
THE SIGNATURE OF SINGULAR SPACES AND ITS

REFINEMENTS TO GENERALIZED HOMOLOGY THEORIES

MARKUS BANAGL

Abstract. These notes are based on an expository lecture that I gave at
the workshop “Topology of Stratified Spaces” at MSRI Berkeley in September
2008. We will first explain the definition of a bordism invariant signature for
a singular space, proceeding along a progression from less singular to more
and more singular spaces, starting out from spaces that have no odd codi-
mensional strata and, after having discussed Goresky-Siegel spaces and Witt
spaces, ending up with general (non-Witt) stratified spaces. We will moreover
discuss various refinements of the signature to orientation classes in suitable
bordism theories based on singular cycles. For instance, we will indicate how
one may define a symmetric L•-homology orientation for Goresky-Siegel spaces
or a Sullivan orientation for those non-Witt spaces that still possess general-
ized Poincaré duality. These classes can be thought of as refining the L-class
of a singular space. Along the way, we will also see how to compute twisted
versions of the signature and L-class.
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1. Introduction

Let M be a closed smooth n-dimensional manifold. The Hirzebruch L-classes
Li(M) ∈ H4i(M ; Q) of its tangent bundle are powerful tools in the classification
of such M , particularly in the high dimensional situation where n ≥ 5. To make
this plausible, we observe first that the Li(M), with the exception of the top class
Ln/4(M) if n is divisible by 4, are not generally homotopy invariants of M, and are
therefore capable of distinguishing manifolds in a given homotopy type, contrary
to the ability of homology and other homotopy invariants. For example, there
exist infinitely many manifolds Mi, i = 1, 2, . . . in the homotopy type of S2 ×
S4, distinguished by the first Pontrjagin class of their tangent bundle p1(TMi) ∈
H4(S2 × S4) = Z, namely p1(TMi) = Ki, K a fixed nonzero integer. The first
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L-class L1 is proportional to the first Pontrjagin class p1, in fact they are related
by the formula L1 = 1

3p1.
Suppose that Mn, n ≥ 5, is simply connected, as in the example. The clas-

sification of manifolds breaks up into two very different tasks: Classify Poincaré
complexes up to homotopy equivalence and, given a Poincaré complex, determine
all manifolds homotopy equivalent to it.

In dimension 3, one has a relatively complete answer to the former problem. One
can associate purely algebraic data to a Poincaré complex such that two such com-
plexes are homotopy equivalent if, and only if, their algebraic data are isomorphic,
see the classification result in [Hen77]. Furthermore, every given algebraic data is
realizable as the data of a Poincaré complex, cf. [Tur90]. In higher dimensions,
the problem becomes harder. While one can still associate classifying data to a
Poincaré complex, this data is not purely algebraic anymore, though at least in
dimension 4, one can endow Poincaré duality chain complexes with an additional
structure that allows for classification, [BB08].

The latter problem is the realm of surgery theory. Elements of the structure set

S(M) of M are represented by homotopy equivalences N → M , where N is another
closed smooth manifold, necessarily simply connected, since M is. Two such homo-
topy equivalences represent the same element of S(M) if there is a diffeomorphism
between the domains that commutes with the homotopy equivalences. The goal of
surgery theory is to compute S(M). The central tool provided by the theory is the
surgery exact sequence

Ln+1 −→ S(M)
η

−→ N(M) −→ Ln,

an exact sequence of pointed sets. The Ln are the 4-periodic simply connected
surgery obstruction groups, Ln = Z, 0, Z/2, 0 for n ≡ 0, 1, 2, 3 mod 4. The term
N(M) is the normal invariant set, investigated by Sullivan. It is a generalized coho-
mology theory and a Pontrjagin-Thom type construction yields N(M) ∼= [M, G/O],
where [M, G/O] denotes homotopy classes of maps from M into a certain universal
space G/O, which does not depend on M . Since [M, G/O] is a cohomology theory,
it is particularly important to know its coefficients π∗(G/O). While the torsion is
complicated, one has modulo torsion

πi(G/O) ⊗ Q =

{
Q, i = 4j,

0, otherwise.

One obtains an isomorphism

[M, G/O] ⊗ Q ∼=
⊕

j≥0

H4j(M ; Q).

The group Ln+1 acts on S(M) so that the point-inverses of η are the orbits of
the action, i.e. for all f, h ∈ S(M) one has η(f) = η(h) if, and only if, there is a
g ∈ Ln+1 which moves f to h, g · f = h.

Suppose our manifold M is even dimensional. Then Ln+1 vanishes and thus
η(f) = η(h) implies f = g · f = h, so that η is injective. In particular, we obtain
an injection

S(M) ⊗ Q →֒ N(M) ⊗ Q.
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Composing this with N(M) ⊗ Q ∼=
⊕

H4j(M ; Q), we obtain an injective map

S(M) ⊗ Q
L
→֒

⊕
H4j(M ; Q).

This map sends a homotopy equivalence h : N → M to the cohomology class L∗(h)
uniquely determined by h∗(L∗(M) + L∗(h)) = L∗(N). Thus M is determined, up
to finite ambiguity, by its homotopy type and its L-classes. This demonstrates im-
pressively the power of the L-classes as a tool to classify manifolds.

The L-classes are closely related to the signature invariant, and indeed the classes
can be defined, following Thom [Tho58], by the signatures of submanifolds, as
we shall now outline. The link between the L-classes and the signature is the
Hirzebruch signature theorem. It asserts that the evaluation of the top L-class
Lj(M) ∈ Hn(M ; Q) of an n = 4j-dimensional oriented manifold M on the funda-
mental class of M equals the signature σ(M) of M . Once we know this, we can
define L∗(M) as follows. A theorem of Serre states that the Hurewicz map is an
isomorphism

πk(M) ⊗ Q ∼= Hk(M ; Q)

in the range n < 2k − 1, where π∗(M) denotes the cohomotopy sets of M , whose
elements are homotopy classes of maps from M to spheres. Thus, in this range,
we may think of a rational cohomology class as a (smooth) map f : M → Sk.
The preimage f−1(p) of a regular value p ∈ Sk is a submanifold and has a sig-
nature σ(f−1(p)). Use the bordism invariance of the signature to conclude that
this signature depends only on the homotopy class of f . Assigning σ(f−1(p)) to
the homotopy class of f yields a map Hk(M ; Q) → Q, that is, a homology class
Lk(M) ∈ Hk(M ; Q). By Poincaré duality, this class can be dualized back into
cohomology, where it agrees with the Hirzebruch classes L∗(M). Note that all
you need for this procedure is transversality for maps to spheres in order to get
suitable subspaces and a bordism invariant signature defined on these subspaces.
Thus, whenever these ingredients are present for a singular space X , we will obtain
an L-class L∗(X) ∈ H∗(X ; Q) in the rational homology of X . (This class cannot
necessarily be dualized back into cohomology, due to the lack of classical Poincaré
duality for singular X .) Therefore, we only need to discuss which classes of singu-
lar spaces have a bordism invariant signature. The required transversality results
are available for Whitney stratified spaces, for example. The notion of a Whitney
stratified space incorporates smoothness in a particularly amenable way into the
world of singular spaces. A Whitney stratification of a space X consists of a (locally
finite) partition of X into locally closed smooth manifolds of various dimensions,
called the pure strata. If one stratum intersects the closure of another one, then
it must already be completely contained in it. Connected components S of strata
have tubular neighborhoods TS that possess locally trivial projections πS : TS → S
whose fiber π−1

S (p), p ∈ S, is the cone on a compact space L(p) (also Whitney strat-
ified), called the link of S at p. It follows that every point p has a neighborhood
homeomorphic to Rdim S × cone L(p). Real and complex algebraic varieties possess
a natural Whitney stratification, as do orbit spaces of smooth group actions. The
pseudomanifold condition means that the singular strata have codimension at least
two and the complement of the singular set (the top stratum) is dense in X . The
figure eight space, for instance, can be Whitney stratified but is not a pseudomani-
fold. The pinched 2-torus is a Whitney stratifiable pseudomanifold. If we attach a
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whisker to the pinched 2-torus, then it loses its pseudomanifold property, while re-
taining its Whitney stratifiability. By [Gor78], a Whitney stratified pseudomanifold
X can be triangulated so that the Whitney stratification defines a PL stratification
of X .

Inspired by the success of L-classes in manifold theory sketched above, one would
like to have L-classes for stratified pseudomanifolds as well. In [CW91], see also
[Wei94], Cappell and Weinberger indicate the following result, analogous to the
manifold classification result sketched above. Suppose X is a stratified pseudoman-
ifold that has no strata of odd dimension. Assume that all strata S have dimension
at least 5, and that all fundamental groups in sight are trivial, that is, all strata
are simply connected and all links are simply connected. (A pseudomanifold whose
links are all simply connected is called supernormal. This is compatible with the
notion of a normal pseudomanifold, meaning that all links are connected.) Then
differences of L-classes give an injection

S(X) ⊗ Q →֒
⊕

S⊂X

⊕

j

Hj(S; Q),

where S ranges over the strata of X, S denotes the closure of S in X , and S(X)
is an appropriately1 defined structure set for X . This would suggest that L-classes
are as powerful in classifying stratified spaces as in classifying manifolds. Since, as
we have seen, the definition of L-classes is intimately related to, and can be given
in terms of, the signature, we shall primarily investigate the possibility of defining
a bordism invariant signature for an oriented stratified pseudomanifold X .

2. Peudomanifolds Without Odd Codimensional Strata

In order to define a signature, one needs an intersection form. But singular spaces
do not possess Poincaré duality, in particular no intersection form, in ordinary
homology. The solution is to change to a different kind of homology. Motivated by
a question of D. Sullivan [Sul70], Goresky and MacPherson define (in [GM80] for
PL pseudomanifolds and in [GM83] for topological pseudomanifolds) a collection of
groups IH p̄

∗ (X), called intersection homology groups of X , depending on a multi-
index p̄, called a perversity. For these groups, a Poincaré-Lefschetz-type intersection
theory can be defined, and a generalized form of Poincaré duality holds, but only
between groups with “complementary perversities.” More precisely, with t̄(k) =
k − 2 denoting the top perversity, there are intersection pairings

(1) IH p̄
i (X) ⊗ IH q̄

j (X) −→ Z

for an oriented closed pseudomanifold X , p̄ + q̄ = t̄ and i + j = dimX, which are
nondegenerate when tensored with the rationals. Jeff Cheeger discovered, working
independently of Goresky and MacPherson and not being aware of their intersection
homology, that Poincaré duality on triangulated pseudomanifolds equipped with a
suitable (locally conical) Riemannian metric on the top stratum, can be recovered
by using the complex of L2 differential forms on the top stratum, see [Che80],

1In [CW91], the structure sets S(X) are defined as the homotopy groups of the homotopy fiber
of the assemby map X ∧ L•(Z)0 → L•(Zπ1(X)), constructed in [Ran79]. This can be defined
for any space, but under the stated assumptions on X, [CW91] interprets S(X) geometrically in
terms of classical structure sets of the strata of X.
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[Che79] and [Che83]. The connection between his and the work of Goresky and
MacPherson was pointed out by Sullivan in 1976. For an introduction to inter-
section homology see [B+84], [KW06] or [Ban07]. A third method, introduced
in [Ban09] and implemented there for pseudomanifolds with isolated singularities
and two-strata spaces with untwisted link bundle, associates to a singular pseudo-
manifold X an intersection space I p̄X , whose ordinary rational homology has a
nondegenerate intersection pairing

H̃i(I
p̄X ; Q)⊗ H̃j(I

q̄X ; Q) −→ Q.

This theory is not isomorphic, albeit related, to intersection homology. It solves a
problem posed in string theory, related to the presence of massless D-branes in the
course of conifold transitions.

In sheaf-theoretic language, the groups IH p̄
∗ (X) are given as the hypercoho-

mology groups of a sheaf complex IC•
p̄(X) over X . If we view this complex as an

object of the derived category (that is, we invert quasi-isomorphisms), then IC•
p̄(X)

is characterized by certain stalk/costalk vanishing conditions. The rationalization
of the above intersection pairing (1) is induced on hypercohomology by a duality
isomorphism DIC•

p̄(X ; Q)[n] ∼= IC•
q̄(X ; Q) in the derived category, where D de-

notes the Verdier dualizing functor. This means roughly that one does not just
have a global chain equivalence to the dual (intersection) chain complex, but a
chain equivalence on every open set.

Let Xn be an oriented closed topological stratified pseudomanifold which has
only even dimensional strata. A wide class of examples is given by complex algebraic
varieties. In this case, the intersection pairing (1) allows us to define a signature
σ(X) by using the two complementary middle perversities m̄ and n̄:

k 2 3 4 5 6 7 8 9 . . .
m̄(k) 0 0 1 1 2 2 3 3 . . .
n̄(k) 0 1 1 2 2 3 3 4 . . .

Since m̄(k) = n̄(k) for even values of k, and only these values are relevant for our
present X , we have IHm̄

n/2(X) = IH n̄
n/2(X). Therefore, the pairing (1) becomes

IHm̄
n/2(X ; Q)⊗ IHm̄

n/2(X ; Q) −→ Q

(symmetric if n/2 is even), that is, defines a quadratic form on the vector space
IHm̄

n/2(X ; Q). Let σ(X) be the signature of this quadratic form. Goresky and

MacPherson show that this is a bordism invariant for bordisms that have only
strata of even codimension. Since IC•

m̄(X) = IC•
n̄(X), the intersection pairing is

induced by a self-duality isomorphism DIC•
m̄(X ; Q)[n] ∼= IC•

m̄(X ; Q). This is an
example of a self-dual sheaf.

3. Witt Spaces

To form a bordism theory based on pseudomanifold cycles, one could consider
bordism based on all (say topological, or PL) closed pseudomanifolds,

Ωall pseudomfds
∗ (Y ) = {[X

f
−→ Y ] | X a pseudomanifold},
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where the admissible bordisms are compact pseudomanifolds with collared bound-
ary, without further restrictions. Now it is immediately clear that the associated

coefficient groups vanish, Ωall pseudomfds
∗ (pt) = 0, ∗ > 0, since any pseudomanifold

X is the boundary of the cone on X, which is an admissible bordism. Thus this
naive definition does not lead to an interesting and useful new theory, and we con-
clude that a subclass of pseudomanifolds has to be selected to define such theories.
Given the results on middle perversity intersection homology presented so far, our
next approach would be to select the class of all closed pseudomanifolds with only
even codimensional strata,

Ωev
∗ (Y ) = {[X

f
−→ Y ] | X has only even codim strata}

(and the same condition is imposed on all admissible bordisms). While we do know
that the signature is well-defined on Ωev

∗ (pt), this is however still not a good theory
as this definition leads to a large number of geometrically insignificant generators.
Many operations (such as coning or refinement of the stratification) do introduce
strata of odd codimension, so we need to allow some strata of this kind, but so as
not to destroy Poincaré duality. In [Sie83], Paul Siegel introduced a class of ori-
ented stratified PL pseudomanifolds called Witt spaces, by imposing the condition
that IHm̄

middle(Link(x); Q) = 0 for all points x in odd codimensional strata of X .

The suspension X7 = ΣCP
3 has two singular points which form a stratum of odd

codimension 7. The link is CP
3 with middle homology H3(CP

3) = 0. Hence X7

is a Witt space. The suspension X3 = ΣT 2 has two singular points which form a
stratum of odd codimension 3. The space X3 is not Witt, since the middle Betti
number of the link T 2 is 2. In sheaf-theoretic language, a pseudomanifold X is Witt
iff the canonical morphism IC•

m̄(X ; Q) → IC•
n̄(X ; Q) is an isomorphism (in the

derived category). Thus, IC•
m̄(X ; Q) is self-dual on a Witt space, and if X is com-

pact, we have a nonsingular intersection pairing IHm̄
i (X ; Q) ⊗ IHm̄

n−i(X ; Q) → Q.

Let ΩWitt
∗ (Y ) denote Witt space bordism, that is, bordism of closed oriented Witt

spaces X mapping continuously into Y . Admissible bordisms are compact pseudo-
manifolds with collared boundary that satisfy the Witt condition, together with a
map into Y .

When is a Witt space Xn a boundary? Suppose the dimension n is odd. Then
X = ∂Y with Y = cone X. The cone Y is a Witt space, since the cone-point is
a stratum of even codimension in Y. This shows that ΩWitt

2k+1(pt) = 0 for all k. In

particular, the de Rham invariant does not survive in ΩWitt
∗ (pt).

Let W (Q) denote the Witt group of the rationals. Its structure is known and
given by

W (Q) ∼= W (Z) ⊕
⊕

p prime

W (Z/p),

where W (Z) ∼= Z via the signature, W (Z/2) ∼= Z/2, and for p 6= 2, W (Z/p) ∼= Z/4

or Z/2 ⊕ Z/2. Sending a Witt space X4k to its intersection form on IHm̄
2k(X ; Q)

defines a bordism-invariant element w(X) ∈ W (Q). Siegel shows that the induced
map w : ΩWitt

4k (pt) → W (Q) is an isomorphism for k > 0. In dimension zero we
get ΩWitt

0 = Z. If X has dimension congruent 2 modulo 4, then X bounds a Witt
space by singular surgery on a symplectic basis for the antisymmetric intersection
form. Thus ΩWitt

n = 0 for n not congruent 0 mod 4. Since W (Q) is just another
name for the L-group L4k(Q) and Ln(Q) = 0 for n not a multiple of 4, we can
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summarize Siegel’s result succinctly as saying that ΩWitt
∗ (pt) ∼= L∗(Q) in positive

degrees. By the Brown representability theorem, Witt space bordism theory is given
by a spectrum MWITT, which is in fact an MSO module spectrum, see [Cur92].
(Regard a manifold as a Witt space with one stratum.) By [TW79], any MSO
module spectrum becomes a product of Eilenberg-MacLane spectra after localizing
at 2. Thus,

MWITT(2) ≃ K(Z(2), 0) ×
∏

j>0

K(Lj(Q)(2), j)

and we conclude that

ΩWitt
n (Y )(2) ∼= Hn(Y ; Z)(2) ⊕

⊕

j>0

Hn−j(Y ; Lj(Q)(2)).

(As Z(2) is flat over Z, we have S∗(X)(2) = (S(2))∗(X) for any spectrum S.) Let us

focus on the odd-primary situation. Regard Z[ 12 , t] as a graded ring with deg(t) =

4. Let ΩSO
∗ (Y ) denote bordism of smooth oriented manifolds. Considering the

signature as a map σ : ΩSO
∗ (pt) → Z[ 12 , t], [M4k] 7→ σ(M)tk, makes Z[ 12 , t] into an

ΩSO
∗ (pt)-module and we can form the homology theory

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Z[ 12 , t].

On a point, this is

ΩSO
∗ (pt) ⊗ΩSO

∗
(pt) Z[ 12 , t] ∼= Z[ 12 , t],

the isomorphism being given by [M4l] ⊗ atk 7→ aσ(M4l)tk+l. Let ko∗(Y ) denote
connective KO homology, regarded as a Z-graded, not Z/4-graded, theory. It is
given by a spectrum bo whose homotopy groups vanish in negative degrees and are
given by

ko∗(pt) = π∗(bo) = Z ⊕ Σ1Z/2 ⊕ Σ2Z/2 ⊕ Σ4Z ⊕ Σ8Z ⊕ Σ9Z/2 ⊕ · · · ,

repeating with 8-fold periodicity in nonnegative degrees. Inverting 2 kills the torsion
in degrees 1 and 2 mod 8 so that ko∗(pt)⊗ZZ[ 12 ] ∼= Z[ 12 , t]. In his MIT-notes [Sul05],
Sullivan constructs a natural Conner-Floyd-type isomorphism of homology theories

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Z[ 12 , t]

∼=
−→ ko∗(Y ) ⊗Z Z[ 12 ].

Siegel [Sie83] shows that Witt spaces provide a geometric description of connective
KO homology at odd primes: He constructs a natural isomorphism of homology
theories

(2) ΩWitt
∗ (Y ) ⊗Z Z[ 12 ]

∼=
−→ ko∗(Y ) ⊗Z Z[ 12 ]

(which we shall return to later). It reduces to the signature homomorphism on
coefficients, i.e. an element [X4k] ⊗ a ∈ ΩWitt

4k (pt) ⊗Z Z[ 12 ] maps to aσ(X)tk ∈

ko∗(pt)⊗Z Z[ 12 ] = Z[ 12 , t]. This is an isomorphism, since inverting 2 kills the torsion

components of the invariant w(X), W (Q) ⊗ Z[ 12 ] ∼= W (Z) ⊗ Z[ 12 ] ∼= Z[ 12 ]. Now

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Z[ 12 , t] being a quotient of ΩSO

∗ (Y ) ⊗Z Z[ 12 , t], yields a natural
surjection

ΩSO
∗ (Y ) ⊗Z Z[ 12 , t] ։ ΩSO

∗ (Y ) ⊗ΩSO
∗

(pt) Z[ 12 , t].
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Let us consider the diagram of natural transformations

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Z[ 12 , t]

∼= // ko∗(Y ) ⊗Z Z[ 12 ]

ΩSO
∗ (Y ) ⊗Z Z[ 12 , t]

OOOO

// ΩWitt
∗ (Y ) ⊗Z Z[ 12 ],

∼=

OO

where the lower horizontal arrow maps an element [M
f

−→ Y ]⊗atk to [M×CP2k fπ1
−→

Y ]⊗a. On a point, this arrow thus maps an element [M4l]⊗atk to [M4l×CP2k]⊗a.
Mapping an element [M4l] ⊗ atk clockwise yields aσ(M)tk+l ∈ ko∗(pt) ⊗Z Z[ 12 ] ∼=
Z[ 12 , t]. Mapping the same element counterclockwise gives

aσ(M4l × CP2k)t(4l+4k)/4 = aσ(M)tk+l

also. The diagram commutes and shows that away from 2, the canonical map from
manifold bordism to Witt bordism is a surjection. This is a key observation of
[BCS03] and frequently allows bordism invariant calculations for Witt spaces to be
pulled back to calculations on smooth manifolds. This principle may be viewed as
a topological counterpart of resolution of singularities in complex algebraic and an-
alytic geometry (though one should point out that there are complex 2-dimensional
singular projective toric varieties X(∆) such that no nonzero multiple of X(∆) is
bordant to any toric resolution of X(∆)). It is applied in [BCS03] to prove that
the twisted signature σ(X ; S) of a closed oriented Whitney stratified Witt space
Xn of even dimension with coefficients in a (Poincaré-) local system S on X can
be computed as the product of the (untwisted) L-class of X and a modified Chern
character of the K-theory signature [S]K of S,

σ(X ; S) = 〈c̃h[S]K , L∗(X)〉 ∈ Z

where L∗(X) ∈ H∗(X ; Q) is the total L-class of X. The higher components of the

product c̃h[S]K ∩ L∗(X) in fact compute the rest of the twisted L-class L∗(X ; S).
Such twisted classes come up naturally if one wants to understand the pushfor-
ward under a stratified map of characteristic classes of the domain, see [CS91] and
[Ban06c].

4. IP Spaces: Integral Duality

Witt spaces satisfy generalized Poincaré duality rationally. Is there a class of
pseudomanifolds whose members satisfy Poincaré duality integrally? This requires
restrictions more severe than those imposed on Witt spaces. An intersection ho-

mology Poincaré space (“IP space”), introduced in [GS83], is an oriented stratified
PL pseudomanifold such that the middle perversity, middle dimensional intersec-
tion homology of even dimensional links vanishes and the torsion subgroup of the
middle perversity, lower middle dimensional intersection homology of odd dimen-
sional links vanishes. This condition characterizes spaces for which the integral
intersection chain sheaf IC•

m̄(X ; Z) is self-dual. Goresky and Siegel show that for
such spaces Xn there are nonsingular pairings

IHm̄
i (X)/ Tors⊗IHm̄

n−i(X)/ Tors −→ Z

and

Tors IHm̄
i (X) ⊗ Tors IHm̄

n−i−1(X) −→ Q/Z.
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Let ΩIP
∗ (pt) denote the bordism groups of IP spaces. The signature σ(X) of the

above intersection pairing is a bordism invariant and induces a homomorphism
ΩIP

4k(pt) → Z. If dimX = n = 4k + 1, then the number mod 2 of Z/2-summands in
Tors IHm̄

2k(X) is a bordism invariant, the de Rham invariant dR(X) ∈ Z/2 of X .
It induces a homomorphism dR : ΩIP

4k+1(pt) → Z/2. Pardon shows in [Par90] that

these maps are both isomorphisms for k ≥ 1 and that all other groups ΩIP
n (pt) = 0,

n > 0. In summary, one obtains

ΩIP
n (pt) =






Z, n ≡ 0(4),

Z/2, n ≥ 5, n ≡ 1(4),

0 otherwise.

Let L∗(ZG) denote the symmetric L-groups, as defined by Ranicki, of the group
ring ZG of a group G. For the trivial group G = e, these are the homotopy groups
π∗(L

•) = L•
∗(pt) of the symmetric L-spectrum L• and are given by

Ln(Ze) =






Z, n ≡ 0(4),

Z/2, n ≡ 1(4),

0 otherwise.

We notice that this is extremely close to the IP bordism groups, the only difference
being a Z/2 in dimension 1. A comparison of their respective coefficient groups
thus leads us to expect that the difference between the generalized homology theory
ΩIP

∗ (Y ) given by mapping IP pseudomanifolds X continuously into a space Y and
symmetric L•-homology L•

∗(Y ) is very small. Indeed, according to [Epp07], there
exists a map φ : MIP → L•, where MIP is the spectrum giving rise to IP bordism
theory, whose homotopy cofiber is an Eilenberg-MacLane spectrum K(Z/2, 1). The
map is obtained by using a description of L• as a simplicial Ω-spectrum, whose k-th
space has its n-simplices given by homotopy classes of (n− k)-dimensional n-ads of
symmetric algebraic Poincaré complexes (pairs). Similarly, MIP can be described
as a simplicial Ω-spectrum, whose k-th space has its n-simplices given by (n − k)-
dimensional n-ads of compact IP pseudomanifolds. Given these simplicial models,
one has to map n-ads of IP spaces to n-ads of symmetric Poincaré complexes. On
a suitable incarnation of the middle perversity integral intersection chain sheaf on
a compact IP space, a Poincaré symmetric structure can be constructed by copying
Goresky’s symmetric construction of [Gor84]. Taking global sections and resolving
by finitely generated projectives (observing that the cohomology of the section
complex is finitely generated by compactness), one obtains a symmetric algebraic
Poincaré complex. This assignment can also be done for pairs and behaves well
under gluing. The symmetric structure is uniquely determined by its restriction
to the top stratum. On the top stratum, which is a manifold, the construction
agrees sheaf-theoretically with the construction used classically for manifolds, see
e.g. [Bre97]. In particular, if we start with a smooth oriented closed manifold and
view it as an IP space with one stratum, then the top stratum is the entire space
and the constructed symmetric structure agrees with Ranicki’s symmetric structure.
Modelling MSO and MSTOP as simplicial Ω-spectra consisting of n-ads of smooth
oriented manifolds and n-ads of topological oriented manifolds, respectively, we
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thus see that the diagram

MSO //

��

MIP

φ
��

MSTOP // L•

homotopy commutes, where the “symmetric signature map” MSTOP → L• of ring
spectra has been constructed by Ranicki. (Technically, IP spaces are PL pseudo-
manifolds, so to obtain the canonical map MSO → MIP, it is necessary to find a
canonical PL structure on a given smooth manifold. This is possible by J. H. C.
Whitehead’s triangulation results of [Whi40], where it is shown that every smooth
manifold admits a compatible triangulation as a PL manifold and this PL manifold
is unique to within a PL homeomorphism; see also [WJ66].) It follows that

(3) ΩSO
∗ (Y ) //

��

ΩIP
∗ (Y )

φ∗(Y )
��

ΩSTOP
∗ (Y ) // L•

∗(Y )

commutes. Let us verify the commutativity for Y = pt by hand. If ∗ = 4k + 2
or 4k + 3, then L•

∗(pt) = L∗(Ze) = 0, so the two transformations agree in these
dimensions. Commutativity in dimension 1 follows from ΩSO

1 (pt) = 0. For ∗ =
4k + 1, k > 0, the homotopy cofiber sequence of spectra

MIP
φ

−→ L• −→ K(Z/2, 1)

induces on homotopy groups an exact sequence and hence an isomorphism

π4k+1(MIP)
∼=
−→ π4k+1(L

•).

But both of these groups are Z/2, whence the isomorphism is the identity map.
Thus if M4k+1 is a smooth oriented manifold, then [M4k+1] ∈ ΩIP

4k+1(pt) maps

under φ to the de Rham invariant dR(M) ∈ L4k+1(Ze) = Z/2. Hence the two
transformations agree on a point in dimensions 4k + 1. Again using the exact
sequence of homotopy groups determined by the above cofibration sequence, φ in-

duces isomorphisms π4k(MIP)
∼=
−→ π4k(L•). Both of these groups are Z, so this

isomorphism is ±1. Consequently, a smooth oriented manifold M4k, defining an
element [M4k] ∈ ΩIP

4k(pt), maps under φ to ±σ(M) ∈ L4k(Ze) = Z, and it is +σ(M)
when the signs in the two symmetric structures are correctly matched.

For an n-dimensional Poincaré space which is either a topological manifold or a
combinatorial homology manifold (i.e. a polyhedron whose links of simplices are
homology spheres), Ranicki defines a canonical L•-orientation [M ]L ∈ L•

n(M), see
[Ran92]. Its image under the assembly map

L•
n(M)

A
−→ Ln(Zπ1(M))

is the symmetric signature σ∗(M), which is a homotopy invariant. The class [M ]L
itself is a topological invariant. The geometric meaning of the L•-orientation class
is that its existence for a geometric Poincaré complex Xn, n ≥ 5, assembling
to the symmetric signature (which any Poincaré complex possesses), implies up
to 2-torsion that X is homotopy equivalent to a compact topological manifold.
(More precisely, X is homotopy equivalent to a compact manifold if it has an
L•-orientation class, which assembles to the visible symmetric signature of X .)
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Cap product with [M ]L induces an L•-homology Poincaré duality isomorphism

(L•)i(M)
∼=
−→ L•

n−i(M). Rationally, [M ]L is given by the homology L-class of M ,

[M ]L ⊗ 1 = L∗(M) ∈ L•
n(M) ⊗ Q ∼=

⊕

j≥0

Hn−4j(M ; Q).

Thus, we may view [M ]L as an integral refinement of the L-class of M . An-
other integral refinement of the L-class is the signature homology orientation class
[M ]Sig ∈ Sign(M), to be defined below. The identity A[M ]L = σ∗(M) may
then be interpreted as a non-simply connected generalization of the Hirzebruch
signature formula. The localization of [M ]L at odd primes is the Sullivan ori-
entation ∆(M) ∈ KOn(M) ⊗ Z[ 12 ], which we shall return to later. Under the

map ΩSTOP
n (M) → L•

n(M), [M ]L is the image of the identity map [M
id
−→ M ] ∈

ΩSTOP
n (M).

We shall now apply φ in defining an L•-orientation [X ]L ∈ L•
n(X) for an oriented

closed n-dimensional IP pseudomanifold X . (For Witt spaces, an L•-orientation
and a symmetric signature has been defined in [CSW91].) The identity map X → X
defines an orientation class [X ]IP ∈ ΩIP

n (X).

Definition 1. The L•-orientation [X ]L ∈ L•
n(X) of an oriented closed n-dimensional

IP pseudomanifold X is defined to be the image of [X ]IP ∈ ΩIP
n (X) under the map

ΩIP
n (X)

φ∗(X)
−→ L•

n(X).

If X = Mn is a smooth oriented manifold, then the identity map M → M defines
an orientation class [M ]SO ∈ ΩSO

n (M), which maps to [M ]L under the map

ΩSO
n (M) −→ ΩSTOP

n (M) −→ L•
n(M).

Thus, the above definition of [X ]L for an IP pseudomanifold X is compatible with
manifold theory in view of the commutativity of diagram (3). Applying Ranicki’s
assembly map, it is then straightforward to define the symmetric signature of an
IP pseudomanifold.

Definition 2. The symmetric signature σ∗(X) ∈ Ln(Zπ1(X)) of an oriented closed
n-dimensional IP pseudomanifold X is defined to be the image of [X ]L under the
assembly map

L•
n(X)

A
−→ Ln(Zπ1(X)).

This then agrees with the definition of the Mishchenko-Ranicki symmetric sig-
nature σ∗(M) of a manifold X = M because A[M ]L = σ∗(M).

5. Non-Witt Spaces

All pseudomanifolds previously considered had to satisfy a vanishing condition
for the middle dimensional intersection homology of the links of odd codimensional
strata. Can a bordism invariant signature be defined for an even larger class of
spaces? As pointed out above, taking the cone on a pseudomanifold immediately
proves the futility of such an attempt on the full class of all pseudomanifolds.
What, then, are the obstructions for an oriented pseudomanifold to possess Poincaré
duality compatible with intersection homology?
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Let LK be a collection of closed oriented pseudomanifolds. We might envision
forming a bordism group ΩLK

n , whose elements are represented by closed oriented n-
dimensional stratified pseudomanifolds whose links are all homeomorphic to (finite
disjoint unions of) elements of LK. Two spaces X and X ′ represent the same
bordism class, [X ] = [X ′], if there exists an (n + 1)-dimensional oriented compact
pseudomanifold-with-boundary Y n+1 such that all links of the interior of Y are in
LK and ∂Y ∼= X ⊔ −X ′ under an orientation-preserving homeomorphism. (The
boundary is, as always, to be collared in a stratum-preserving way.) If, for instance,

LK = {S1, S2, S3, . . .},

then ΩLK
∗ is bordism of manifolds. If

LK = Odd∪{L2l | IHm̄
l (L; Q) = 0},

where Odd is the collection of all odd dimensional oriented closed pseudomanifolds,
then ΩLK

∗ = ΩWitt
∗ . The question is: Which other spaces can one throw into this

LK, yielding an enlarged collection LK′ ⊃ LK, such that one can still define a
bordism invariant signature σ : ΩLK

′

∗ −→ Z so that the diagram

ΩWitt
∗

σ //

��

Z

ΩLK
′

∗

σ

<<

commutes, where ΩWitt
∗ −→ ΩLK

′

∗ is the canonical map induced by the inclusion
LK ⊂ LK′? Note that σ(L) = 0 for every L ∈ LK. Suppose we took an LK′ that

contains a manifold P with σ(P ) 6= 0, e.g. P = CP2k. Then [P ] = 0 ∈ ΩLK
′

∗ , since
P is the boundary of the cone on P , and the cone on P is an admissible bordism in
ΩLK

′

∗ , as the link of the cone-point is P and P ∈ LK′. Thus, in the above diagram,

[P ]
� σ //

_

��

σ(P ) 6= 0.

0
0

σ

77pppppppppp

This argument shows that the desired diagonal arrow cannot exist for any collection
LK′ that contains any manifolds with nonzero signature. Thus we are naturally
led to consider only links with zero signature, that is, links whose intersection form
on middle dimensional homology possesses a Lagrangian subspace. As you move
along a stratum of odd codimension, these Lagrangian subspaces should fit together,
forming a subsheaf of the middle dimensional cohomology sheaf H associated to
the link-bundle over the stratum. (Actually, no bundle neighborhood structure is
required to do this.) So a natural language in which to phrase and solve the prob-
lem is sheaf theory.

From the sheaf-theoretic vantage point, the statement that a space Xn does not
satisfy the Witt condition means precisely that the canonical morphism IC•

m̄(X) →
IC•

n̄(X) from lower to upper middle perversity is not an isomorphism in the derived
category. (We are using sheaves of real vector spaces now and shall not indicate this
further in our notation.) Thus there is no way to introduce a quadratic form whose
signature one could take, using intersection chain sheaves. But one may ask how
close to such sheaves one might get by using self-dual sheaves on X . In [Ban02], we
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define a full subcategory SD(X) of the derived category on X, whose objects S•

satisfy all the axioms that IC•
n̄(X) satisfies, with the exception of the last axiom,

the costalk vanishing axiom. This axiom is replaced with the requirement that
S• be self-dual, that is, there is an isomorphism DS•[n] ∼= S•, just as there is for
IC•

m̄ on a Witt space. Naturally, this category may be empty, depending on the
geometry of X . So we need to develop a structure theorem for SD(X), and this
is done in [Ban02]. It turns out that every such object S• interpolates between
IC•

m̄ and IC•
n̄, i.e. possesses a factorization IC•

m̄ → S• → IC•
n̄ of the canonical

morphism. The two morphisms of the factorization are dual to each other. Note
that in the basic two strata case, the mapping cone of the canonical morphism is the
middle cohomology sheaf H of the link-bundle. We prove that the mapping cone of
IC•

m̄ → S•, restricted to the stratum of odd codimension, is a Lagrangian subsheaf
of H, so that the circle to the above geometric ideas closes. The main result of
[Ban02] is an equivalence of categories between SD(X) and a fibered product of
categories of Lagrangian structures, one such category for each stratum of odd
codimension. This then is a kind of Postnikov system for SD(X), encoding both
the obstruction theory and the constructive technology to manufacture objects in
SD(X).

Suppose X is such that SD(X) is not empty. An object S• in SD(X) defines
a signature σ(S•) ∈ Z by taking the signature of the quadratic form that the
self-duality isomorphism DS•[n] ∼= S• induces on the middle dimensional hyperco-
homology group of S•. Since restricting a self-dual sheaf to a transverse (to the
stratification) subvariety again yields a self-dual sheaf on the subvariety, we get a
signature for all transverse subvarieties and thus an L-class L∗(S

•) ∈ H∗(X ; Q),
using maps to spheres and Serre’s theorem as indicated in the beginning. We prove
in [Ban06b] that L∗(S

•), in particular σ(S•) = L0(S
•), is independent of the choice

of S• in SD(X). Consequently, a non-Witt space has a well-defined L-class L∗(X)
and signature σ(X), provided SD(X) is not empty.

Let Sign(pt) be the bordism group of pairs (X,S•), where X is a closed oriented
topological or PL n-dimensional pseudomanifold and S• is an object of SD(X).
Admissible bordisms are oriented compact pseudomanifolds-with-boundary Y n+1,
whose interior intY is covered with an object of SD(intY ) which pushes to the given
sheaf complexes on the boundary. These groups have been introduced in [Ban02]
under the name ΩSD

∗ . Let us compute these groups. The signature (X,S•) 7→ σ(S•)
is a bordism invariant and hence induces a map σ : Sig4k(pt) → Z. This map is onto,
since e.g. (CP2k, RCP2k [4k]) (and disjoint copies of it) is in Sig4k(pt). However, con-
trary for example to Witt bordism, σ is also injective: Suppose σ(X,S•) = 0. Let
Y 4k+1 be the closed cone on X . Define a self-dual sheaf on the interior of the punc-
tured cone by pulling back S• from X under the projection from the interior of the
punctured cone, X×(0, 1), to X . According to the Postnikov system of Lagrangian
structures for SD(intY ), the self-dual sheaf on the interior of the punctured cone
will have a self-dual extension in SD(intY ) if, and only if, there exists a Lagrangian
structure at the cone-point (which has odd codimension 4k + 1 in Y ). That La-
grangian structure exists because σ(X,S•) = 0. Let T• ∈ SD(intY ) be any self-
dual extension given by a choice of Lagrangian structure. Then ∂(Y,T•) = (X,S•)
and thus [(X,S•)] = 0 in Sig4k(pt). Clearly, Sign(pt) = 0 for n 6≡ 0(4) because
an anti-symmetric form always has a Lagrangian subspace and the cone on an
odd dimensional space is even dimensional, so in these cases there are no extension
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problems at the cone point — just perform a one-step Goresky-MacPherson-Deligne
extension. In summary then, one has

Sign(pt) ∼=

{
Z, n ≡ 0(4),

0, n 6≡ 0(4).

(Note that in particular the de Rham invariant has been disabled and the signature
is a complete invariant for these bordism groups.) Minatta [Min04], [Min06] takes
this as his starting point and constructs a bordism theory Sig∗(−), called signature

homology, whose coefficients are the above groups Sig∗(pt). Elements of Sign(Y )
are represented by pairs (X,S•) as above together with a continuous map X → Y .
For a detailed proof that Sig∗(−) is a generalized homology theory when PL pseu-
domanifolds are used, consult the appendix of [Ban06a]. Signature homology is
represented by an MSO module spectrum MSIG, which is also a ring spectrum.
Regarding a smooth manifold as a pseudomanifold with one stratum covered by
the constant sheaf of rank 1 concentrated in one dimension defines a natural trans-
formation of homology theories ΩSO

∗ (−) → Sig∗(−). Thus, MSIG is 2-integrally a
product of Eilenberg-MacLane spectra,

MSIG(2) ≃
∏

j≥0

K(Z(2), 4j).

As for the odd-primary situation, the isomorphism Sig∗(pt)⊗Z Z[ 12 ] → Z[ 12 , t] given

by [(X4k,S•)] ⊗ a 7→ aσ(S•)tk, determines an identification

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Sig∗(pt) ⊗Z Z[ 12 ]

∼=
−→ ΩSO

∗ (Y ) ⊗ΩSO
∗

(pt) Z[ 12 , t].

A natural isomorphism of homology theories

ΩSO
∗ (Y ) ⊗ΩSO

∗
(pt) Sig∗(pt) ⊗Z Z[ 12 ]

∼=
−→ Sig∗(Y ) ⊗Z Z[ 12 ]

is induced by sending [M
f
→ Y ] ⊗ [(X,S•)] to [(M × X,P•, M × X → M

f
→ Y )],

where P• is the pullback sheaf of S• under the second-factor projection. Composing,
we obtain a natural isomorphism

ΩSO
∗ (−) ⊗ΩSO

∗
(pt) Z[ 12 , t]

∼=
−→ Sig∗(−) ⊗Z Z[ 12 ],

describing signature homology at odd primes in terms of manifold bordism.

Again, it follows in particular that the natural map

ΩSO
∗ (Y ) ⊗Z Z[ 12 , t] → Sig∗(Y ) ⊗Z Z[ 12 ]

is a surjection, which frequently allows one to reduce bordism invariant calculations
on non-Witt spaces to the manifold case. We observed this in [Ban06a] and apply
it there to establish a multiplicative characteristic class formula for the twisted
signature and L-class of non-Witt spaces. Let Xn be a closed oriented Whitney
stratified pseudomanifold and let S be a nondegenerate symmetric local system on
X . If SD(X) is not empty, that is, X possesses Lagrangian structures along its
strata of odd codimension so that L∗(X) ∈ H∗(X ; Q) is defined, then

L∗(X ; S) = c̃h[S]K ∩ L∗(X).

For the special case of the twisted signature σ(X ; S) = L0(X ; S), one has therefore

σ(X ; S) = 〈c̃h[S]K , L(X)〉.
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We shall apply the preceding ideas in defining a Sullivan orientation ∆(X) ∈
ko∗(X)⊗Z[ 12 ] for a pseudomanifold X that possesses generalized Poincaré duality
(that is, its self-dual perverse category SD(X) is not empty), but need not sat-
isfy the Witt condition. In [Sul05], Sullivan defined for an oriented rational PL
homology manifold M an orientation class ∆(M) ∈ ko∗(M) ⊗ Z[ 12 ], whose Pon-
trjagin character is the L-class L∗(M). For a Witt space Xn, a Sullivan class
∆(X) ∈ ko∗(X) ⊗ Z[ 12 ] was constructed by Siegel [Sie83], using the intersection
homology signature of a Witt space and transversality to produce the requisite
Sullivan periodicity squares that represent elements of KO4k(N, ∂N)⊗Z[ 12 ], where
N is a regular neighborhood of a codimension 4k PL-embedding of X in a high
dimensional Euclidean space. An element in ko4k(N, ∂N) ⊗ Z[ 12 ] corresponds to a

unique element in kon(X)⊗Z[ 12 ] by Alexander duality. Siegel’s isomorphism (2) is
then given by the Hurewicz-type map

ΩWitt
∗ (Y ) ⊗ Z[ 12 ] −→ ko∗(Y ) ⊗ Z[ 12 ]

[X
f

−→ Y ] ⊗ 1 7→ f∗∆(X),

where f∗ : ko∗(X) ⊗ Z[ 12 ] → ko∗(Y ) ⊗ Z[ 12 ]. In particular, the transformation (2)

maps the Witt orientation class [X ]Witt ∈ ΩWitt
n (X), given by the identity map

f = idX : X → X, to ∆(X).

Remark 1. In [CSW91], there is indicated an extension to continuous actions of
a finite group G on a Witt space X . If the action satisfies a weak condition on
the fixed point sets, then there is a homeomorphism invariant class ∆G(X) in the
equivariant KO-homology of X away from 2, which is the Atiyah-Singer G-signature
invariant for smooth actions on smooth manifolds.

Let P be a compact polyhedron. Using Balmer’s 4-periodic Witt groups of
triangulated categories with duality, Woolf [Woo08] defines groups W c

∗ (P ), called
constructible Witt groups of P because the underlying triangulated categories are
the derived categories of sheaf complexes that are constructible with respect to the
simplicial stratifications of admissible triangulations of P . (The duality is given
by Verdier duality.) Elements of W c

n(P ) are represented by symmetric self-dual
isomorphisms d : S• → (DS•)[n]. The periodicity isomorphism W c

n(P ) ∼= W c
n+4(P )

is induced by shifting such a d twice:

d[2] : S•[2] −→ (DS•)[n][2] = (DS•)[−2][n + 4] = D(S•[2])[n+4].

(Shifting only once does not yield a correct symmetric isomorphism with respect to
the duality fixed for W c

∗ (P ).) Woolf shows that for commutative regular Noetherian
rings R of finite Krull dimension in which 2 is invertible, for example R = Q, the
assignment P 7→ W c

∗ (P ) is a generalized homology theory on compact polyhedra
and continuous maps. Let K be a simplicial complex triangulating P . Relating
both Ranicki’s (R, K)-modules on the one hand and constructible sheaves on the
other hand to combinatorial sheaves on K, Woolf obtains a natural transformation

L•(R)∗(K) −→ W c
∗ (|K|)

(|K| = P ), which he shows to be an isomorphism when every finitely generated
R-module can be resolved by a finite complex of finitely generated free R-modules.
Again, this applies to R = Q. Given a map f : Xn → P from a compact oriented
Witt space Xn into P , the pushforward Rf∗(d) of the symmetric self-duality iso-
morphism d : IC•

m̄(X) ∼= DIC•
m̄(X)[n] defines an element [Rf∗(d)] ∈ W c

n(P ). This
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induces a natural map

ΩWitt
n (P ) −→ W c

n(P ),

which is an isomorphism when n > dimP . Given any n ≥ 0, we can iterate the
4-periodicity until n + 4∗ > dimP and obtain

W c
n(P ) ∼= W c

n+4(P ) ∼= · · · ∼= W c
n+4k(P ) ∼= ΩWitt

n+4k(P ),

where n+4k > dimP . Thus, as Woolf points out, the Witt class of any symmetric
self-dual sheaf on P is given, after a suitable even number of shifts, by the push-
forward of an intersection chain sheaf on some Witt space. This viewpoint also
allows for the interpretation of L-classes as homology operations W c

∗ (−) → H∗(−)
or ΩWitt

∗ (−) → H∗(−). Other characteristic classes arising in complex algebraic ge-
ometry can be interpreted through natural transformations as well. MacPherson’s
Chern class of a variety can be defined as the image cM

∗ (1X) of the function 1X

under a natural transformation cM
∗ : F (−) → H∗(−), where F (X) is the abelian

group of constructible functions on X . The Baum-Fulton-MacPherson Todd class
can be defined as the image tdBMF

∗ (OX) of OX under a natural transformation

tdBMF
∗ : G0(−) → H∗(−)⊗Q, where G0(X) is the Grothendieck group of coherent

sheaves on X . In [BSY], Brasselet, Schürmann and Yokura realized two important
facts: First, there exists a source K0(VAR/X) which possesses natural transfor-
mations to all three domains of the characteristic class transformations mentioned.
That is, there exist natural transformations

(4) K0(VAR/−)

xxrrrrrrrrrr

�� &&MMMMMMMMMMM

F (−) G0(−) ΩY(−),

where ΩY(X) is the abelian group of Youssin’s bordism classes of self-dual con-
structible sheaf complexes on X . That source K0(VAR/X) is the free abelian
group generated by algebraic morphisms f : V → X modulo the relation

[V
f

−→ X ] = [V − Z
f |
−→ X ] + [Z

f |
−→ X ]

for every closed subvariety Z ⊂ V . Second, there exists a unique natural transfor-
mation, the motivic characteristic class transformation,

Ty∗ : K0(VAR/X) −→ H∗(X) ⊗ Q[y]

such that Ty∗[idX ] = Ty(TX)∩[X ] for nonsingular X , where Ty(TX) is Hirzebruch’s
generalized Todd class of the tangent bundle TX of X . Characteristic classes
for singular varieties are of course obtained by taking Ty∗[idX ]. Under the above
three transformations (4), [idX ] is mapped to 1X , [OX ], and [QX [2 dimX ]] (when
X is nonsingular), respectively. Following these three transformations with cM

∗ ,

tdBMF
∗ , and the L-class transformation ΩY(−) → H∗(−) ⊗ Q, one obtains Ty∗ for

y = −1, 0, 1, respectively. This, then, is an attractive unification of Chern-, Todd-
and L-classes of singular complex algebraic varieties, see also Yokura’s paper in this
Proceedings Volume, as well as [SY07].

The natural transformation

ΩWitt
∗ (−) ⊗ Z[ 12 ] −→ Sig∗(−) ⊗ Z[ 12 ],
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given by covering a Witt space X with the middle perversity intersection chain
sheaf S• = IC•

m̄(X), which is an object of SD(X), is an isomorphism because on
a point, it is given by the signature

ΩWitt
4k (pt) ⊗ Z[ 12 ] ∼= L4k(Q) ⊗ Z[ 12 ] ∼= Z[ 12 ] ∼= Sig4k(pt) ⊗ Z[ 12 ]

(the infinitely generated torsion of L4k(Q) is killed by inverting 2), and ΩWitt
j (pt) =

0 = Sigj(pt) for j not divisible by 4. Inverting this isomorphism and composing with
Siegel’s isomorphism (2), we obtain a natural isomorphism of homology theories

D : Sig∗(−) ⊗ Z[ 12 ]
∼=
−→ ko∗(−) ⊗ Z[ 12 ].

Let Xn be a closed pseudomanifold, not necessarily a Witt space, but still sup-
porting self-duality, i.e. SD(X) is not empty. Choose a sheaf S• ∈ SD(X).
Then the pair (X,S•), together with the identity map X → X, defines an ele-
ment [X ]Sig ∈ Sign(X).

Definition 3. The signature homology orientation class of an n-dimensional closed
pseudomanifold X with SD(X) 6= ∅, but not necessarily a Witt space, is the
element [X ]Sig ∈ Sign(X).

Proposition 1. The orientation class [X ]Sig is well-defined, that is, independent

of the choice of sheaf S• ∈ SD(X).

Proof. Let T• ∈ SD(X) be another choice. In [Ban06b], a bordism (Y,U•),
U• ∈ SD(intY ), is constructed between (X,S•) and (X,T•). Topologically, Y
is a cylinder Y ∼= X × I, but equipped with a nonstandard stratification, of course.
The identity map X → X thus extends over this bordism by taking Y → X,
(x, t) 7→ x.

Definition 4. The Sullivan orientation of an n-dimensional closed pseudomanifold
X with SD(X) 6= ∅, but not necessarily a Witt space, is defined to be

∆(X) = D([X ]Sig ⊗ 1) ∈ ko∗(X) ⊗ Z[ 12 ].

Let us compare signature homology and L•-homology away from 2, at 2, and
rationally, following [Epp07] and drawing on work of Taylor and Williams, [TW79].
For a spectrum S, let S(odd) denote its localization at odd primes. We have observed
above that

MSIG(2) ≃
∏

j≥0

K(Z(2), 4j)

and, according to [Epp07] and [Min04],

MSIG(odd) ≃ bo(odd).

Rationally, we have the decomposition

MSIG⊗Q ≃
∏

j≥0

K(Q, 4j).

Thus MSIG fits into a localization pullback square

MSIG
loc(odd) //

loc(2)
��

bo(odd)

��∏
K(Z(2), 4j) λ // ∏K(Q, 4j).
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The symmetric L-spectrum L• is an MSO module spectrum, so it is 2-integrally a
product of Eilenberg-MacLane spectra,

L•
(2) ≃

∏

j≥0

K(Z(2), 4j) × K(Z/2, 4j + 1).

Comparing this to MSIG(2), we thus see the de Rham invariants coming in. Away
from 2, L• coincides with bo,

L•
(odd) ≃ bo(odd),

as does MSIG. Rationally, L• is again

L• ⊗ Q ≃
∏

j≥0

K(Q, 4j).

Thus L• fits into a localization pullback square

L•
loc(odd) //

loc(2)
��

bo(odd)

��∏
K(Z(2), 4j) × K(Z/2, 4j + 1)

λ′

// ∏ K(Q, 4j).

The map λ factors as

∏

j≥0

K(Z(2), 4j)
ι
→֒

∏

j≥0

K(Z(2), 4j) × K(Z/2, 4j + 1)
λ′

−→
∏

j≥0

K(Q, 4j),

where ι is the obvious inclusion, not touching the 2-torsion nontrivially. Hence, by
the universal property of a pullback, we get a map µ from signature homology to
L•-homology,

MSIG

loc(2)

��

µ

**

loc(odd)

++
L•

loc(odd)

//

loc(2)

��

bo(odd)

��∏
K(Z(2), 4j) �

� ι //

λ

44

∏
K(Z(2), 4j) × K(Z/2, 4j + 1) λ′

// ∏K(Q, 4j).

On the other hand, λ′ factors as

∏

j≥0

K(Z(2), 4j) × K(Z/2, 4j + 1)
proj
−→

∏

j≥0

K(Z(2), 4j)
λ

−→
∏

j≥0

K(Q, 4j),

where proj is the obvious projection. Again using the universal property of a
pullback, we obtain a map ν : L• → MSIG. The map µ is a homotopy splitting
for ν, νµ ≃ id, since proj ◦ι = id. It follows that via µ, signature homology is a
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direct summand in symmetric L•-homology. We should like to point out that the
diagram

MSO //

��

MSIG

µ
��

MSTOP // L•

does not commute. This is essentially due to the fact that the de Rham invariant
is lost in Sig∗, but is still captured in L•

∗. In more detail, consider the induced
diagram on π5,

ΩSO
5 (pt) //

��

Sig5(pt) = 0

µ

��
ΩSTOP

5 (pt) // L•
5(pt).

The clockwise composition in the diagram is zero, but the counterclockwise com-
position is not. Indeed, let M5 be the Dold manifold P (1, 2) = (S1×CP2)/(x, z) ∼
(−x, z). Its cohomology ring with Z/2-coefficients is the same as the one of the un-
twisted product, that is, the truncated polynomial ring Z/2[c, d]/(c2 = 0, d3 = 0),
where c has degree one and d has degree two. The total Stiefel-Whitney class of
M5 is

w(M) = (1 + c)(1 + c + d)3,

so that the de Rham invariant dR(M) is given by dR(M) = w2w3(M) = cd2,
which is the generator. We also see that w1(M) = 0, so that M is orientable. The
counterclockwise composition maps the bordism class of a smooth 5-manifold to its
de Rham invariant in L•

5(pt) = L5(Ze) = Z/2. The Dold manifold M5 represents
the generator [M5] ∈ ΩSO

5 (pt) = Z/2. Thus the counterclockwise composition is
the identity map Z/2 → Z/2 and the diagram does not commute. Mapping M5

to a point and using the naturality of the assembly map induces a commutative
diagram

Sig5(M)
µ(M) //

��

L•
5(M)

A //

��

L5(Zπ1M)

ǫ

��
0 = Sig5(pt)

µ(pt) // L•
5(pt)

∼=

A
// L5(Ze) = Z/2,

which shows that the signature homology orientation class of M , [M ]Sig ∈ Sig5(M)
does not hit the L•-orientation of M , [M ]L ∈ L•

5(M) under µ, for otherwise

0 = ǫAµ[M ]Sig = ǫA[M ]L = ǫσ∗(M) = dR(M) 6= 0.

Thus one may take the viewpoint that it is perhaps not prudent to call µ[X ]Sig

an “L•-orientation” of a pseudomanifold X with SD(X) not empty. Nor might
even its image under assembly deserve the title “symmetric signature” of X . On
the other hand, one may wish to attach higher priority to the bordism invariance
(in the singular world) of a concept such as the symmetric signature than to its
compatibility with manifold invariants and nonsingular bordism invariance, and
therefore deem such terminology justified.

We conclude with a brief remark on integral Novikov problems. Let π be a
discrete group and let K(π, 1) be the associated Eilenberg-MacLane space. The
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composition of the split inclusion Sign(K(π, 1)) →֒ L•
n(K(π, 1)) with the assembly

map
A : L•

n(K(π, 1)) → Ln(Zπ)

yields what one may call a “signature homology assembly” map

ASig : Sign(K(π, 1)) → Ln(Zπ),

which may be helpful in studying an integral refinement of the Novikov conjecture,
as suggested by Matthias Kreck: When is the integral orientation class

α∗[M ]Sig ∈ Sign(K(π, 1))

homotopy invariant? Here Mn is a closed smooth oriented manifold with funda-
mental group π = π1(M); the map α : M → K(π, 1) classifies the universal cover of
M . Note that when tensored with the rationals, one obtains the classical Novikov
conjecture because rationally the signature homology orientation class [M ]Sig is
the L-class L∗(M). One usually refers to integral refinements such as this one as
“Novikov problems” because there are groups π for which they are known to be
false.
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