura [14], fol-
lowed by the K-theoretical Riemann-Roch transformation of Baum, Fulton and MacPherson?

The above material is developed as follows: Section 2 collects relevant homotopy theoretic
information on KO and L, and constructs the particular equivalence between KO and L away
from 2 used throughout the rest of the paper. The orientations of Sullivan and Ranicki for
the nonsingular case are reviewed in Section 3. Section 4 sketches the classical construction
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of the Siegel-Sullivan orientation for singular Witt spaces given in [55]. Our ring spectrum
level construction of the Siegel-Sullivan orientation is the focus of Section 5. An immediate
application of this construction is a proof of cartesian multiplicativity of the Siegel-Sullivan
orientation (Theorem 6.2) in Section 6. In Section 7, we proceed to apply our multiplicative
spectrum level construction in establishing the normally nonsingular block bundle transfer
result, while normally nonsingular Gysin restrictions of the Siegel-Sullivan orientation are
the subject of the final Section 8.

Acknowledgements. We thank Jörg Schürmann for interesting discussions on the subject
matter on this paper. We especially express our gratitude to Markus Land for discussions on
the relation of K- and L-theory away from 2.

2. MULTIPLICATIVE IDENTIFICATION OF KO- AND L-THEORY AWAY FROM 2

Our method is based on finding a multiplicative equivalence L[ 1
2 ] ≃ KO[ 1

2 ] that yields
the Sullivan orientation when precomposed with Ranicki’s orientation MSPL → L → L[ 1

2 ].
We describe such an equivalence in the present section, based on an equivalence of highly
structured ring spectra obtained by Land and Nikolaus in [33].

Let R be a commutative unital ring with involution and let L(R) denote the (projective)
symmetric algebraic L-theory spectrum of R, introduced first by Ranicki. (See e.g. [47]; there
is no need for our notation to distinguish between the symmetric and the quadratic L-theory
spectrum, since the latter will not be used in the present paper.) The only instances of R used
in this paper are the ring of integers and the fields of rational, real or complex numbers. Since
K̃0(R) vanishes in these cases, there is no difference between the free and the projective L-
theory. The involution on Z,Q and R is taken to be the trivial involution, while we consider
C to be endowed with the complex conjugation involution. If R = Z, we shall briefly write
L = L(Z). The spectrum L(R) is a ring spectrum, and a morphism R → S of commutative
rings with involution induces a morphism L(R)→ L(S). For the inclusions Z⊂Q⊂R⊂C,
one obtains morphisms

L(Z)−→ L(Q)−→ L(R)−→ L(C).

The multiplicative symmetric Poincaré ad-theory of Laures and McClure [35] shows that
these are morphisms of ring spectra. Their lax symmetric monoidal functor also shows that
L(R) for a commutative ring R can be realized as a commutative symmetric ring spectrum.
Thus L(R) is equivalent to an E∞-ring spectrum, that is, the multiplication is commutative
and associative not just up to homotopy, but up to coherent systems of homotopies. If E is a
ring spectrum and A a subring of Q, then the localized spectrum EA is endowed with a unique
(up to ring equivalence) ring structure such that the localization morphism E → EA is a ring
morphism. Ring morphisms E → F localize to ring morphisms EA → FA. If A = Z[ 1

2 ], we
will write E[ 1

2 ] for EA. Thus there are canonical morphisms of ring spectra

L(Z)[ 1
2 ]−→ L(Q)[ 1

2 ]−→ L(R)[ 1
2 ]−→ L(C)[ 1

2 ].

The first two morphisms are equivalences, the last one is not. Indeed, the homotopy ring of
L(Z)[ 1

2 ] is given by L∗(Z)[ 1
2 ] = Z[ 1

2 ][x
±1], where x ∈ L4(Z) is the signature 1 element. (The

degree 1 torsion element in L∗(Z) is removed by inverting 2.) The homotopy ring of L(R) is
given by L∗(R) = Z[x±1], where x ∈ L4(R) denotes the image of the class x ∈ L4(Z). The
homotopy groups Li(Q) vanish in degrees i not divisible by 4. For i = 4k, they contain an
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infinitely generated amount of 2-primary torsion,

L4k(Q) = L4k(R)⊕
⊕

p prime

L4k(Fp) = Z⊕ (Z/2)
∞ ⊕ (Z/4)

∞,

where Fp denotes the finite field with p elements. The signature homomorphism L4k(Q)→Z
provides the unique splitting for the unique ring homomorphism Z→ L4k(Q). The infinitely
generated amount of 2-primary torsion is then removed by inverting 2. Via the above canoni-
cal multiplicative maps, we shall identify L(Z)[ 1

2 ], L(Q)[ 1
2 ] and L(R)[ 1

2 ] as E∞-ring spectra.
The homotopy ring of L(C) (with conjugation involution on C) is L∗(C) = Z[b±1], where b
has degree 2. The spectrum L(C) is 2-periodic. On homotopy rings, the map L(R)→ L(C)
induces the map Z[x±1]→ Z[b±1], x 7→ b2.

Let KO denote the 8-periodic ring spectrum representing real K-theory and K the 2-
periodic ring spectrum representing complex K-theory. The homotopy ring of K is π∗(K) =
Z[β±1], where β is the complex Bott element in degree 2, i.e. β is represented by the reduced

canonical complex line bundle H − 1 ∈ K̃
0
(S2). The complexification c : BO → BU can be

lifted to a morphism of spectra c : KO → K ([53, p. 360, Lemma VI.3.3]). On π4, c induces
multiplication by 2, c∗ = 2 : π4(KO) =Z→ Z= π4(K). Thus there does not exist an element
in π4(KO) that maps to β 2. But after inverting 2, such an element exists. Let a ∈ π4(KO)[ 1

2 ]

be the element whose complexification is β 2. The localization KO[ 1
2 ] is a 4-periodic ring

spectrum with homotopy ring π∗(KO)[ 1
2 ] = Z[ 1

2 ][a
±1].

Taylor and Williams showed in [59, Theorem A] that there is an equivalence L(Z)[ 1
2 ] ≃

KO[ 1
2 ] of spectra. In [51], Rosenberg asserts that these spectra are equivalent as homotopy

ring spectra. Further arguments in this direction are supplied by Lurie [38], who proves
that these spectra are quivalent as homotopy ring spectra. Land and Nikolaus [33, p. 550]
construct an equivalence of E∞-ring spectra KO[ 1

2 ]≃ L(Z)[ 1
2 ].

Proposition 2.1. There exists an equivalence of E∞-ring spectra

κ : KO[ 1
2 ]

≃−→ L(R)[ 1
2 ]

which induces the ring isomorphism

Z[ 1
2 ][a

±1]−→ Z[ 1
2 ][x

±1], a 7→ x

on homotopy rings.

Proof. We are indebted to Markus Land for communication on the following argument. Let
τR : KO[ 1

2 ] → LR[ 1
2 ] be the equivalence of E∞-ring spectra given in [33, Cor. 5.4]. This

equivalence is related to a complex version τC : K[ 1
2 ]→ LC[ 1

2 ] by the commutative diagram

KO[ 1
2 ]

c
��

τR // L(R)[ 1
2 ]

��
K[ 1

2 ] τC
// L(C)[ 1

2 ].

(There is no integral version of τC on the periodic spectra, although there is an integral version
k → ℓC on connective spectra, which induces τC on the periodic spectra after inverting 2.) By
[33, Lemma 4.9], τC∗ : π2(K)[ 1

2 ]→ π2(LC)[ 1
2 ] maps β 7→ 2b. Since τC is a map of E∞-ring

spectra, it follows that it sends β 2 7→ 4b2. Consequently, the right hand vertical map sends
the element τR∗(a) to

τC∗c∗(a) = τC∗(β
2) = 4b2.
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Since L(R)[ 1
2 ]→ L(C)[ 1

2 ] maps x 7→ b2, we deduce that τR∗(a) = 4x.
Let

ψ
2 : KO[ 1

2 ]−→ KO[ 1
2 ]

be the stable Adams operation, constructed as a morphism of E∞-ring spectra ([21], [22, p.
3], [41, p. 106]). On the homotopy groups π4kKO[ 1

2 ] = Z[ 1
2 ], ψ2 induces ak 7→ 4kak. Thus

ψ2 induces an isomorphism of homotopy rings, and is therefore an equivalence. Composing
the inverse of ψ2 with the Land-Nikolaus equivalence τR : KO[ 1

2 ] → LR[ 1
2 ], we obtain the

desired equivalence κ of E∞-ring spectra since the map induced by the composition on π4
sends

a 7→ 1
4 a

τR∗7→ 1
4 (4x) = x.

□

3. THE ORIENTATIONS OF SULLIVAN AND RANICKI

Let MSO,MSPL and MSTOP denote the Thom spectra of oriented vector-, PL- and topo-
logical bundles. These are ring spectra and Pontrjagin-Thom isomorphisms identify their
homotopy groups with the bordism groups ΩSO

∗ ,ΩSPL
∗ ,ΩSTOP

∗ of oriented smooth, PL or topo-
logical manifolds. (The topological spectrum MSTOP will not play an essential role in what
follows, but occasional side remarks will involve it.) Sullivan obtained in [56] a morphism of
spectra

∆SO : MSO −→ KO[ 1
2 ]

such that the induced map on homotopy groups

∆SO∗ : Ω
SO
4k = MSO4k −→ KO[ 1

2 ]4k = Z[ 1
2 ]⟨a

k⟩

is

(1) ∆SO∗[M4k] = σ(M) ·ak,

where σ(M) denotes the signature of the smooth oriented closed manifold M, see [39, pp. 83–
85]. The Pontrjagin character ph : KO[ 1

2 ] → HQ[t±1] of ∆SO is the inverse of the universal
Hirzebruch L-class L ∈ H∗(BSO;Q) up to multiplication with the stable Thom class u ∈
H0(MSO;Z),

ph(∆SO) = L−1 ∪u ∈ H∗(MSO;Q).

The Sullivan orientation of a smooth closed n-dimensional manifold M is given by the image

∆SO(M) = ∆SO∗[idM] ∈ KOn(M)⊗Z[ 1
2 ]

of the bordism class of the identity on M under the homomorphism ∆SO∗ : ΩSO
n (M) →

(KO[ 1
2 ])n(M) induced by the spectrum level Sullivan orientation ∆SO. If M has a bound-

ary ∂M, then ∆SO(M) is an element in the relative group KOn(M,∂M)⊗Z[ 1
2 ].

The orientation ∆SO extends canonically to a map ∆SPL : MSPL → KO[ 1
2 ] with respect to

the canonical map MSO → MSPL ([39, Chapter 5.A, D]). On homotopy groups, the induced
map continues to be given by the signature, i.e.

(2) ∆SPL∗[M4k] = σ(M) ·ak

for an oriented closed PL manifold M. The Pontrjagin character is

(3) ph(∆SPL) = L−1
PL ∪uPL ∈ H∗(MSPL;Q),

where LPL is the universal PL L-class LPL ∈ H∗(BSPL;Q) and uPL the stable Thom class
uPL ∈ H0(MSPL;Z) = Z ([39, Cor. 5.4, p. 102]). Note that LPL restricts to L under the
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canonical map BSO → BSPL. We recall that this map is a rational equivalence, so in particu-
lar induces an isomorphism H∗(BSPL;Q)

≃−→ H∗(BSO;Q), and this isomorphism identifies
Thom’s Pontrjagin class p4i ∈ H4i(BSPL;Q) with the rational reduction p4i ∈ H4i(BSO;Q)
of the integral Pontrjagin class (though the PL Pontrjagin classes are in general not inte-
gral). For this reason, one commonly identifies L and LPL and simply writes L for it. An
n-dimensional closed PL manifold has a Sullivan orientation

∆SPL(M) = ∆SPL∗[idM] ∈ KOn(M)⊗Z[ 1
2 ],

where [idM] ∈ ΩSPL
n (M).

Remark 3.1. Randal-Williams observes in [46, p. 9] that this map can be further canoni-
cally extended to a map ∆STOP : MSTOP → KO[ 1

2 ] with respect to the canonical forget map
MSPL → MSTOP, since the fiber of the latter map is 2-local. In particular, given an element
[N] ∈ ΩSTOP

4k = MSTOP4k, there exists a large integer i such that 2iN is topologically bordant
to a PL manifold M, for which (2) is available. Thus

2i
∆STOP∗[N] = ∆STOP∗[M] = ∆SPL∗[M] = σ(M) ·ak

= σ(2iN) ·ak = 2i
σ(N) ·ak.

This shows that the map induced by ∆STOP on homotopy groups is again given by the signa-
ture:

∆STOP∗[M4k] = σ(M) ·ak

for an oriented closed topological manifold M.

In the present paper, we take an L-theoretic perspective in order to approach the orienta-
tions of Sullivan and Siegel-Sullivan. For smooth manifolds M, it has been known for a long
time that Ranicki’s fundamental class [M]L agrees with Sullivan’s class ∆SO(M) under the
appropriate identification of KO- and L-homology at odd primes, see for example Ranicki
[47, p. 15], and Weinberger [60, p. 82]. Let Ln(R) denote Ranicki’s (projective) symmetric
L-groups of a ring R with involution. In [48, p. 385, Prop. 15.8], Ranicki constructed a
morphism of ring spectra

σ
∗ : MSPL −→ L(Z)

such that the resulting L(Z)-homology fundamental class

[M]L := σ
∗[idM] ∈ L(Z)n(M)

of a closed oriented PL n-dimensional manifold M hits the Mishchenko-Ranicki symmetric
signature

σ
∗(M) = A[M]L ∈ Ln(Z[π1M])

under the assembly map
A : L(Z)n(M)−→ Ln(Z[π1M]).

(Ranicki extended σ∗ to a morphism of ring spectra MSTOP −→ L(Z) in [50, p. 290], but
we shall not require this extension for the purposes of the present paper.) Technically, we
will work with σ∗ as constructed by Laures and McClure in [35] using ad-theories. Their
incarnation of σ∗ is an E∞-ring map ([35, 1.4]). The localization morphism L(Z)→ L(Z)[ 1

2 ]
is a morphism of ring spectra. Thus its composition with σ∗ is a morphism of ring spectra
MSPL → L(Z)[ 1

2 ], which we shall also denote by σ∗. By [49, p. 243], σ∗ induces on
homotopy groups the map

σ
∗
pt : Ω

SPL
4k (pt) = MSPL4k(pt)−→ L(Z)[ 1

2 ]4k = Z[ 1
2 ]⟨x

k⟩
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given by

(4) σ
∗
pt[M

4k] = σ(M) · xk.

Remark 3.2. Let M be a closed oriented PL manifold of dimension n. The constant map
c : M → pt induces a diagram

ΩSPL
n (M)

σ∗
//

c∗
��

L(Z)n(M)
A //

c∗
��

Ln(Z[π1M])

c∗
��

ΩSPL
n (pt)

σ∗
pt

// L(Z)n(pt)
A

Ln(Z)

which commutes, since the assembly map A is natural. Together with Equation (4), this
diagram shows that the homomorphism Ln(Z[π1M])→ Ln(Z), n = 4k, sends the symmetric
signature of M to its ordinary signature. Indeed,

c∗σ
∗(M) = c∗A[M]L = c∗Aσ

∗[idM]

= σ
∗
ptc∗[idM] = σ

∗
pt[M] = σ(M)xk.

The analogous fact holds also for singular pseudomanifolds that satisfy the Witt condition
and will be used later to compute the behavior of the ring-spectrum level Siegel-Sullivan
orientation defined in the present paper on homotopy groups (Proposition 5.4).

Ranicki [48, p. 390f] introduced an L-theoretic Thom class

uL(α) ∈ L̃m(Th(α))

for oriented rank m PL microbundles (or PL (Rm,0)-bundles) α as follows: The classifying
map X → BSPLm of α (where X is the base space) is covered by a bundle map from α to the
universal oriented PL microbundle. The induced map on Thom spaces yields a class

uSPL(α) ∈ M̃SPL
m
(Th(α)),

the Thom class of α in oriented PL cobordism. It is indeed an MSPL-orientation of α in
Dold’s sense. Ranicki then defines

uL(α) := σ
∗(uSPL(α)).

Since σ∗ : MSPL → L(Z) is multiplicative, the element uL(α) is indeed an L-orientation of
α . This can also be carried out for stable PL bundles α . For the universal stable PL bundle
there is thus a canonical L-orientation uL ∈ L̃0(MSPL). Since the stable Thom class uSPL ∈
M̃SPL

0
(MSPL) of the universal stable PL bundle is given by the identity MSPL → MSPL,

we have uL = σ∗. The morphism of ring spectra L(Z)→ L(Q) induces a homomorphism

L̃(Z)
m
(Th(α))−→ L̃(Q)

m
(Th(α)).

We denote the image of uL(α) under this map again by uL(α). Furthermore, the images of
these elements in the bottom row of the localization square

(L̃Z)m(Th(α)) //

��

(L̃Q)m(Th(α))

��

(L̃Z[ 1
2 ])

m(Th(α)) (L̃Q[ 1
2 ])

m(Th(α))
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will also be written as uL(α). Since all maps in the square are induced by morphisms of ring
spectra, all these image elements are again orientations of α .

Comparing Equations (2) and (4), we find that the diagram

MSPL4k(pt)

∆SPL∗ &&

σ∗
pt // L(Z)[ 1

2 ]4k

KO[ 1
2 ]4k

≃κ

OO

commutes. More is true:

Proposition 3.3. The composition

MSPL
∆SPL−→ KO[ 1

2 ]
κ−→ L(Z)[ 1

2 ]

of Sullivan’s orientation ∆SPL with the ring equivalence κ from Proposition 2.1 is homotopic
to Ranicki’s orientation σ∗.

Proof. We start at the prime 2 with the cohomology class L ∈ H4∗(L;Z(2)) constructed by
Taylor and Williams in [59]. This yields a specific homotopy class

L : L(Z)(2) −→
⊕
i∈Z

HZ(2)[4i].

The pullback of this class under Ranicki’s orientation σ∗ corresponds under the Thom iso-
morphism to the Morgan-Sullivan class L ∈ H∗(BSPL;Z(2)) of [43]. Rationally, L becomes
the inverse L−1 ∈ H∗(BSPL;Q) of the Thom-Hirzebruch L-class. The composition

L(R)(2) −→ L(Z)(2)
L−→

⊕
i∈Z

HZ(2)[4i]

is an equivalence. (The individual arrows are not — the discrepancy is the de Rham invariant.)
Rationally (i.e. inverting 2), this gives an equivalence

L(R)(0) = L(Z)(0)
≃−→

⊕
i∈Z

HQ[4i].

The map
L∗(MSPL)−→ H∗(MSPL;Q)

induced by the composition

L(Z) loc−→ L(Z)(0) = L(R)(0)
≃−→

⊕
i∈Z

HQ[4i]

thus sends the universal stable L-orientation uL = σ∗ ∈ L̃0(MSPL) to

L−1
PL ∪uPL ∈ H∗(MSPL;Q),

see also [47, Remark 16.2, p. 176]. It sends the signature 1 element xk ∈ L4k(Z) to 1 ∈
π4k(

⊕
i∈Z HQ[4i]). Consider the diagram

(5) KO[ 1
2 ]

κ ≃
��

loc // KO(0)

κ(0) ≃
��

ph
≃

// ⊕
i∈Z HQ[4i]

L[ 1
2 ]

loc // L(0)
≃ // ⊕

i∈Z HQ[4i].
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The left hand localization square commutes for general reasons. The right hand square com-
mutes up to homotopy as well: Since the involved spectra are graded Eilenberg-MacLane
spectra of graded Q-vector spaces, it suffices to check that the induced square on homo-
topy rings commutes. The vertical isomorphism induced by κ(0) sends, according to its
very construction, the generator ak ∈ π4k(KO(0)) to xk ∈ π4k(L(0)), which in turn maps to
1 ∈ π4k(

⊕
i∈Z HQ[4i]). As for the Pontrjagin character,

ph(ak) = (ch◦c)(ak) = ch(β 2k) = ch(β )2k = 1.

Hence the right hand square commutes up to homotopy. During the course of the above
argument, we have drawn upon several relevant remarks made by Randal-Williams in [46].
Now evaluate the above diagram on MSPL:

(KO[ 1
2 ])

0(MSPL)

κ ≃
��

loc // (KO(0))
0(MSPL)

κ(0) ≃
��

ph
≃

// ⊕
i∈Z H4i(MSPL;Q)

(L[ 1
2 ])

0(MSPL) loc // (L(0))
0(MSPL) ≃ // ⊕

i∈Z H4i(MSPL;Q).

We shall show that the elements

∆SPL, κ
−1 ◦σ

∗ ∈ (KO[ 1
2 ])

0(MSPL)

are equal. According to (3), ph(∆SPL) = L−1
PL ∪ uPL. By the commutativity of the diagram,

the Pontrjagin character ph(κ−1 ◦σ∗), given by mapping the element horizontally, can al-
ternatively be calculated by first mapping down vertically, and then mapping to the right
horizontally. Mapping down via κ yields σ∗, which is then mapped to L−1

PL ∪uPL as discussed
above. It follows that the two elements have the same Pontrjagin character,

ph(∆SPL) = ph(κ−1 ◦σ
∗).

Now the element ∆SPL is characterized by its Pontrjagin character, [39, p. 115]. (Madsen and
Milgram show that the Pontrjagin character ph : K̃O(MSPL(p))→ H∗(MSPL;Q) is injective
at every odd prime p, [39, Cor. 5.25].) It follows that κ−1σ∗ is homotopic to ∆SPL. □

Corollary 3.4. The Sullivan orientation ∆SPL : MSPL → KO[ 1
2 ] is homotopic to a morphism

of (homotopy) ring spectra.

In view of Proposition 3.3, we may thus adopt the following convention for the spectrum
level Sullivan orientation:

Definition 3.5. Let
∆ : MSPL −→ KO[ 1

2 ]

be the morphism of ring spectra given by the composition

MSPL σ∗
−→ L(Z)[ 1

2 ] = L(R)[ 1
2 ]

κ−1

≃ KO[ 1
2 ]

of Ranicki’s orientation with a ring equivalence κ−1 inverse to the ring equivalence κ of
Proposition 2.1.

Definition 3.6. For an oriented rank m PL microbundle (or PL (Rm,0)-bundle) α , let

∆(α) ∈ K̃O
m
(Th(α))[ 1

2 ]

be the image
∆(α) = ∆∗(uSPL(α))
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of the MSPL-orientation under

M̃SPL
m
(Th(α))

∆∗−→ K̃O
m
(Th(α))[ 1

2 ].

This is indeed a KO[ 1
2 ]-orientation of α , since ∆ is multiplicative ([53, p. 305, Prop. V.1.6]).

From this perspective, it is immediate that κ aligns ∆(α) and Ranicki’s Thom class uL(α):

Lemma 3.7. Let α : X → BSPL(m) be an oriented PL microbundle of rank m. Then the
isomorphism

κ∗ : K̃O
m
(Th(α))⊗Z[ 1

2 ]
≃−→ L̃m(Th(α))⊗Z[ 1

2 ]

maps ∆(α) to uL(α).

Proof. According to Ranicki’s definition, uL(α) = σ∗(uSPL(α)). Consequently,

κ∗∆(α) = κ∗∆∗(uSPL(α)) = κ∗κ
−1
∗ σ

∗(uSPL(α)) = σ
∗uSPL(α) = uL(α).

□

Given an oriented vector or PL bundle α of rank m, let uZ(α) ∈ H̃m(Th(α);Z) denote
its integral Thom class and uQ(α) ∈ H̃m(Th(α);Q) the image of uZ(α) under H̃ ∗ (−;Z)→
H̃∗(−;Q). The methods used to prove Proposition 3.3 imply readily:

Lemma 3.8. Let α be an oriented PL microbundle over X. Rationally, ∆(α) is given by

ph∆(α) = L−1(α)∪uQ(α) ∈ H∗(X ;Q).

Proof. One evaluates the commutative diagram (5) on the base space of α and notes that by
Lemma 3.7, κ∗∆(α) = uL(αSTOP). By commutativity, ph∆(α) may be computed by map-
ping κ∗∆(α) along the lower horizontal composition. As observed in the proof of the propo-
sition, the L-cohomology Thom class is given rationally (i.e. along the lower horizontal
composition) by the product of the inverse L-class with the HQ-cohomology Thom class uQ,
L−1(α)∪uQ(α). (See [47, Remark 16.2]; Ranicki writes −⊗Q instead of chL loc and omits
cupping with uQ in his notation.) □

For the sake of completeness, we also record the case of the trivial bundle:

Lemma 3.9. If α is the trivial rank 4k = m PL bundle over a point, then ∆(α) = ak ∈
K̃O

4k
(S4k)[ 1

2 ].

Proof. The Chern character ch : K0(S4k) →
⊕

∞
i=0 H2i(S4k;Q) is injective and has image

H∗(S4k;Z)⊂ H∗(S4k;Q). Thus it is an isomorphism

ch : K0(S4k)
∼=−→ H∗(S4k;Z) = Z⊕Z.

It restricts to an isomorphism

ch : K̃
0
(S4k)

∼=−→ H̃∗(S4k;Z) = Z
between reduced groups. The localization at odd primes is an isomorphism

ch[ 1
2 ] : K̃

0
(S4k)[ 1

2 ]
∼=−→ H4k(S4k)[ 1

2 ] = Z[ 1
2 ].

We turn next to complexification. This is a morphism c : KO → K of spectra which induces
a ring homomorphism c∗ : π∗(KO)→ π∗(K) on homotopy rings ([58, p. 304]). In degree 4,
c∗ = 2 : π4(KO) = Z→ Z = π4(K), while in degree 8, c∗ : π8(KO) = Z→ Z = π8(K) is an
isomorphism. The localized ring homomorphism

c∗[ 1
2 ] : π∗(KO)[ 1

2 ] = Z[ 1
2 ][a

±1]−→ Z[ 1
2 ][β

±1] = π∗(K)[ 1
2 ]
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sends a ∈ π4(KO)[ 1
2 ] to β 2 ∈ π4(K)[ 1

2 ]. In particular, c∗[ 1
2 ] : π4k(KO)[ 1

2 ] → π4k(K)[ 1
2 ] is

an isomorphism, mapping ak 7→ β 2k. The Chern character of β k is given by vk, where
v ∈ H2(S2;Z) is the canonical generator, i.e. the first Chern class c1(H) of the canonical
(hyperplane) line bundle H over S2 = CP1. The Pontrjagin character ph = ch◦c localizes to
ph[ 1

2 ] given by the composition

K̃O
0
(S4k)[ 1

2 ]

ph[ 1
2 ] ''

c∗[
1
2 ]

∼=
// K̃

0
(S4k)[ 1

2 ]

ch[ 1
2 ]

∼=
��

H4k(S4k;Z)[ 1
2 ].

Here we have used suspension isomorphisms to identify

K̃O
0
(S4k)

c∗
��

∼ K̃O
−4k

(S0) KO−4k(pt) π4k(KO)

c∗

��
K̃

0
(S4k)

∼ K̃
−4k

(S0) K−4k(pt) π4k(K).

Therefore,
ph[ 1

2 ](a
k) = ch[ 1

2 ](c∗[
1
2 ](a

k)) = ch[ 1
2 ](β

2k) = v2k.

The generator v2k ∈ H4k(S4k;Z) agrees with the Thom class uZ(α) ∈ H4k(R4k ∪{∞};Z) of
the trivial rank 4k-bundle α over a point. Let ι : H∗(S4k;Z[ 1

2 ]) ↪→ H∗(S4k;Q) be the injection
induced by Z[ 1

2 ]⊂Q. By Lemma 3.8,

ι ph[ 1
2 ](∆(α)) = L−1(α)∪uQ(α) = 1∪uQ(α) = uQ(α)

= ι(uZ(α)) = ι(v2k) = ι ph[ 1
2 ](a

k).

Since ι ph[ 1
2 ] is injective,

∆(α) = ak.

□

4. THE CLASSICAL CONSTRUCTION OF THE SIEGEL-SULLIVAN ORIENTATION

Using Goresky-MacPherson’s intersection homology, Witt spaces have been introduced
by P. Siegel in [55] as a geometric cycle theory representing KO-homology at odd primes.
Sources on intersection homology include [28], [29], [31], [23], [36], [13], [5].

Definition 4.1. A Witt space is an oriented PL pseudomanifold such that the links L2k of odd
codimensional PL intrinsic strata have vanishing lower middle-perversity degree k rational
intersection homology, IHm̄

k (L2k;Q) = 0.

For example, pure-dimensional complex algebraic varieties are Witt spaces, since they
are oriented pseudomanifolds and possess a Whitney stratification whose strata all have even
codimension. The vanishing condition on the intersection homology of links L2k is equiv-
alent to requiring the canonical morphism from lower middle to upper middle perversity
intersection chain sheaves to be an isomorphism in the derived category of sheaf complexes.
Consequently, these middle perversity intersection chain sheaves are Verdier self-dual, and
this induces global Poincaré duality for the middle perversity intersection homology groups
of a compact Witt space. In particular, compact Witt spaces X have a well-defined bordism
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invariant signature σ(X) and L-classes L∗(X) ∈ H∗(X ;Q) which agree with the Poincaré du-
als of Hirzebruch’s tangential L-classes when X is smooth. The notion of Witt spaces with
boundary can be introduced as pairs (X ,∂X), where X is a PL space and ∂X a stratum pre-
servingly collared PL subspace of X such that X −∂X and ∂X are both compatibly oriented
Witt spaces. Let ΩWitt

∗ (−) denote the bordism theory based on Witt cycles. Elements of
ΩWitt

n (Y ) are Witt bordism classes of continuous maps f : Xn → Y defined on n-dimensional
closed Witt spaces X . The theory ΩWitt

∗ (−) is a homology theory, whose coefficients have
been computed by Siegel. They are nontrivial only in nonnegative degrees divisible by 4,
where they are given by L4k(Q), 4k > 0, and by Z in degree 0.

Let X be a closed Witt space of dimension n. Drawing on Sullivan’s methods as laid out
in [56] and [57], Siegel constructs in [55] a canonical orientation class

µX ∈ KOn(X)⊗Z[ 1
2 ].

(In fact, the class lives in connective KO-homology.) We shall refer to µX as the Siegel-
Sullivan orientation class of X . Let us briefly outline Siegel’s construction, which rests on
two fundamental facts due to Sullivan: First, there is an exact sequence

0 → KOi(Y,B)⊗Z[ 1
2 ]−→ KOi(Y,B)∧⊕KOi(Y,B)⊗Q−→ KOi(Y,B)∧⊗Q→ 0,

where KOi(Y,B)∧ denotes the profinite completion of KOi(Y,B) with respect to groups of
odd order. Second, the natural transformation ∆SO∗ : ΩSO

i (Y,B)→ (KO[ 1
2 ])i(Y,B) induces a

Conner-Floyd type isomorphism

Ω
SO
i+4∗(Y,B)⊗ΩSO∗ (pt)Z[

1
2 ]
∼= KOi(Y,B)⊗Z[ 1

2 ]

of Z/4Z-periodic theories for compact PL pairs (Y,B), [56], [39, p. 85]. Together with uni-
versal coefficient considerations, these two facts imply that elements of KOi(Y,B)⊗Z[ 1

2 ] are
pairs (σ0,τ0) of homomorphisms σ0 : ΩSO

i+4∗(Y,B)⊗Q→Q and τ0 : ΩSO
i+4∗(Y,B;Q/Z[ 1

2 ])→
Q/Z[ 1

2 ] such that the periodicity relations

(6) σ0([ f ][M → pt]) = σ(M) ·σ0[ f ], τ0([ f ][M → pt]) = σ(M) · τ0[ f ]

with respect to multiplication by a closed manifold M hold and the diagram

ΩSO
i+4∗(Y,B)⊗Q

��

σ0 // Q

��
ΩSO

i+4∗(Y,B;Q/Z[ 1
2 ])

τ0 // Q/Z[ 1
2 ]

commutes. To define µX for a closed Witt space Xn, choose a PL embedding X ⊂ Rm, m
large, of codimension 4k. Let (N,∂N) be a regular neighborhood of X . We will describe
an element in KO4k(N,∂N)⊗Z[ 1

2 ], which corresponds under Alexander-Spanier-Whitehead
duality to µX ∈ KOn(X)⊗Z[ 1

2 ]. Therefore, we need to specify homomorphisms (σX ,τX )
satisfying the above periodicity relations and the integrality condition, i.e. commutativity of

ΩSO
4(k+∗)(N,∂N)⊗Q

��

σX // Q

��
ΩSO

4(k+∗)(N,∂N;Q/Z[ 1
2 ])

τX // Q/Z[ 1
2 ].
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The homomorphism σX is

σX ([(M,∂M)
f−→ (N,∂N)]⊗ r) := σ( f̃−1(X))⊗ r, r ∈Q,

where one uses the block-transversality results of [15], [40] to make f transverse to X in the
PL manifold N. The preimage f̃−1(X) ⊂ M under the transverse map f̃ has the same local
structure as X and thus is again a Witt space with a well-defined signature σ( f̃−1(X)) ∈ Z.
The homomorphism τX is obtained by specifying a sequence of homomorphisms

τX ,k : Ω
SO
∗ (N,∂N;Z/k)−→ Z/k, k odd,

compatible with respect to divisibility, which are defined in much the same way as σX , but
using oriented Z/k-manifolds to represent elements of ΩSO

∗ (N,∂N;Z/k). By Novikov addi-
tivity for the signature of compact Witt spaces with boundary, the transverse inverse image
of X in the Z/k-manifold has a well-defined (and bordism invariant) signature in Z/k, which
defines τX ,k. The periodicity and integrality conditions are satisfied and thus an element µX
is obtained.

The homomorphism c∗ : KOn(X)⊗Z[ 1
2 ]→ KOn(pt)⊗Z[ 1

2 ] induced by the constant map
c : X → pt sends µX to the signature of X . Using the orientation class µX , Siegel obtains a
natural transformation

µ
Witt : Ω

Witt
∗ (−)−→ KO[ 1

2 ]∗(−)

of homology theories by setting

µ
Witt([X

f−→ Y ]) = f∗(µX ).

This transformation then reduces to the signature homomorphism on coefficient groups. In
terms of the transformation, the orientation class can of course be recovered as

µX = µ
Witt([idX ]).

Siegel’s transformation factors through the homomorphism induced by the connective cover
ko[ 1

2 ]→ KO[ 1
2 ], since ΩWitt

∗ (−) is connective.

Theorem 4.2. (Siegel.) The natural transformation

µ
Witt[ 1

2 ] : Ω
Witt
∗ (−)⊗Z[ 1

2 ]−→ ko[ 1
2 ]∗(−)⊗Z[ 1

2 ]

is an equivalence of homology theories.

Proposition 4.3. (Siegel.) If X = M is a smooth compact manifold, then µM agrees with the
Sullivan orientation ∆SO(M),

µM = ∆SO(M).

Proof. As pointed out by Siegel [55, p. 1069], the statement follows directly from the above
construction, since it has been used by Sullivan [56] in the case of a manifold to construct his
canonical KO[ 1

2 ]-orientation. (In fact, as pointed out in [57] and by Siegel, the construction
applies in general to any bordism theory based on a class F of PL spaces which is closed
under taking cartesian product with a PL manifold and intersecting transversely with a closed
manifold in Euclidean space, carries a bordism invariant signature which satisfies Novikov
additivity and is multiplicative with respect to taking products with closed manifolds. Beyond
PL manifolds and Witt spaces there exist much larger classes of singular spaces F that satisfy
this, in particular the class of stratified pseudomanifolds that admits Lagrangian structures
along strata of odd codimension, considered in [3], [4].) □
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5. RING SPECTRUM LEVEL CONSTRUCTION OF THE SIEGEL-SULLIVAN ORIENTATION

Let MWITT be the Quinn spectrum associated to the ad-theory of Witt spaces, represent-
ing Witt bordism, see Banagl-Laures-McClure [10]. A weakly equivalent spectrum had been
considered first by Curran in [20]. He verified that this spectrum is an MSO-module ([20,
Thm. 3.6, p. 117]). The product of two Witt spaces is again a Witt space. This implies
essentially that MWITT is a ring spectrum; for more details see [10]. (There, we focused on
the spectrum MIP representing bordism of integral intersection homology Poincaré spaces
studied by Goresky and Siegel in [30] and by Pardon in [45], but everything works in an
analogous, indeed simpler, manner for Q-Witt spaces.) Every oriented PL manifold is a Witt
space. Hence there is a map

φW : MSPL −→ MWITT,

which, using the methods of ad-theories and Quinn spectra employed in [10], can be con-
structed to be multiplicative. In [10], we constructed a map

τ : MWITT −→ L(Q).

(We even constructed an integral map MIP → L.) This map is multiplicative, i.e. a ring map,
as shown in [10, Section 12], and the diagram

(7) MSPL σ∗
//

φW

��

L(Z)

��
MWITT

τ
// L(Q)

homotopy commutes, since it comes from a commutative diagram of ad-theories under ap-
plying the symmetric spectrum functor M of Laures and McClure [35]. The localization
morphism L(Q)→ L(Q)[ 1

2 ] is a morphism of ring spectra. Thus the composition of τ with
the localization morphism is a morphism of ring spectra MWITT → L(Q)[ 1

2 ] = L(Z)[ 1
2 ],

which we shall also denote by τ . It was known to the experts early on that carrying out
Mishchenko’s method [42] with intersection chains rather than ordinary chains would lead to
an extension of the symmetric signature to pseudomanifolds with only even codimensional
strata and, more generally, to Witt spaces; see e.g. [60], [16], [6]. In the context of their Witt
package program [1], Albin, Leichtnam, Mazzeo and Piazza applied this symmetric signa-
ture in defining a C∗-algebraic Witt symmetric signature in K∗(C∗

r π) which agrees rationally
with the index class of the signature operator ðsign. In [10], Laures, McClure and the author
adopt the approach outlined in [6] to construct the symmetric signature of Witt and integral
intersection Poincaré spaces: The morphism τ : MWITT → L(Q) of ring spectra yields an
L(Q)-homology fundamental class for n-dimensional closed Witt spaces X by setting

[X ]L := τ[idX ] ∈ L(Q)n(X),

[idX ] ∈ ΩWitt
n (X). This fundamental class yields the symmetric signature

σ
∗(X) = A[X ]L ∈ Ln(Q[π1X ])

under the assembly map
A : L(Q)n(X)−→ Ln(Q[π1X ]).

A detailed account of extending Mishchenko’s approach to intersection chains has been pro-
vided by Friedman and McClure in [24]. By [10, Thm. 10.12], the above symmetric signature
σ∗(X) agrees with the construction of Friedman-McClure. According to [24, Prop. 5.20], the
homomorphism Ln(Q[π1X ])→ Ln(Q) for n = 4k maps the symmetric signature σ∗(X) to the
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Witt class w(X) of the intersection form on IHm̄
2k(X ;Q). Under the localization homomor-

phism Ln(Q)→ Ln(Q)⊗Z[ 1
2 ], w(X) maps to the ordinary signature, w(X)(odd) = σ(X) · xk,

n = 4k, as in the manifold case of Remark 3.2. The image of [X ]L under the localization
homomorphism L(Q)n(X)→ L(Q)n(X)⊗Z[ 1

2 ] will again be denoted by [X ]L.

Proposition 5.1. In positive degrees, the composition

Ω
Witt
∗ (pt) τ−→ L(Q)∗(pt) A

= L∗(Q)

agrees with the map w : ΩWitt
∗ (pt)→ L∗(Q) which sends the bordism class of a 4k-dimensional

Witt space X to the Witt class w(X) of its intersection form on IHm̄
2k(X ;Q) and is zero in

degrees not divisible by 4.

Proof. The group ΩWitt
i (pt) is zero in degrees that are not divisible by 4. Thus A ◦ τ agrees

trivially with w in such degrees. Let [X ] ∈ ΩWitt
4k (pt), k > 0, be any element. Let c : X → pt

denote the constant map and consider the diagram

(8) ΩWitt
4k (X)

τ //

c∗
��

L(Q)4k(X)
A //

c∗
��

L4k(Q[π1X ])

c∗
��

ΩWitt
4k (pt)

τ
// L(Q)4k(pt)

A
L4k(Q).

Since both τ and the assembly map are natural, the diagram commutes. The right hand
vertical map sends the symmetric signature σ∗(X) ∈ L4k(Q[π1X ]) to w(X). Therefore,

Aτ[X ] = Aτc∗[idX ] = c∗Aτ[idX ]

= c∗A[X ]L = c∗σ
∗(X) = w(X).

□

The morphism τ : MWITT → L(Q) is not an equivalence. One reason is that MWITT is
connective whereas L(Q) is periodic. Let t≥mE → E be the (m− 1)-connective cover of a
spectrum E. A morphism φ : E → F of spectra lifts, uniquely up to homotopy, to a morphism
t≥mφ : t≥mE → t≥mF . The lift t≥0τ to the connective cover t≥0L(Q) is still no equivalence, as
π0 MWITT = ΩWitt

0 (pt) = Z, while π0L(Q) = L0(Q) contains an infinitely generated amount
of 2-primary torsion. Degree zero is, however, the only offending nonnegative degree:

Theorem 5.2. The lift t≥1τ : t≥1 MWITT → t≥1L(Q) is a weak equivalence.

Proof. By Proposition 5.1, the diagram

πi(t≥1 MWITT)
t≥1τ //

∼=
��

πi(t≥1L(Q))

∼=
��

πi(MWITT) τ //

w
((

πi(L(Q))

A

Li(Q)

commutes for i ≥ 1. Siegel’s Witt bordism calculation [55, Prop 1.1, p. 1098] asserts that w
is an isomorphism. □

The central construction of the present paper is the following lift of the Siegel-Sullivan
orientation introduced in [55] to the ring-spectrum level.
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Definition 5.3. The ring-spectrum level Siegel-Sullivan orientation

∆ : MWITT −→ KO[ 1
2 ]

is the morphism of ring spectra given by the composition

MWITT τ−→ L(Q)[ 1
2 ] = L(R)[ 1

2 ]
κ−1

≃ KO[ 1
2 ]

of the Witt-orientation introduced by Laures, McClure and the author with a ring equivalence
κ−1 inverse to the ring equivalence κ of Proposition 2.1.

Diagram (7) then embeds into the homotopy commutative diagram

MSPL

∆

%%
σ∗
//

φW

��

L(Z)[ 1
2 ]

≃
��

KO[ 1
2 ]κ

≃oo

MWITT

∆

99τ
// L(Q)[ 1

2 ] KO[ 1
2 ].≃

oo

Thus the ring-spectrum level Siegel-Sullivan orientation ∆ : MWITT → KO[ 1
2 ] restricts under

φW : MSPL → MWITT to the Sullivan orientation

MSPL ∆−→ KO[ 1
2 ]

of Definition 3.5. In order to describe the induced map ∆∗ : MWITT∗ → KO[ 1
2 ]∗ on coeffi-

cients, we shall employ the symmetric signature of Witt spaces. We observe that (2) extends
from the manifold case to Witt spaces:

Proposition 5.4. The ring-spectrum level Siegel-Sullivan orientation ∆ induces on homotopy
groups the homomorphism

∆∗ : Ω
Witt
4k = MWITT4k −→ KO[ 1

2 ]4k = Z[ 1
2 ]⟨a

k⟩
given by

(9) ∆∗[X4k] = σ(X) ·ak,

where σ(X) is the signature of the intersection form on the intersection homology groups
IH2k(X ;Q) of X.

Proof. Let [X ] ∈ ΩWitt
4k be any element. The constant map c : X → pt induces a commutative

diagram

ΩWitt
n (X)

τ //

c∗
��

L(Q)n(X)⊗Z[ 1
2 ]

A[ 1
2 ] //

c∗
��

Ln(Q[π1X ])⊗Z[ 1
2 ]

c∗
��

ΩWitt
n (pt)

τ
// L(Q)n(pt)⊗Z[ 1

2 ] A[ 1
2 ]

Ln(Q)⊗Z[ 1
2 ].

This is quite similar to Diagram (8), except that here we map into L-theory away from 2. The
claim is established by the calculation

κ∗∆∗[X ] = τ∗[X ] = τ∗c∗[idX ] = c∗τ∗[idX ] = c∗[X ]L

= c∗(A[ 1
2 ])[X ]L = c∗σ

∗(X)(odd) = w(X)(odd) = σ(X) · xk,
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so that
∆∗[X ] = σ(X) ·κ−1

∗ (xk) = σ(X) ·ak.

□

The ring-spectrum level Siegel-Sullivan orientation allows in particular for the following
description of the Siegel-Sullivan orientation class of a Witt space:

Definition 5.5. The Siegel-Sullivan orientation class of a compact n-dimensional Witt space
(X ,∂X) is given by the image

∆(X) := ∆∗[idX ] ∈ KOn(X ,∂X)⊗Z[ 1
2 ]

of the Witt bordism class of the identity on X under the homomorphism ∆∗ : ΩWitt
n (X ,∂X)→

(KO[ 1
2 ])n(X ,∂X) induced by the ring-spectrum level Siegel-Sullivan orientation ∆.

We will see in Proposition 5.7 below that this terminology is justified, i.e. that ∆(X) = µX .
By our construction,

(10) κ∗∆(X) = κ∗∆∗[idX ] = τ[idX ] = [X ]L ∈ (LQ[ 1
2 ])n(X ,∂X).

Since ∆ : MWITT → KO[ 1
2 ] restricts to the Sullivan orientation ∆ : MSPL → KO[ 1

2 ], the
Siegel-Sullivan orientation ∆(X) agrees with the Sullivan orientation ∆SPL(X) when X is a
PL-manifold. As a final point of business in setting up the spectrum level Siegel-Sullivan
orientation, we shall verify that the induced transformation of homology theories agrees with
the classical construction as given by Siegel and outlined in Section 4. The argument is based
on a result ([9, Prop. 2, p. 597]) of Cappell, Shaneson and the author which shows that at
odd primes, Witt bordism classes are representable by smooth oriented bordism classes. Let
us review this result briefly.

For an integer j, let j̄ denote its residue class in Z/4. Using 4-fold periodicity, we may
view KO 1

2 -homology as Z/4-graded. On the groups C j̄(X ,Y ) :=
⊕

k∈Z ΩSO
j+4k(X ,Y )⊗Z[ 1

2 ],
define an equivalence relation by

[M j+4k ×N4i proj−→ M
f−→ X ]∼ σ(N) · [M j+4k f−→ X ],

where σ(N) is the signature of the manifold N. (See also [32, p. 193].) The periodicity
relations (6) imply that Sullivan’s orientation ∆SO∗ induces a well-defined homomorphism

(11) ∆SO∗ : Q j̄(X ,Y )−→ (KO 1
2 ) j̄(X ,Y )

on the quotient Q j̄(X ,Y ) := C j̄(X ,Y )/ ∼. This is a natural transformation of functors, and
Sullivan proves that it is an isomorphism for compact PL pairs (X ,Y ) ([56], [39, 4.15, p.
85]). This shows in particular that (X ,Y ) 7→ Q j̄(X ,Y ) is a (Z/4-graded) homology theory on
compact PL pairs. Let Z denote the ring Z = Z[ 1

2 ]. The Laurent polynomial ring Z[t, t−1] is a
Z-graded ring with deg(t) = 4. There is a canonical subring inclusion Z[t]⊂ Z[t, t−1], t 7→ t.
Via this inclusion, Z[t, t−1] becomes a Z[t]-module and Panov observes in [44] that this mod-
ule is flat. As the connective spectrum ko 1

2 is a ring spectrum, (ko 1
2 )∗(X) is in particular

a right (ko 1
2 )∗(pt) = Z[a]-module, where a ∈ (ko 1

2 )4(pt) = Z is the generator which com-
plexifies to the square of the complex Bott element, as in Section 2. For periodic KO, we
have (KO 1

2 )∗(pt) = Z[a,a−1], and the canonical map (ko 1
2 )∗(pt)→ (KO 1

2 )∗(pt) is given by
the inclusion Z[a]⊂ Z[a,a−1], a 7→ a. Using the isomorphism Z[t]∼= Z[a], t 7→ a, (ko 1

2 )∗(X)

and (KO 1
2 )∗(X) become right Z[t]-modules. We may therefore form the tensor product of

Z[t]-modules
(ko 1

2 )∗(X)⊗Z[t] Z[t, t
−1].
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Since the functor −⊗Z[t] Z[t, t−1] is exact by Panov’s observation, the functor

(X ,Y ) 7→ (ko 1
2 )∗(X ,Y )⊗Z[t] Z[t, t

−1]

is exact and thus a homology theory (on CW pairs (X ,Y )), which is Z-graded by deg(x⊗Z[t]

rtk)= n+4k, x∈ (ko 1
2 )n(X ,Y ), r ∈ Z. Now consider KO∗(−) as a Z-graded (not Z/4-graded)

theory. The connective cover (ko 1
2 )∗(−) → (KO 1

2 )∗(−) is Z[t]-linear and hence induces a
natural transformation

Φ : (ko 1
2 )∗(−)⊗Z[t] Z[t, t

−1]−→ (KO 1
2 )∗(−)

of Z-graded homology theories. On a point, Φ is the identity map. Thus Φ is a natural
equivalence of homology theories. This shows how to reconstruct periodic KO 1

2 -homology
from connective ko 1

2 -homology and the action of Z[t] on it. Similarly, we can turn Witt
bordism, which is a connective theory, into a periodic version: Denote Witt bordism away
from 2 by

W∗(X) := Ω
Witt
∗ (X)⊗Z[ 1

2 ].

This is a Z-graded homology theory with coefficients

W∗(pt) = Z[c], c := [CP2]⊗1 ∈W4(pt).

(After inverting 2, only the signature survives as an invariant; the 2- and 4-torsion is killed.)
The Z-graded abelian group W∗(X) is a right module over the ring W∗(pt) as usual. The
ring isomorphism Z[t] → W∗(pt) induced by t 7→ c⊗ 1 ∈ W4(pt) makes W∗(X) into a right
Z[t]-module. We may thus form the tensor product

W ∗(X) :=W∗(X)⊗Z[t] Z[t, t
−1],

which is Z-graded by deg(x⊗Z[t] rtk) = n+4k, x ∈Wn(X), r ∈ Z. Panov’s observation shows
that W ∗(−) is a homology theory. It is naturally a right Z[t, t−1]-module and right multiplica-
tion with t is an isomorphism with inverse given by right multiplication with t−1. This shows
that W ∗(−) is 4-periodic so that we may call it periodic Witt-bordism at odd primes. The
inclusion Z[t]⊂ Z[t, t−1] induces a natural map

i∗ : W∗(X) =W∗(X)⊗Z[t] Z[t]−→W ∗(X).

Again, the periodicity relations (6) imply that

(12) µ
Witt([ f : V j−4k → X ] · [M4k]) = (µWitt[ f ]) ·σ(M)ak ∈ (ko 1

2 ) j(X),

[ f ] ∈ ΩWitt
j−4k(X), [M] ∈ ΩSO

4k (pt), which shows that µWitt is a homomorphism of Z[t]-modules,
as is ∆SO∗ in the manifold case. Tensoring over Z[t] with Z[t, t−1], we get a natural isomor-
phism

µ
Witt ⊗Z[t] id : W ∗(X) =W∗(X)⊗Z[t] Z[t, t

−1]
∼=−→ (ko 1

2 )∗(X)⊗Z[t] Z[t, t
−1]

of Z-graded homology theories by Siegel’s Theorem 4.2. For any j ∈ Z, a well-defined map

ω : Q j̄(X)⊗Z −→ (W∗(X)⊗Z[t] Z[t, t
−1]) j

is given by setting

ω([g : M j−4k → X ]⊗Z r) := [g]⊗Z[t] rtk ∈Wj−4k(X)⊗Z[t] Z⟨tk⟩, k ∈ Z, r ∈ Z,
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where one views the closed oriented smooth manifold M as a Witt space via its canonical PL
structure. On compact PL spaces X , the diagram

Q j̄(X)⊗Z
∼=

∆SO∗
//

ω

��

(KO 1
2 ) j̄(X)

W j(X)
∼=

µWitt⊗Z[t]id
// ((ko 1

2 )∗(X)⊗Z[t] Z[t, t−1]) j

∼=Φ

OO

commutes for every j ∈Z by Proposition 4.3. In particular, ω is an isomorphism, from which
representability of Witt bordism classes by smooth manifolds, away from 2, can be deduced.
The following consequence will be used in the proof of Proposition 5.7:

Proposition 5.6. 1. Given a Z[t]-linear map α∗ : W∗(X)→ (KO 1
2 )∗(X), there exists a unique

extension of α∗ to a homomorphism

α∗ : W ∗(X)−→ (KO 1
2 )∗(X)

of Z[t, t−1]-modules. If α∗ is a natural transformation of homology theories, then so is α∗.
2. Let α∗,β∗ : W∗(X)→ (KO 1

2 )∗(X) be Z[t]-linear natural transformations of homology
theories on compact PL X. If α∗([g : M → X ]⊗ 1) = β∗([g]⊗ 1) for every g on smooth
manifolds M, then α∗ = β∗ on W∗(X), and α∗ = β ∗ on W ∗(X) for their periodic versions.

Proof. We prove statement 1: Since α∗ is Z[t]-linear, it induces a map

α∗ : (W∗(X)⊗Z[t] Z[t, t
−1]) j −→ (KO 1

2 ) j̄(X), j ∈ Z,

by setting, for p ∈ Z[t, t−1],

α∗([ f ]⊗Z[t] p) := (α∗[ f ]) · p,

where on the right hand side, we interpret p as an element of Z[a,a−1] by substituting t 7→ a.
Then α∗ is Z[t, t−1]-linear, and the diagram

(13) W∗(X)

α∗

%%

i∗

��
W ∗(X)

α∗
// (KO 1

2 )∗(X)

commutes.
We turn to the proof of uniqueness. Suppose that β∗ : W ∗(X) → (KO 1

2 )∗(X) is any
Z[t, t−1]-linear extension of α∗, i.e. β∗ ◦ i∗ = α∗. Then

β∗([ f ]⊗Z[t] p) = β∗([ f ]⊗Z[t] (1 · p)) = β∗(([ f ]⊗Z[t] 1) · p)

= (β∗([ f ]⊗Z[t] 1)) · p = (β∗i∗[ f ]) · p

= α∗[ f ] · p = α∗([ f ]⊗Z[t] p).

Hence α∗ is unique. If α∗ is natural in X and commutes with suspension isomorphisms, then
α∗ inherits these properties.

We prove statement 2: Since α∗ and β∗ are Z[t]-linear, they induce uniquely Z[t, t−1]-linear
transformations

α∗,β ∗ : (W∗(X)⊗Z[t] Z[t, t
−1]) j −→ (KO 1

2 ) j̄(X), j ∈ Z,
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as explained in statement 1. Given an element

[ f : V j−4k → X ]⊗Z[t] rtk ∈ (W∗(X)⊗Z[t] Z[t, t
−1]) j =W j(X)

k ∈ Z, r ∈ Z, there exists a (unique) element q ∈ Q j̄(X)⊗Z with ω(q) = [ f ]⊗Z[t] rtk, as ω is
an isomorphism. Such an element is represented in the quotient Q j̄(X)⊗Z by an element of
the form

q =
m

∑
i=1

[gi : M j−4ki
i → X ]⊗ ri, [gi] ∈ Ω

SO
j−4ki

(X), ri ∈ Z, ki ∈ Z.

By the definition of ω, ω([gi]⊗Z ri) = [gi]⊗Z[t] ritki , so that

[ f ]⊗Z[t] rtk =
m

∑
i=1

[gi]⊗Z[t] ritki

and consequently,

α∗([ f ]⊗Z[t] rtk) =
m

∑
i=1

α∗([gi]⊗Z[t] ritki) =
m

∑
i=1

(α∗[gi]) · riaki

=
m

∑
i=1

(β∗[gi]) · riaki =
m

∑
i=1

β ∗([gi]⊗Z[t] ritki)

= β ∗([ f ]⊗Z[t] rtk).

This proves that the periodic versions agree on W ∗(X), α∗ = β ∗. Using the commutativity of
(13) we deduce α∗ = α∗ ◦ i∗ = β ∗ ◦ i∗ = β∗. □

Proposition 5.7. The natural transformation of homology theories induced by ∆ : MWITT→
KO[ 1

2 ] agrees with the transformation µWitt,

∆∗ = µ
Witt : Ω

Witt
∗ (Y,B)−→ KO∗(Y,B)⊗Z[ 1

2 ]

on compact PL pairs (Y,B). In particular, ∆(X) = µX for a compact Witt space (X ,∂X).

Proof. The ring-spectrum level Siegel-Sullivan orientation ∆ : MWITT → KO[ 1
2 ] restricts

to the orientation ∆ : MSPL → KO[ 1
2 ] of Definition 3.5, and then further to ∆| : MSO →

MSPL ∆−→ KO[ 1
2 ]. By Proposition 3.3, and since ∆SPL extends ∆SO, the induced map

∆|∗ : Ω
SO
∗ (Y,B)−→ KO∗(Y,B)⊗Z[ 1

2 ]

agrees with
∆SO∗ : Ω

SO
∗ (Y,B)−→ KO∗(Y,B)⊗Z[ 1

2 ]

on every compact PL pair (Y,B). Since ∆∗ : ΩWitt
∗ (Y,B) → KO∗(Y,B)⊗Z[ 1

2 ] is odd prime
local, it factors uniquely through the odd-primary localization W∗(−) of ΩWitt

∗ (−). The re-
sulting homomorphism

(14) ∆∗ : W∗(Y,B)−→ (KO 1
2 )∗(Y,B)

is a natural transformation of homology theories. On a point, it is given by

∆∗(ck) = ∆SO∗(ck) = ∆SO∗[CP2]k = σ(CP2)k ·ak = ak,

using the signature relation (1). Since ∆ : MWITT → KO[ 1
2 ] is a morphism of ring spectra,

this shows that (14) is Z[t]-linear. Siegel’s transformation

µ
Witt : W∗(Y,B)−→ (KO 1

2 )∗(Y,B)
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is a natural transformation of homology theories as well, and it is Z[t]-linear by the periodicity
relation (12). Thus, in order to prove equality of the two transformations on W∗(Y,B), it
remains by Proposition 5.6 to show that they agree on compact smooth manifolds mapping
into (Y,B). Let g : (M,∂M) → (Y,B) be a smooth manifold in (Y,B). By Proposition 4.3,
µM = ∆SO(M) and hence

∆∗([g]⊗1) = ∆SO∗[g] = g∗∆SO(M) = g∗µM = µ
Witt([g]⊗1),

as was to be shown. □

6. MULTIPLICATIVITY OF ORIENTATION CLASSES

The classical Sullivan orientation ∆SO(M×N) of a product M×N of closed smooth man-
ifolds is known to satisfy the multiplicativity property

(15) ∆SO(M×N) = ∆SO(M)×∆SO(N)

with respect to the external product on KO[ 1
2 ]-homology. One way to see this is to argue L-

theoretically using Ranicki’s multiplicative morphism σ∗ : MSPL →L(Z): A ring morphism
φ : E → F between ring spectra preserves external products, i.e. the diagram

(16) E∗(X)⊗E∗(Y )
φ⊗φ //

×
��

F∗(X)⊗F∗(Y )

×
��

E∗(X ×Y )
φ

// F∗(X ×Y )

commutes. Applying this to σ∗, one obtains the multiplicativity of the L-homology orienta-
tion of PL manifolds,

[M]L× [N]L = σ
∗[idM]×σ

∗[idN ] = σ
∗([idM]× [idN ])

= σ
∗[idM×N ] = [M×N]L.

(Via the ring morphism MSTOP → L(Z), this works just as well for topological manifolds.)
Using the ring equivalence κ−1 : L(Z)[ 1

2 ] ≃ KO[ 1
2 ], it follows that ∆(M × N) = ∆(M)×

∆(N) for ∆ : MSPL → KO[ 1
2 ] as in Definition 3.5. Equation (15) is then a consequence

of Proposition 3.3. Alternatively, and more directly, one may also deduce (15) from the
multiplicativity of Sullivan’s universal elements

∆4n ∈ KO4n(MSO4n)⊗Z[ 1
2 ].

Indeed, he shows ([56, p. 202, g)]) that the canonical homomorphism, induced by the classi-
fying map,

K̃O 1
2

4(q+r)
(MSO4(q+r))−→ K̃O 1

2

4(q+r)
(MSO4q∧MSO4r)

sends ∆4(q+r) 7→ ∆4q ×∆4r. This, together with naturality, implies the relation

∆SO(ξ ×η) = ∆SO(ξ )×∆SO(η) ∈ K̃O 1
2

∗
(Th(ξ ×η)) = K̃O 1

2

∗
(Thξ ∧Thη)

for the Sullivan Thom class ∆SO(ξ )∈ K̃O 1
2 (Thξ ) of an oriented vector bundle ξ over a finite

complex; see also Madsen-Milgram [39, p. 116]. Finally, one applies this to the stable normal
bundles ξ = νM, η = νN and uses Alexander duality.
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Remark 6.1. As Rosenberg and Weinberger point out in [52, p. 51, Lemma 6], it is not true
that the class [DM] of the signature operator DM in Kasparov K-homology is multiplicative
under external Kasparov product. If one of the dimensions of these classes is even, then the
class is multiplicative, but if both dimensions are odd, then [DM×N ] = 2[DM]× [DN ]. See also
[34, Theorem 8.5].

A first immediate application of our approach, then, is a proof of full cartesian multiplica-
tivity of the Siegel-Sullivan orientation class µX = ∆(X) ∈ KOn(X)⊗Z[ 1

2 ] for Witt spaces X ,
generalizing the manifold multiplicativity. (This was not established in [55].)

Theorem 6.2. Let X and Y be closed Witt spaces. Then the Siegel-Sullivan orientation of the
Witt space X ×Y is given by

∆(X ×Y ) = ∆(X)×∆(Y ),

using the external product (KO 1
2 )m(X)⊗ (KO 1

2 )n(Y )→ (KO 1
2 )m+n(X ×Y ).

Proof. Applying diagram (16) to the ring morphism ∆ : MWITT → KO[ 1
2 ], we obtain for the

orientation classes

∆(X ×Y ) = ∆∗[idX×Y ] = ∆∗([idX ]× [idY ])

= ∆∗[idX ]×∆∗[idY ] = ∆(X)×∆(Y ).

□

7. BUNDLE TRANSFER OF THE SIEGEL-SULLIVAN ORIENTATION

The equivalence of E∞-ring spectra κ : KO[ 1
2 ] ≃ L(R)[ 1

2 ] constructed in Proposition 2.1,
together with L-theoretic results of [8], allows for a treatment of bundle transfers of Siegel-
Sullivan classes. We begin with recollections on homological block bundle transfer homo-
morphisms and use κ to relate the transfers on KO- and L-homology.

Let F be a closed oriented PL manifold of dimension d and let K be a finite ball complex
with associated polyhedron B = |K|. Let b denote the dimension of B. Let ξ be an oriented
PL F-block bundle over K with total space X = E(ξ ), dimX = b+d. The theory of F-block
bundles has been developed by Casson in [19]. PL-locally trivial PL fiber bundles X → B
with pointwise fiber F are a special case.

Let E be a ring spectrum equipped with a ring map MSPL → E. Then the block bundle ξ

has an associated block transfer homomorphism

(17) ξ
! : En(B)−→ En+d(X).

In [8], we described ξ ! as a composition

En(B)
σ∼= Ẽn+s(SsB+)

T (ξ )∗−→ Ẽn+s(Th(ν)) Φ−→ En+s−(s−d)(X).

Here, σ is the suspension isomorphism and T (ξ ) : SsB+ → Th(ν) the Umkehr map (i.e.
Pontrjagin-Thom collapse) associated to a ξ -block preserving PL embedding X ↪→ B×Rs

for large s. Such an embedding can be shown to have a regular neighborhood that is the total
space of an (s− d)-disc block bundle ν over X , see e.g. [8, Section 2]. This normal disc
block bundle ν represents the stable vertical normal bundle of ξ and can be taken to be a PL
microbundle (or PL (Rs−d ,0)-bundle) since BSPL ≃ BS̃PL for the stable classifying spaces.
(Such a stable vertical normal bundle exists even for mock bundles with manifold blocks, see
[15, IV.2, p. 83].) The image of the MSPL-cohomology Thom class of ν under the ring map
MSPL → E yields an E-cohomology Thom class of ν . Cap product with this class defines
the Thom homomorphism Φ.
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We shall consider the block transfer ξ ! in the cases where the ring spectrum E is KO[ 1
2 ],

L(Q) or L(Q)[ 1
2 ] = L(Z)[ 1

2 ], and the ring maps MSPL → E are the orientations considered
earlier. The compatibility of these transfers will be established in Lemma 7.3 and is essen-
tially a consequence of the multiplicativity of the map κ . We need to be more precise about
the involved Thom homomorphisms Φ. Our arguments involve the three Thom classes dis-
cussed in Section 3: The class uSPL(α) in MSPL-cohomology, uL(α) in L-cohomology, and
the class ∆(α) in KO[ 1

2 ]-cohomology. Let E be a ring spectrum and let m = s−d denote the
rank of the aforementioned representative of the stable vertical normal disc block bundle ν .
The reduced E-cohomology group of the Thom space can be expressed as a relative group,

Ẽm(Th(ν))∼= Em(N,∂N),

where N is the total space of ν and ∂N the total space of the sphere bundle of ν . Let

ρ∗ : E∗(N)
∼=−→ E∗(X)

be the inverse of the isomorphism induced on E-homology by the inclusion X ↪→ N of the
zero section. If ν is E-orientable, then using the cap product

∩ : Em(N,∂N)⊗En(N,∂N)−→ En−m(N)
ρ∗∼= En−m(X)

with a Thom class (E-orientation) u ∈ Em(N,∂N) for ν , we obtain the Thom homomorphism

Φ := ρ∗(u∩−) : Ẽn(Th(ν))∼= En(N,∂N)−→ En−m(X).

Since ∆(ν) is a KO[ 1
2 ]-cohomology orientation of ν with ∆(ν) = ∆∗uSPL(ν) (Definition 3.6),

we get for the ring spectrum E = KO[ 1
2 ] the Thom homomorphism

Φ = ρ∗(∆(ν)∩−) : K̃On(Th(ν))⊗Z[ 1
2 ]−→ KOn−m(X)⊗Z[ 1

2 ].

Similarly, since uL(ν) is an L[ 1
2 ]-cohomology orientation of ν with uL(ν) = σ∗uSPL(ν), we

receive for the ring spectrum E = L[ 1
2 ] the Thom homomorphism

Φ = ρ∗(uL(ν)∩−) : L̃n(Th(ν))⊗Z[ 1
2 ]−→ Ln−m(X)⊗Z[ 1

2 ].

Lemma 7.1. The Thom homomorphisms Φ on L[ 1
2 ]-homology and KO[ 1

2 ]-homology agree
under the natural isomorphism κ , that is, the diagram

K̃On(Th(ν))⊗Z[ 1
2 ]

Φ //

κ∗ ∼=
��

KOn−m(X)⊗Z[ 1
2 ]

κ∗∼=
��

L̃n(Th(ν))⊗Z[ 1
2 ]

Φ // Ln−m(X)⊗Z[ 1
2 ]

commutes.

Proof. As κ∗ is a natural transformation of homology theories, it commutes with the isomor-
phism ρ∗. Since κ is a morphism of ring spectra, it respects cap products, i.e. the diagram

(KO[ 1
2 ])

m(Y,A)⊗ (KO[ 1
2 ])n(Y,A)

∩ //

κ∗⊗κ∗
��

(KO[ 1
2 ])n−m(Y )

κ∗
��

(L[ 1
2 ])

m(Y,A)⊗ (L[ 1
2 ])n(Y,A)

∩ // (L[ 1
2 ])n−m(Y )
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commutes. By Lemma 3.7, κ∗(∆(ν)) = uL(ν). Therefore,

κ∗Φ = κ∗ρ∗(∆(ν)∩−) = ρ∗κ∗(∆(ν)∩−)

= ρ∗(κ∗(∆(ν))∩κ∗(−)) = ρ∗(uL(ν)∩κ∗(−)) = Φκ∗.

□

Remark 7.2. Since localization is multiplicative on the spectrum level, it takes the Thom ho-
momorphism Φ defined by capping with the Thom class uL(ν)∈ (L̃Q)m(Th(ν)) to the Thom
homomorphism Φ defined by capping with the localized class uL(ν) ∈ (L̃Q[ 1

2 ])
m(Th(ν)),

that is, the diagram

(L̃Q)n(Th(ν))

��

Φ // (LQ)n−m(X)

��
(L̃Q[ 1

2 ])n(Th(ν)) Φ // (LQ[ 1
2 ])n−m(X)

commutes. Thus L-theoretic transfers also commute with localization away from 2.

Using the Thom homomorphisms Φ appearing in Lemma 7.1, there are in particular trans-
fers

ξ
! : Ln(B)⊗Z[ 1

2 ]−→ Ln+d(X)⊗Z[ 1
2 ]

and
ξ

! : KOn(B)⊗Z[ 1
2 ]−→ KOn+d(X)⊗Z[ 1

2 ].

Lemma 7.3. The diagram of transfers

KO∗+d(X)⊗Z[ 1
2 ]

κ∗
∼=
// L∗+d(X)⊗Z[ 1

2 ]

KO∗(B)⊗Z[ 1
2 ]

ξ !

OO

κ∗
∼=

// L∗(B)⊗Z[ 1
2 ]

ξ !

OO

commutes.

Proof. By construction of the block transfer ξ !, the diagram factors as

KO∗+d(X)⊗Z[ 1
2 ]

κ∗
∼=

// L∗+d(X)⊗Z[ 1
2 ]

K̃O∗+s(Th(ν))⊗Z[ 1
2 ]

Φ

OO

κ∗
∼=
// L̃∗+s(Th(ν))⊗Z[ 1

2 ]

Φ

OO

K̃O∗+s(SsB+)⊗Z[ 1
2 ]

T (ξ )∗

OO

κ∗
∼=
// L̃∗+s(SsB+)⊗Z[ 1

2 ]

T (ξ )∗

OO

KO∗(B)⊗Z[ 1
2 ]

σ

OO

κ∗
∼=

// L∗(B)⊗Z[ 1
2 ].

σ

OO

The bottom and middle squares commute, as κ∗ is a natural transformation of homology
theories, while the top square involving the Thom homomorphisms commutes by Lemma
7.1. □
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The material on block bundle transfer homomorphisms developed above enables us to
establish our main result on bundle transfer of Siegel-Sullivan orientations:

Theorem 7.4. If ξ is an oriented PL F-block bundle with closed oriented PL manifold fiber
F over a closed Witt base B, then the Siegel-Sullivan orientations of base and total space X
are related under block bundle transfer by

ξ
!
∆(B) = ∆(X).

Proof. Remark 7.2 implies that transfer commutes with localization away from 2: the dia-
gram

(LQ)∗+d(X) // (LQ[ 1
2 ])∗+d(X)

(LQ)∗(B)

ξ !

OO

// (LQ[ 1
2 ])∗(B)

ξ !

OO

commutes. In [8, Theorem 7.1] we showed that the left hand transfer sends [B]L to [X ]L.
Thus

ξ
![B]L = [X ]L

for the right hand transfer as well. By (10),

κ∗∆(X) = [X ]L ∈ (LQ[ 1
2 ])b+d(X), κ∗∆(B) = [B]L ∈ (LQ[ 1

2 ])b(B).

Using Lemma 7.3,

κ∗ξ
!
∆(B) = ξ

!
κ∗∆(B) = ξ

![B]L = [X ]L = κ∗∆(X).

It follows that ξ !∆(B) = ∆(X), as κ∗ is an isomorphism. □

8. GYSIN RESTRICTION OF THE SIEGEL-SULLIVAN ORIENTATION

Our method based on the equivalence of E∞-ring spectra κ : KO[ 1
2 ]≃L(R)[ 1

2 ] constructed
in Proposition 2.1, together with results of [7], allows for a treatment of Gysin restrictions of
Siegel-Sullivan classes under normally nonsingular inclusions of singular spaces in a fashion
parallel to our analysis of bundle transfers in the previous section. An inclusion g : Y ↪→ X
of stratified spaces is normally nonsingular if Y has an open tubular neighborhood that can
be equipped in a stratum preserving manner with the structure of a vector bundle ν over
Y such that Y is identified with the zero section. For example, the transverse intersection
of a smooth submanifold with a Whitney stratified set X in an ambient smooth manifold is
normally nonsingular in X ([27, p. 47, Thm. 1.11]).

Let g : Y n−c ↪→ Xn be a codimension c normally nonsingular inclusion of closed Witt
spaces with normal bundle ν of rank c. Let E be a ring spectrum such that ν has an E-
orientation u. We describe the Gysin restriction on E-homology associated to g. The canoni-
cal map j : X+ → Th(ν) induces a homomorphism

j∗ : E∗(X)−→ Ẽ∗(Th(ν)).

As in the previous section, cap product with the E-orientation u yields the Thom homomor-
phism

Φ = ρ∗(u∩−) : Ẽ∗(Th(ν))−→ E∗−c(Y ).

Composition defines the Gysin restriction

g! = Φ◦ j∗ : E∗(X)−→ E∗−c(Y ).
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Now suppose that ν is HZ-oriented, compatibly with the orientations of X and Y . Apply-
ing the above general description of g! to E = KO[ 1

2 ] with u = ∆(ν), we obtain the Gysin
homomorphism

g! : KO∗(X)⊗Z[ 1
2 ]−→ KO∗−c(Y )⊗Z[ 1

2 ],

and applying it to E = L[ 1
2 ] with u = uL(ν), we obtain the Gysin homomorphism

g! : L∗(X)⊗Z[ 1
2 ]−→ L∗−c(Y )⊗Z[ 1

2 ].

Lemma 8.1. The diagram of Gysin restrictions

KO∗−c(Y )⊗Z[ 1
2 ]

κ∗
∼=
// L∗−c(Y )⊗Z[ 1

2 ]

KO∗(X)⊗Z[ 1
2 ]

g!

OO

κ∗
∼=

// L∗(X)⊗Z[ 1
2 ]

g!

OO

commutes.

Proof. By construction of the restrictions g!, the diagram factors as

KO∗−c(Y )⊗Z[ 1
2 ]

κ∗
∼=

// L∗−c(Y )⊗Z[ 1
2 ]

K̃O∗(Th(ν))⊗Z[ 1
2 ]

Φ

OO

κ∗
∼=
// L̃∗(Th(ν))⊗Z[ 1

2 ]

Φ

OO

KO∗(X)⊗Z[ 1
2 ]

j∗

OO

κ∗
∼=

// L∗(X)⊗Z[ 1
2 ].

j∗

OO

The bottom square commutes, as κ∗ is a natural transformation of homology theories, while
the top square involving the Thom homomorphisms commutes by Lemma 7.1. □

The Siegel-Sullivan orientation behaves under normally nonsingular Gysin restrictions as
follows.

Theorem 8.2. Let g : Y n−c ↪→ Xn be an oriented normally nonsingular inclusion of closed
Witt spaces. The KO[ 1

2 ]-homology Gysin map g! of g sends the Siegel-Sullivan orientation of
X to the Siegel-Sullivan orientation of Y :

g!
∆(X) = ∆(Y ).

Proof. The proof is analogous to the one of Theorem 7.4. Remark 7.2 implies that Gysin
restriction commutes with localization away from 2: the diagram

(LQ)∗−c(Y ) // (LQ[ 1
2 ])∗−c(Y )

(LQ)∗(X)

g!

OO

// (LQ[ 1
2 ])∗(X)

g!

OO

commutes. In [7, Theorem 3.17] we showed that the left hand restriction sends [X ]L to [Y ]L.
Thus

g![X ]L = [Y ]L
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for the right hand restriction as well. By (10),

κ∗∆(X) = [X ]L ∈ (LQ[ 1
2 ])n(X), κ∗∆(Y ) = [Y ]L ∈ (LQ[ 1

2 ])n−c(Y ).

Using Lemma 8.1,

κ∗g!
∆(X) = g!

κ∗∆(X) = g![X ]L = [Y ]L = κ∗∆(Y ).

It follows that g!∆(X) = ∆(Y ), as κ∗ is an isomorphism. □

In tandem, Theorems 8.2 and 7.4 show that the transfer associated to a normally nonsin-
gular map Y → B (Goresky-MacPherson [29, 5.4.3], Fulton-MacPherson [26]) sends ∆(B) to
∆(Y ).
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