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ABSTRACT. We propose a new notion of positivity for topological field theories (TFTs),
based on S. Eilenberg’s concept of completeness for semirings. We show that a com-
plete ground semiring, a system of fields on manifolds and a system of action functionals
on these fields determine a positive TFT. The main feature of such a theory is a semiring-
valued topologically invariant state sum that satisfies a gluing formula. The abstract frame-
work has been carefully designed to cover a wide range of phenomena. We indicate how
to employ the framework presented here in constructing a new differential topological in-
variant that detects exotic smooth structures on spheres.
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1. INTRODUCTION

We propose a mathematically rigorous new method for constructing topological field
theories (TFT), which allows for action functionals that take values in any monoidal cat-
egory, not just real (or complex) values. The second novelty of our approach is that state
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sums (path integrals) are based on an algebraic notion of completeness in semirings, in-
troduced by S. Eilenberg in his work [Eil74] on formal languages and automata, informed
by ideas of J. H. Conway [Con71]. This enables us to bypass the usual measure theo-
retic problems associated with traditional path integrals over spaces of fields. On the other
hand, the oscillatory nature of the classical path integral, and consequently, associated as-
ymptotic expansions via the method of stationary phase, are not necessarily retained in our
approach. Instead, a principle of topological permanence tends to hold: Once the action
functional detects a topological feature, this feature will remain present in the state sum
invariant. Roughly, a semiring is a ring that has only “positive” elements, that is, has no
negatives (and is thus sometimes also called a “rig”). A key insight of Eilenberg was that
the absence of negatives allows for the notion of completeness, reviewed in Section 2 of
the present paper. As our state sums will have values in semirings, we call the resulting
theories positive TFTs. In this context one may also recall that every additively idempo-
tent semiring has a canonical partial order, and in this order every element is nonnegative.
In their work [BD95], J. C. Baez and J. Dolan remark on page 6100: “In Physics, linear
algebra is usually done over R or C, but for higher-dimensional linear algebra, it is use-
ful to start more generally with any commutative rig” and “one reason we insist on such
generality is to begin grappling with the remarkable fact that many of the important vector
spaces in physics are really defined over the natural numbers, meaning that they contain a
canonical lattice with a basis of ‘positive’ elements. Examples include the weight spaces
of semisimple Lie algebras, fusion algebras in conformal field theory, and thanks to the
work of Kashiwara and Lusztig on canonical bases, the finite-dimensional representations
of quantum groups.” Thus this emerging theme of positivity and semirings in physics is
also reflected in the present paper.

A positive TFT possesses the following features, which may be taken as axioms. These
axioms are close to Atiyah’s axioms [Ati88], but differ in some respects, as we will discuss
shortly. As far as the algebraic environment is concerned, instead of working with vector
spaces over a field such as the real or complex numbers, a positive TFT is defined over a
pair (Qc,Qm) of semirings, which have the same underlying additive monoid Q. Further-
more, a functional tensor product E⊗̂F of two function semimodules E,F is used, which
in the idempotent regime is due to G. L. Litvinov, V. P. Maslov and G. B. Shpiz [LMS99].
It comes with a canonical map E⊗F → E⊗̂F (where ⊗ is the algebraic tensor product),
which is generally neither surjective nor even injective (contrary to the analogous map over
fields such as the complex numbers). It can be conceptualized as a completion of the image
of the map which sends an algebraic tensor product f ⊗g to the function (x,y) 7→ f (x)g(y).
This completion is necessary because Example 6.9 shows that state sums need not lie in the
image of the algebraic tensor product. The two multiplications on Q induce two generally
different tensor products f ⊗̂cg and f ⊗̂mg of two Q-valued functions f ,g.

An (n+1)-dimensional positive TFT Z assigns to every closed topological n-manifold
M a semialgebra Z(M) over both Qc and Qm, called the state module of M, and to every
(n+1)-dimensional topological bordism (W,M,N) with boundary ∂W = MtN (where M
is the incoming and N the outgoing boundary) an element

ZW ∈ Z(∂W ),

called the state sum of W . We adopt the viewpoint that the latter is the primary invariant,
while the state module itself is of lesser importance. This assignment satisfies the following
properties:
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(1) If M and N are closed n-manifolds and MtN their (ordered) disjoint union, then
there is an isomorphism

Z(MtN)∼= Z(M)⊗̂Z(N)

of Qc-semialgebras and of Qm-semialgebras.
(2) The state module Z(−) is a covariant functor on the category of closed topological

n-manifolds and homeomorphisms. In particular, the group Homeo(M) of self-
homeomorphisms M→M acts on Z(M).

(3) Pseudo-Isotopy Invariance: Pseudo-isotopic homeomorphisms φ ,ψ : M→ N in-
duce equal isomorphisms φ∗ = ψ∗ : Z(M)→ Z(N). In particular, the action of
Homeo(M) on Z(M) factors through the mapping class group.

(4) The state sum ZW is a topological invariant: If φ : W →W ′ is a homeomorphism
and φ∂ its restriction to the boundary, then φ∂∗(ZW ) = ZW ′ , where φ∂∗ : Z(∂W )→
Z(∂W ′) denotes the isomorphism induced by φ∂ .

(5) The state sum ZWtW ′ ∈ Z(∂W t∂W ′) of a disjoint union of bordisms W and W ′ is
the tensor product

ZWtW ′ = ZW ⊗̂mZW ′ ∈ Z(∂W )⊗̂Z(∂W ′)∼= Z(∂W t∂W ′).

(6) Gluing: For n-manifolds M,N,P, and vectors z ∈ Z(M)⊗̂Z(N), z′ ∈ Z(N)⊗̂Z(P),
there is a contraction product

〈z,z′〉 ∈ Z(M)⊗̂Z(P),

which involves the product ⊗̂c. Let W ′ be a bordism from M to N and let W ′′ be
a bordism from N to P. Let W =W ′∪N W ′′ be the bordism from M to P obtained
by gluing W ′ and W ′′ along N. Then the state sum of W can be calculated as the
contraction product

ZW = 〈ZW ′ ,ZW ′′〉 ∈ Z(M)⊗̂Z(P)∼= Z(MtP).

(7) The state modules Z(M) have the additional structure of a noncommutative Frobe-
nius semialgebra over Qm and over Qc. This means that there is a counit functional
εM : Z(M)→Q, which is a Q-bisemimodule homomorphism such that the bilinear
form

Z(M)×Z(M)→ Q, (z,z′) 7→ εM(zz′)
is nondegenerate. Maps induced on state modules by homeomorphisms respect
the Frobenius counit.

(8) For every closed n-manifold, there is an element A(M) ∈ Z(M), the coboundary
aggregate, which is topologically invariant: If φ : M→ N is a homeomorphism,
then φ∗A(M) = A(N).

The coboundary aggregate of an n-manifold has no counterpart in classical TFTs and
is a somewhat surprising new kind of topological invariant. In a classical unitary theory,
the Z(M) have natural nondegenerate Hermitian structures. What may substitute to some
extent for this in positive TFTs is the Frobenius counit, constructed in Section 7. The
counit is available in every dimension n and has nothing to do with pairs of pants. Atiyah’s
axioms imply that state modules are always finite dimensional, but on p. 181 of [Ati88], he
indicates that allowing state modules to be infinite dimensional may be necessary in inter-
esting examples of TFTs. The state modules of a positive TFT are indeed usually infinitely
generated, though finitely generated modules can result from using very small systems
of fields on manifolds. Such systems do in fact arise in practice, for example in TFTs
with a view towards finite group theory, such as the Freed-Quinn theory [QF93], [Qui95],
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[Fre92]. Frobenius algebras, usually assumed to be finite dimensional over a field, have
been generalized by Jans [Jan59] to infinite dimensions. Atiyah’s classical axioms also
demand that the state sum ZM×I of a cylinder W = M× I be the identity when viewed
as an endomorphism. The map ZM×I on Z(M) should be the “imaginary time” evolution
operator e−tH (where t is the length of the interval I), so Atiyah’s axiom means that the
Hamiltonian H = 0 and there is no dynamics along a cylinder. We do not require this for
positive TFTs and will allow interesting propagation along the cylinder. In particular, we
do not phrase positive TFTs as monoidal functors on bordism categories, as this would im-
ply that the cylinder, which is an identity morphism in the bordism category, would have to
be mapped to an identity morphism. For various future applications, this is not desirable.
Since ZM×I need not be the identity, it can also generally not be deduced in a positive TFT
that ZM×S1 = dimZ(M), an identity that would not make sense in the first place, as Z(M)
need not have finite dimension. The present paper does not make substantial use of the
bordism category. Nor do we (yet) consider n-categories or manifolds with corners in this
paper. Our manifolds will usually be topological, but we will indicate the modifications
necessary to deal with smooth manifolds. Only Section 10 is specifically concerned with
smooth manifolds.

The main result of the present paper is that any system of fields F on manifolds together
with a system of action functionals T on these fields gives rise in a natural way to a positive
topological field theory Z. Our framework is not limited to particular dimensions and will
produce a TFT in any dimension. Systems of fields are axiomatized in Definition 5.1. As
in [Kir10] and [Fre92], they are to satisfy the usual properties with respect to restrictions
and action of homeomorphisms. The key properties are that they must decompose on dis-
joint unions as a cartesian product with factors associated to the components and it must
be possible to glue two fields along a common boundary component on which they agree.
Every field on the glued space must be of this form. Rather than axiomatizing actions on
fields (which would lead to additive axioms), we prefer to axiomatize the exponential of
an action directly, since it is the exponential that enters into the Feynman path integral.
Also, this yields multiplicative axioms, which is closer to the nature of TFTs, as TFTs
are multiplicative, rather than additive (the former corresponding to the quantum nature
of TFTs and the latter corresponding to homology theories). Let C be a (strict, small)
monoidal category. We axiomatize systems T of C-valued action exponentials in Defini-
tion 5.8. Given a system F of fields, T consists of functions TW that associate to every field
on an (n+1)-dimensional bordism W a morphism in C. For a disjoint union, one requires
TWtW ′( f ) = TW ( f |W )⊗TW ′( f |W ′) for all fields f ∈ F(W tW ′). If W =W ′∪N W ′′ is ob-
tained by gluing a bordism W ′ with outgoing boundary N to a bordism W ′′ with incoming
boundary N, then TW ( f ) = TW ′′( f |W ′′) ◦TW ′( f |W ′) for all fields f ∈ F(W ). Also, T be-
haves as expected under the action of homeomorphisms on fields. These axioms express
that the action ought to be local to a certain extent.

In Section 4, motivated by the group algebra L1(G) in harmonic analysis and by the cat-
egorical algebra R[C] over a ring R, we show that C, together with an arbitrary choice of an
Eilenberg-complete ground semiring S, determines a pair (Qc,Qm) of complete semirings
with the same underlying additive monoid Q =QS(C), using certain convolution formulae.
The composition law ◦ in C determines the multiplication · for Qc, while the tensor functor
⊗ in C (i.e. the monoidal structure) determines the multiplication × for Qm.
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We then construct a positive TFT Z for any given system F of fields and C-valued
action exponentials T in Section 6. For a closed manifold M, the state vectors are Q-
valued functions on the set of fields F(M) on M, solving a certain constraint equation.
Fields on closed n-manifolds act as boundary conditions for state sums. The state sum of
a bordism W is the vector given on a boundary field f ∈ F(∂W ) by

ZW ( f ) = ∑
F∈F(W, f )

TW (F) ∈ Q,

where we sum over all fields F on W which restrict to f on the boundary. The terms TW (F)
correspond to the exponential of the action evaluated on F and are characteristic functions
determined by TW . The key technical point is that this sum uses the infinite summation law
on a complete semiring and thus yields a well-defined element of Q, despite the fact that
the sum may well involve uncountably many nonzero terms. It is precisely at this point,
where Eilenberg’s ideas are brought to bear and where using semirings that are not rings
is crucial. The formalism developed here thus has strong ties to lattice theory as well as to
areas of logic and computer science such as automata theory and formal languages. It may
therefore be viewed as a contribution to implementing the program envisioned by Baez and
Stay in [BS11].

Theorem 6.4 establishes the topological invariance of the state sum. Pseudo-isotopy
invariance of induced maps is provided by Theorem 6.7. The state sum of a disjoint union
is calculated in Theorem 6.8, while the gluing formula is the content of Theorem 6.10.
In Section 8, we show how matrix-valued positive TFTs arise from monoidal functors into
linear categories. An important technical role is played by the Schauenburg tensor product.
Section 9 carries out a study of cylindrical state sums. We observe that such a state sum is
idempotent as an immediate consequence of the gluing theorem. Given closed manifolds
M and N, we use the state sum of the cylinder on M (alternatively N) to construct a pro-
jection operator πM,N : Z(MtN)→ Z(MtN), which acts as the identity on all state sums
of bordisms W from M to N. There is a formal analogy to integral transforms given by an
integral kernel: The kernel corresponds to the state sum of the cylinder. Furthermore, we
analyze to what extent the projection of a tensor product of states breaks up into a tensor
product of projections of these states.

In Section 10, we sketch our main application of the framework of positive topolog-
ical field theories presented here. We indicate how to construct a concrete, new high-
dimensional TFT defined on smooth manifolds, which detects exotic smooth structures on
spheres. The details of this construction are involved and will appear elsewhere.

The final Section 11 gives additional concrete examples and application patterns. In
Section 11.1, we derive Pólya’s theory of counting, using positive TFT methods. More-
over, we construct examples based on the signature of manifolds and bundle spaces, and
conclude with some remarks on multiplicative arithmetic functions arising in number the-
ory.

A remark on notation: Hoping that no confusion will ensue as a consequence, we use
the letter I for unit objects of monoidal categories and sometimes also for the unit interval
[0,1].

Acknowledgements: We would like to thank two anonymous referees for their valuable
remarks on a preliminary version of this article, leading to several improvements.
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2. MONOIDS, SEMIRINGS, AND SEMIMODULES

We recall some foundational material on monoids, semirings and semimodules over
semirings. Such structures seem to have appeared first in Dedekind’s study of ideals in
a commutative ring: one can add and multiply two ideals, but one cannot subtract them.
The theory has been further developed by H. S. Vandiver, S. Eilenberg, A. Salomaa, J.
H. Conway, J. S. Golan and many others. Roughly, a semiring is a ring without general
additive inverses. More precisely, a semiring is a set S together with two binary operations
+ and · and two elements 0,1 ∈ S such that (S,+,0) is a commutative monoid, (S, ·,1) is a
monoid, the multiplication · distributes over the addition from either side, and 0 is absorb-
ing, i.e. 0 · s = 0 = s ·0 for every s ∈ S. If the monoid (S, ·,1) is commutative, the semiring
S is called commutative. The addition on the Boolean monoid (B,+,0), B= {0,1}, is the
unique operation such that 0 is the neutral element and 1+ 1 = 1. The Boolean monoid
becomes a commutative semiring by defining 1 ·1 = 1. (Actually, the multiplication on B
is completely forced by the axioms.) A morphism of semirings sends 0 to 0, 1 to 1 and
respects addition and multiplication.

Let S be a semiring. A left S-semimodule is a commutative monoid (M,+,0M) together
with a scalar multiplication S×M→M, (s,m) 7→ sm, such that for all r,s∈ S, m,n∈M, we
have (rs)m= r(sm), r(m+n)= rm+rn, (r+s)m= rm+sm, 1m=m, and r0M = 0M = 0m.
Right semimodules are defined similarly using scalar multiplications M×S→M, (m,s) 7→
ms. Given semirings R and S, an R-S-bisemimodule is a commutative monoid (M,+,0),
which is both a left R-semimodule and a right S-semimodule such that (rm)s = r(ms) for
all r ∈ R, s ∈ S, m ∈M. (Thus the notation rms is unambiguous.) An R-S-bisemimodule
homomorphism is a homomorphism f : M→ N of the underlying additive monoids such
that f (rms) = r f (m)s for all r,m,s. If R = S, we shall also speak of an S-bisemimodule.
Every semimodule M over a commutative semiring S can and will be assumed to be both
a left and right semimodule with sm = ms. In fact, M is then a bisemimodule, as for all
r,s ∈ S, m ∈M,

(rm)s = s(rm) = (sr)m = (rs)m = r(sm) = r(ms).

In this paper, we will often refer to elements of a semimodule as “vectors”.
Let S be any semiring, not necessarily commutative. Regarding the tensor product of a

right S-semimodule M and a left S-semimodule N, one has to exercise caution because even
when S is commutative, two nonisomorphic tensor products, both called the tensor product
of M and N and both written M⊗S N, exist in the literature. A map φ : M×N → A into
a commutative additive monoid A is called middle S-linear, if it is biadditive, φ(ms,n) =
φ(m,sn) for all m,s,n, and φ(0,0) = 0. For us, an (algebraic) tensor product of M and N
is a commutative monoid M⊗S N (written additively) satisfying the following (standard)
universal property: M⊗S N comes equipped with a middle S-linear map M×N→M⊗S N
such that given any commutative monoid A and middle S-linear map φ : M×N→ A, there
exists a unique monoid homomorphism ψ : M⊗S N→ A such that

(1) M×N
φ

//

��

A

M⊗S N
ψ

<<

commutes. The existence of such a tensor product is shown for example in [Kat97],
[Kat04]. To construct it, take M⊗S N to be the quotient monoid F/ ∼, where F is the
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free commutative monoid generated by the set M×N and ∼ is the congruence relation on
F generated by all pairs of the form

((m+m′,n),(m,n)+(m′,n)), ((m,n+n′),(m,n)+(m,n′)), ((ms,n),(m,sn)),

m,m′ ∈M, n,n′ ∈N, s∈ S. If M is an R-S-bisemimodule and N an S-T -bisemimodule, then
the monoid M⊗S N as constructed above becomes an R-T -bisemimodule by declaring

r · (m⊗n) = (rm)⊗n, (m⊗n) · t = m⊗ (nt).

If in diagram (1), the monoid A is an R-T -semimodule and M×N→ A satisfies

φ(rm,n) = rφ(m,n), φ(m,nt) = φ(m,n)t

(in addition to being middle S-linear; let us call such a map RST -linear), then the uniquely
determined monoid map ψ : M⊗S N→ A is an R-T -bisemimodule homomorphism, for

ψ(r(m⊗n)) = ψ((rm)⊗n) = φ(rm,n) = rφ(m,n) = rψ(m⊗n)

and similarly for the right action of T . If R = S = T and S is commutative, the above means
that the commutative monoid M⊗S N is an S-semimodule with s(m⊗ n) = (sm)⊗ n =
m⊗ (sn) and the diagram (1) takes place in the category of S-semimodules.

The tensor product of [Tak82] and [Gol99] — let us here write it as ⊗′S — satisfies a
different universal property. A semimodule C is called cancellative if a+ c = b+ c im-
plies a = b for all a,b,c ∈ C. A monoid (M,+,0) is idempotent if m+m = m for all
elements m ∈M. For example, the Boolean monoid B is idempotent. A nontrivial idem-
potent semimodule is never cancellative. Given an arbitrary right S-semimodule M and
an arbitrary left S-semimodule N, the product M⊗′S N is always cancellative. If one of
the two semimodules, say N, is idempotent, then M⊗′S N is idempotent as well, since
m⊗′ n+m⊗′ n = m⊗′ (n+n) = m⊗′ n. Thus if one of M,N is idempotent, then M⊗′S N is
trivial, being both idempotent and cancellative. Since in our applications, we desire non-
trivial tensor products of idempotent semimodules, the product ⊗′S will neither be defined
nor used in this paper.

The key feature of the constituent algebraic structures of state modules that will allow
us to form well-defined state sums is their completeness. Thus let us recall the notion of
a complete monoid, semiring, etc. as introduced by S. Eilenberg on p. 125 of [Eil74]; see
also [Kar92], [Kro88]. A complete monoid is a commutative monoid (M,+,0) together
with an assignment ∑, called a summation law, which assigns to every family (mi)i∈I of
elements mi ∈M, indexed by an arbitrary set I, an element ∑i∈I mi of M (called the sum of
the mi), such that

∑
i∈∅

mi = 0, ∑
i∈{1}

mi = m1, ∑
i∈{1,2}

mi = m1 +m2,

and for every partition I =
⋃

j∈J I j,

∑
j∈J

(
∑
i∈I j

mi

)
= ∑

i∈I
mi.

Note that these axioms imply that if σ : J→ I is a bijection, then

∑
i∈I

mi = ∑
j∈J

∑
i∈{σ( j)}

mi = ∑
j∈J

mσ( j).
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Also, since a cartesian product I× J comes with two canonical partitions, namely I× J =⋃
i∈I{i}× J =

⋃
j∈J I×{ j}, one has

(2) ∑
(i, j)∈I×J

mi j = ∑
i∈I

∑
j∈J

mi j = ∑
j∈J

∑
i∈I

mi j

for any family (mi j)(i, j)∈I×J . This is the analog of Fubini’s theorem in the theory of in-
tegration. Given (M,+,0), the summation law ∑, if it exists, is not in general uniquely
determined by the addition, as examples in [Gol85] show. For a semiring S to be com-
plete one requires that (S,+,0,∑) be a complete monoid and adds the infinite distributivity
requirements

∑
i∈I

ssi = s
(
∑
i∈I

si
)
, ∑

i∈I
sis =

(
∑
i∈I

si
)
s.

Note that in a complete semiring, the sum over any family of zeros must be zero, as ∑i∈I 0=
∑i(0 · 0) = 0 ·∑i 0 = 0. Complete left, right and bisemimodules are defined analogously.
If (si j)(i, j)∈I×J is a family in a complete semiring of the form si j = sit j, then, using (2)
together with the infinite distributivity requirements,

∑
(i, j)∈I×J

sit j = ∑
i∈I

∑
j∈J

sit j =
(
∑
i∈I

si
)(

∑
j∈J

t j
)
.

A semiring is zerosumfree, if s+ t = 0 implies s = t = 0 for all s, t in the semiring. The so-
called “Eilenberg-swindle” shows that every complete semiring is zerosumfree: If s+t = 0,
then

0 = 0+0+ · · ·= (s+ t)+(s+ t)+ · · ·= s+(t + s)+(t + s)+ · · ·
= s+(s+ t)+(s+ t)+ · · ·= s+0 = s.

In a ring we have additive inverses, which means that a nontrivial ring is never zerosumfree
and so cannot be endowed with an infinite summation law that makes it complete. This
shows that giving up additive inverses, thereby passing to semirings that are not rings, is
an essential prerequisite for completeness and in turn essential for the construction of our
topological field theories.

Examples 2.1. (1) The Boolean semiring B is complete with respect to the summa-
tion law

∑
i∈I

bi =

{
0, if bi = 0 for all i,
1, otherwise.

(2) Let N∞ = N∪{∞}, where N = {0,1,2, . . .} denotes the natural numbers. Then
(N∞,+, ·,0,1) is a semiring by extending addition and multiplication on N via the
rules

n+∞ = ∞+n = ∞+∞ = ∞, n ∈ N,
n ·∞ = ∞ ·n = ∞ for n ∈ N, n > 0,

∞ ·∞ = ∞, 0 ·∞ = ∞ ·0 = 0.

It is complete with ∑i∈I ni = sup{∑i∈J ni | J ⊂ I, J finite}.
(3) Let R+ denote the nonnegative real numbers and R∞

+ =R+∪{∞}. Extending addi-
tion and multiplication as in the case of natural numbers, one obtains the complete
semiring (R∞

+,+, ·,0,1).
(4) The tropical semirings (N∞,min,+,∞,0) and (R∞

+,min,+,∞,0), that is, the sum is
the minimum of two numbers and the product is the ordinary addition of numbers,
are complete.
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(5) The arctic semirings (N,max,+,−∞,0) and (R+,max,+,−∞,0) are complete,
where N= N∪{−∞,∞} and R+ = R+∪{−∞,∞}.

(6) Let Σ be a finite alphabet and let Σ∗ be the free monoid generated by Σ. Its neutral
element is the empty word ε . A subset of Σ∗ is called a formal language over Σ.
Define the product of two formal languages L,L′ ⊂ Σ∗ by

L ·L′ = {ww′ | w ∈ L, w′ ∈ L′}.

Then (2Σ∗ ,∪, ·,∅,{ε}) is a semiring, the semiring of formal languages over Σ. It
is complete.

(7) For a set A, the power set 2A×A is the set of binary relations R over A. Define the
product of two relations R,R′ over A by

R ·R′ = {(a,a′) | ∃a0 ∈ A : (a,a0) ∈ R, (a0,a′) ∈ R′}.
Let ∆ = {(a,a) | a ∈ A} be the diagonal. Then (2A×A,∪, ·,∅,∆) is a semiring, the
semiring of binary relations over A. It is complete.

(8) Any bounded distributive lattice defines a semiring (L,∨,∧,0,1). It is complete if
L is a join-continuous complete lattice, that is, every subset of L has a supremum
in L and a∧

∨
i∈I ai =

∨
i∈I(a∧ai) for any subset {ai | i ∈ I} ⊂ L. For example, the

ideals of a ring form a complete lattice.
(9) If S is a complete semiring, then the semiring S[[q]] of formal power series over S

becomes a complete semiring by transferring the summation law on S pointwise
to S[[q]], see [Kar92].

(10) Completeness of S also implies the completeness of the semirings of square ma-
trices over S.

(11) If (Mi)i∈I is a family of complete S-semimodules, then their product ∏i∈I Mi is a
complete S-semimodule.

(12) A semiring S is additively idempotent if s+ s = s for all s ∈ S. Every additively
idempotent semiring can be embedded in a complete semiring, [GW96].

Let R,S be any semirings, not necessarily commutative. An (associative, unital) R-S-
semialgebra is a semiring A which is in addition an R-S-bisemimodule such that for all
a,b ∈ A, r ∈ R, s ∈ S, one has r(ab) = (ra)b, (ab)s = a(bs). (Note that we refrain from us-
ing the term “R-S-bisemialgebra” for such a structure, since “bialgebra” refers to something
completely different, namely a structure with both multiplication and comultiplication.) If
R = S, we shall also use the term two-sided S-semialgebra for an S-S-semialgebra. If S is
commutative, then a two-sided S-semialgebra A with sa = as is simply a semialgebra over
S in the usual sense, as

(sa)b = s(ab) = (ab)s = a(bs) = a(sb).

A morphism of R-S-semialgebras is a morphism of semirings which is in addition a R-S-
bisemimodule homomorphism.

3. FUNCTION SEMIALGEBRAS

Let S be a semiring. Given a set A, let FunS(A) = { f : A→ S} be the set of all S-valued
functions on A. If S is understood, we will also write Fun(A) for FunS(A).

Proposition 3.1. Using pointwise addition and multiplication, FunS(A) inherits the struc-
ture of a two-sided S-semialgebra from the operations of S. If S is complete (as a semiring),
then FunS(A) is complete as a semiring and as an S-bisemimodule. If S is commutative,
then FunS(A) is a commutative S-semialgebra.
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Proof. Define 0 ∈ Fun(A) to be 0(a) = 0 ∈ S for all a ∈ A and define 1 ∈ Fun(A) to be
1(a) = 1 ∈ S for all a ∈ A. Given f ,g ∈ Fun(A), define f +g ∈ Fun(A) and f ·g ∈ Fun(A)
by ( f +g)(a) = f (a)+g(a), ( f ·g)(a) = f (a) ·g(a) for all a ∈ A. Then (Fun(A),+,0) is a
commutative monoid and (Fun(A), ·,1) is a monoid, which is commutative if S is commuta-
tive. The distributive laws hold and the 0-function is absorbing. Thus (Fun(A),+, ·,0,1) is
a semiring. Given s∈ S, define s f , f s∈ Fun(A) by (s f )(a) = s ·( f (a)), ( f s)(a) = ( f (a)) ·s,
respectively, for all a ∈ A. This makes Fun(A) into a a two-sided S-semialgebra. If S is a
complete semiring, then an infinite summation law in FunS(A) can be introduced by(

∑
i∈I

fi
)
(a) = ∑

i∈I
( fi(a)),

fi ∈ Fun(A). With this law, (FunS(A),+,0,∑) is a complete monoid, FunS(A) is complete
as a semiring and complete as an S-bisemimodule. �

Let B be another set. Then, regarding FunS(A) and FunS(B) as S-bisemimodules, the
tensor product FunS(A)⊗S FunS(B) is defined. It is an S-bisemimodule such that given any
S-bisemimodule M and SSS-linear map φ : Fun(A)×Fun(B)→ M, there exists a unique
S-S-bisemimodule homomorphism ψ : Fun(A)⊗S Fun(B)→M such that

Fun(A)×Fun(B)
φ
//

��

M

Fun(A)⊗S Fun(B)

ψ

88

commutes. The S-bisemimodule Fun(A×B) comes naturally equipped with an SSS-linear
map

β : Fun(A)×Fun(B)−→ Fun(A×B), β ( f ,g) = ((a,b) 7→ f (a) ·g(b)).

(If S is commutative, then β is S-bilinear.) Thus, taking M = FunS(A×B) in the above
diagram, there exists a unique S-S-bisemimodule homomorphism µ : Fun(A)⊗S Fun(B)→
Fun(A×B) such that

(3) Fun(A)×Fun(B)
β
//

��

Fun(A×B)

Fun(A)⊗S Fun(B)

µ

66

commutes. In the commutative setting, this homomorphism was studied in [Ban13], where
we showed that it is generally neither surjective nor injective when S is not a field. If A and
B are finite, then µ is an isomorphism. If A,B are infinite but S happens to be a field, then µ

is still injective, but not generally surjective. This is the reason why the functional analyst
completes the tensor product ⊗ using various topologies available, arriving at products ⊗̂.
For example, for compact Hausdorff spaces A and B, let C(A),C(B) denote the Banach
spaces of all complex-valued continuous functions on A,B, respectively, endowed with
the supremum-norm, yielding the topology of uniform convergence. Then the image of
µ :C(A)⊗C(B)→C(A×B), while not all of C(A×B), is however dense in C(A×B) by the
Stone-Weierstraß theorem. After completion, µ induces an isomorphism C(A)⊗̂εC(B) ∼=
C(A×B) of Banach spaces, where ⊗̂ε denotes the so-called ε-tensor product or injective
tensor product of two locally convex topological vector spaces. For n-dimensional Eu-
clidean space Rn, let L2(Rn) denote the Hilbert space of square integrable functions on Rn.
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Then µ induces an isomorphism L2(Rn)⊗̂L2(Rm) ∼= L2(Rn+m) = L2(Rn×Rm), where ⊗̂
denotes the Hilbert space tensor product, a completion of the algebraic tensor product ⊗
of two Hilbert spaces. For more information on topological tensor products see [Sch50],
[Gro55], [Tre67]. In [Ban13] we show that even over the smallest complete (in particular
zerosumfree) and additively idempotent commutative semiring, namely the Boolean semir-
ing B, and for the smallest infinite cardinal ℵ0, modeled by a countably infinite set A, the
map µ is not surjective, which means that in the context of the present paper, some form
of completion must be used as well. However, there is an even more serious complication
which arises over semirings: In marked contrast to the situation over fields, the canonical
map µ ceases to be injective in general when one studies functions with values in a semiring
S. Given two infinite sets A and B, we construct explicitly in [Ban13] a commutative, addi-
tively idempotent semiring S = S(A,B) such that µ : FunS(A)⊗FunS(B)→ FunS(A×B) is
not injective. This has the immediate consequence that in performing functional analysis
over a semiring which is not a field, one cannot identify the function (a,b) 7→ f (a)g(b) on
A×B with f ⊗ g for f ∈ FunS(A), g ∈ FunS(B). Thus the algebraic tensor product is not
the correct device to formulate positive topological field theories.

In the boundedly complete idempotent setting, Litvinov, Maslov and Shpiz have con-
structed in [LMS99] a tensor product, let us here write it as ⊗̂, which for bounded func-
tions does not exhibit the above deficiencies of the algebraic tensor product. Any idem-
potent semiring S is a partially ordered set with respect to the order relation s ≤ t if
and only if s + t = t; s, t ∈ S. Then the addition has the interpretation of a least up-
per bound, s+ t = sup{s, t}. The semiring S is called boundedly complete (b-complete)
if every subset of S which is bounded above has a supremum. (The supremum of a
subset, if it exists, is unique.) The above semiring S(A,B) is b-complete. Given a b-
complete commutative idempotent semiring S and b-complete idempotent semimodules
V,W over S, Litvinov, Maslov and Shpiz define a tensor product V ⊗̂W , which is again
idempotent and b-complete. The fundamental difference to the algebraic tensor product
lies in allowing infinite sums of elementary tensors. A linear map f : V →W is called
b-linear if f (supV0) = sup f (V0) for every bounded subset V0 ⊂ V . The canonical map
π : V ×W → V ⊗̂W is b-bilinear. For each b-bilinear map f : V ×W → U there exists
a unique b-linear map f⊗̂ : V ⊗̂W → U such that f = f⊗̂π . Given any set A, let BS(A)
denote the set of bounded functions A→ S. Then BS(A) is a b-complete idempotent S-
semimodule. According to [LMS99, Prop. 5], BS(A)⊗̂BS(B) and BS(A×B) are isomor-
phic for arbitrary sets A and B. Note that when S is complete, then every S-valued function
is bounded and thus

FunS(A)⊗̂FunS(B) =BS(A)⊗̂BS(B)∼=BS(A×B) = FunS(A×B).

In light of the above remarks and in order to make function semialgebras into a monoidal
category (cf. Proposition 3.5), we adopt the following definition.

Definition 3.2. The functional tensor product FunS(A)⊗̂FunS(B) of two function semi-
modules FunS(A) and FunS(B) is given by FunS(A)⊗̂FunS(B) = FunS(A×B).

Diagram (3) can be rewritten as

Fun(A)×Fun(B)
β
//

��

Fun(A)⊗̂Fun(B)

Fun(A)⊗S Fun(B)

µ

55
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Remark 3.3. It might be tempting to define the functional tensor product of Fun(A) and
Fun(B) in a different way, namely as the subsemimodule of Fun(A×B) consisting of all
functions F : A×B→ S that can be written in the form

F(a,b) =
k

∑
i=1

fi(a)gi(b)

for some fi ∈ Fun(A), gi ∈ Fun(B), in other words, let the functional tensor product be
the image of µ . Such a definition would be incorrect, however, since the resulting smaller
semimodule would in general be too small to contain the main invariant of a TFT, the
state sum, as constructed in Section 6. In Example 6.9, we construct a system of fields on
manifolds and action functionals such that the resulting state sum is not in the image of µ .

Given two functions f ∈ Fun(A), g ∈ Fun(B) we call f ⊗̂g = β ( f ,g) the (functional)
tensor product of f and g. We note that f ⊗̂g depends on the multiplication on S. If the
underlying additive monoid of S is equipped with a different multiplication, then f ⊗̂g will
of course change. For the functional tensor product with S we have

Fun(A)⊗̂S∼= Fun(A)⊗̂Fun({∗}) = Fun(A×{∗})∼= Fun(A).

For fixed S, FunS(−) is a contravariant functor FunS : Sets→ S-S-SAlgs from the cat-
egory of sets to the category of two-sided S-semialgebras: A morphism φ : A→ B of sets
induces a morphism of two-sided S-semialgebras Fun(φ) : Fun(B)→ Fun(A) by setting
Fun(φ)( f ) = f ◦ φ . Clearly, Fun(idA) = idFun(A) and Fun(ψ ◦ φ) = Fun(φ) ◦Fun(ψ) for
ψ : B→C.

Proposition 3.4. The functor FunS(−) is faithful.

Proof. Given functions φ ,ψ : A→ B such that Fun(φ) = Fun(ψ), we know that f (φ(a)) =
f (ψ(a)) for all f ∈ Fun(B) and a ∈ A. Taking f to be the characteristic function χφ(a),
given by χφ(a)(b) = δφ(a),b, we find that χφ(a)(ψ(a)) = χφ(a)(φ(a)) = 1, whence φ(a) =
ψ(a). �

Let FunS be the category whose objects are FunS(A) for all sets A, and whose mor-
phisms are those morphisms of two-sided S-semialgebras FunS(B)→ FunS(A) that have
the form FunS(φ) for some φ : A → B. The preceding remarks imply that this is in-
deed a category with the obvious composition law. For Fun(φ) : Fun(B)→ Fun(A) and
Fun(φ ′) : Fun(B′)→ Fun(A′), we define

Fun(φ)⊗̂Fun(φ ′) : Fun(B)⊗̂Fun(B′)−→ Fun(A)⊗̂Fun(A′)

to be Fun(φ × φ ′) : Fun(B×B′) −→ Fun(A×A′), where φ × φ ′ : A×A′ → B×B′ is the
cartesian product (φ × φ ′)(a,a′) = (φ(a),φ ′(a′)). In this manner, the functional tensor
product becomes a functor ⊗̂ : FunS×FunS→ FunS. Define the unit object of FunS to be
I = FunS({∗}) = S and define associators a by

aA,B,C = Fun(αA,B,C) : Fun(A)⊗̂(Fun(B)⊗̂Fun(C))
∼=−→ (Fun(A)⊗̂Fun(B))⊗̂Fun(C),

where αA,B,C : (A×B)×C
∼=−→ A× (B×C) is the standard associator that makes Sets into

a monoidal category, given by αA,B,C((a,b),c) = (a,(b,c)), a ∈ A, b ∈ B, c ∈ C. Define
left unitors l by

lA = Fun(λA) : I⊗̂Fun(A) = Fun({∗}×A)
∼=−→ Fun(A),
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where λA : A→{∗}×A is the bijection λA(a) = (∗,a). Similarly, right unitors r are defined
as

rA = Fun(ρA) : Fun(A)⊗̂I = Fun(A×{∗})
∼=−→ Fun(A),

where ρA : A→ A×{∗} is the bijection ρA(a) = (a,∗). A braiding b is given by

bA,B = Fun(βB,A) : Fun(A)⊗̂Fun(B)
∼=−→ Fun(B)⊗̂Fun(A),

with βB,A : B× A
∼=−→ A× B, βB,A(b,a) = (a,b). Then it is a routine task to verify the

following assertion:

Proposition 3.5. The septuple (FunS,⊗̂, I,a, l,r,b) is a symmetric monoidal category.

Let S be a complete semiring and let A,B,C be sets. We put Fun(A)⊗̂Fun(B)⊗̂Fun(C)=
Fun(A×B×C) (triples), etc. A contraction

γ : Fun(A)⊗̂Fun(B)⊗̂Fun(B)⊗̂Fun(C)−→ Fun(A)⊗̂Fun(C)

can then be defined, using the summation law in S, by

γ( f )(a,c) = ∑
b∈B

f (a,b,b,c),

f : A×B×B×C→ S, (a,c)∈A×C. Given f ∈ Fun(A)⊗̂Fun(B) and g∈ Fun(B)⊗̂Fun(C),
we shall also write 〈 f ,g〉 = γ( f ⊗̂g). This contraction appears in describing the behavior
of our state sum invariant under gluing of bordisms. The proof of the following two state-
ments is straightforward.

Proposition 3.6. The contraction

〈−,−〉 : (Fun(A)⊗̂Fun(B))× (Fun(B)⊗̂Fun(C))−→ Fun(A)⊗̂Fun(C)

is SSS-linear.

Proposition 3.7. The contraction 〈−,−〉 is associative, that is, given four sets A,B,C,D
and elements f ∈ Fun(A)⊗̂Fun(B), g ∈ Fun(B)⊗̂Fun(C) and h ∈ Fun(C)⊗̂Fun(D), the
equation

〈〈 f ,g〉,h〉= 〈 f ,〈g,h〉〉
holds in Fun(A)⊗̂Fun(D).

4. CONVOLUTION SEMIRINGS ASSOCIATED TO MONOIDAL CATEGORIES

Let S be a semiring and let C be a small category. The symbol Mor(C) will denote
the set of all morphisms of C. Given a morphism α ∈ Mor(C), dom(α) is its domain
and cod(α) its codomain. We shall show that if S is complete, then this data determines a
(complete) semiring Q = QS(C). Of course, given concrete C, systems of fields and action
functionals, one may wish to adapt the general definition of Q given here, so as to better
reflect algebraically the topological structures to be studied. Our construction is motivated
by similar ones in harmonic analysis. Suppose that C is a group, i.e. a groupoid with
one object ∗. If the group G = HomC(∗,∗) is locally compact Hausdorff, then one may
consider L1(G), the functions on G that are integrable with respect to Haar measure. A
multiplication, called the convolution product, on L1(G) is given by

( f ∗g)(t) =
∫

G
f (s)g(s−1t)ds.

The resulting algebra is called the group algebra or convolution algebra. If the functions
on G take values in a complete semiring S, one can drop the integrability assumption (and
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in fact the assumption that G be topological) and use the summation law in S instead of
integration against Haar measure:

( f ∗g)(t) = ∑
ss′=t

f (s)g(s′).

Written like this, it now becomes clear that even the assumption that C be a group is obso-
lete. There are also close connections of our construction of QS(C) to the categorical alge-
bra R[C] associated to a locally finite category C and a ring R. A category is locally finite,
if every morphism can be factored in only finitely many ways as a product of nonidentity
morphisms. Elements of R[C] are functions Mor(C)→ R, i.e. R[C] = FunR(Mor(C)). The
local finiteness of C ensures that the convolution product in R is well-defined. The differ-
ence to our construction is that we do not need C to be locally finite, but we need R = S to
be a complete semiring.

Let S be a semiring and C a small category. For every pair (X ,Y ) of objects in C, we
then have the commutative monoid (FunS(HomC(X ,Y )),+,0) and can form the product

QS(C) = ∏
X ,Y∈ObC

FunS(HomC(X ,Y )).

Elements f ∈ QS(C) are families f = ( fXY ) of functions fXY : HomC(X ,Y )→ S. Such a
family is of course the same thing as a function f : Mor(C)→ S and QS(C)=FunS(Mor(C)),
but we find it convenient to keep the bigrading of QS(C) by pairs of objects. The addi-
tion on QS(C) preserves the bigrading, i.e. ( f + g)XY = fXY + gXY . The neutral element
0∈QS(C) is given by 0= (0XY ) with 0XY = 0 : HomC(X ,Y )→ S the constant map sending
every morphism X → Y to 0 ∈ S. Then (QS(C),+,0) is a commutative monoid.

Proposition 4.1. If S is a complete semiring, then QS(C) inherits a summation law from
S, making (QS(C),+,0) into a complete monoid.

Proof. Given an index set J and a family { f j} j∈J of elements f j ∈ QS(C), declare a sum-
mation law on QS(C) by

(∑
j∈J

f j)XY (γ) = ∑
j∈J

(( f j)XY (γ)) ∈ S,

using on the right hand side the summation law of S. In this formula, γ : X → Y is a
morphism in C. Using this summation law, all the axioms for a complete monoid are
satisfied. For example, given a partition J =

⋃
k∈K Jk, one has

(∑
k∈K

( ∑
j∈Jk

f j))XY (γ) = ∑
k∈K

(( ∑
j∈Jk

f j)XY (γ)) = ∑
k∈K

( ∑
j∈Jk

(( f j)XY (γ)))

= ∑
j∈J

(( f j)XY (γ)) = (∑
j∈J

f j)XY (γ),

using the partition axiom provided by the completeness of S. �

Assume that S is complete. Then we can define a (generally noncommutative) multipli-
cation · : QS(C)×QS(C)→QS(C) by ( fXY ) · (gXY ) = (hXY ), with hXY : HomC(X ,Y )→ S
defined on a morphism γ : X → Y by the convolution formula

hXY (γ) = ∑
βα=γ

gZY (β ) · fXZ(α),

where α,β range over all α ∈ HomC(X ,Z), β ∈ HomC(Z,Y ) with γ = β ◦α . The right
hand side of this formula uses the multiplication of the semiring S. Note that the sum may
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well be infinite, but nevertheless yields a well-defined element of S by completeness. An
element 1 ∈ QS(C) is given by ( fXY ) with

fXY =

{
fXX , X = Y
0 X 6= Y

, fXX (α) =

{
1, α = idX

0, α 6= idX
.

Proposition 4.2. The quintuple (QS(C),+, ·,0,1) is a complete semiring.

Proof. Let us verify that (QS(C), ·,1) is a monoid. Given ( fXY ), (gXY ) and (hXY )∈QS(C),
let (lXY ) = ( fXY ) · (gXY ) and (rXY ) = (gXY ) · (hXY ). Let γ : X → Y be a morphism in C.
Then

((lXY ) · (hXY ))XY (γ) = ∑
βα=γ

hZY (β ) · lXZ(α) = ∑
βα=γ

hZY (β ) · ∑
στ=α

gUZ(σ) · fXU (τ)

= ∑
βστ=γ

hZY (β ) ·gUZ(σ) · fXU (τ) = ∑
ζ∈L

s(ζ ),

where L = {ζ = (β ,σ ,τ) | βστ = γ}, involving all possible factorizations of γ into three
factors

X τ−→U σ−→ Z
β−→ Y,

and the function s is given by s(β ,σ ,τ) = hZY (β ) ·gUZ(σ) · fXU (τ). On the other hand,

(( fXY ) · (rXY ))XY (γ) = ∑
βα=γ

rZY (β ) · fXZ(α) = ∑
βα=γ

( ∑
στ=β

hVY (σ) ·gZV (τ)) · fXZ(α)

= ∑
στα=γ

hVY (σ) ·gZV (τ) · fXZ(α) = ∑
ζ∈R

s(ζ ),

where R = {ζ = (σ ,τ,α) | στα = γ}, involving all possible factorizations of γ into three
factors

X α−→ Z τ−→V σ−→ Y,
and the function s is the same as above. As L = R, this shows that the multiplication · on
QS(C) is associative. The element 1 ∈QS(C) is neutral with respect to this multiplication,
for

(( fXY ) ·1)XY (γ) = ∑
βα=γ

1ZY (β ) · fXZ(α)

= ∑
βα=γ, Z 6=Y

1ZY (β ) · fXZ(α)+ ∑
βα=γ, Z=Y

1YY (β ) · fXY (α)

= ∑
βα=γ

1YY (β ) · fXY (α)

= ∑
βα=γ, β 6=idY

1YY (β ) · fXY (α)+ ∑
βα=γ, β=idY

1YY (β ) · fXY (α)

= ∑
α=γ

1YY (idY ) · fXY (γ)

= fXY (γ)

and similarly 1 · ( fXY ) = ( fXY ). Therefore, (QS(C), ·,1) is a monoid. The distribution laws
are readily verified and the element 0 ∈ QS(C) is obviously absorbing.

By Proposition 4.1, (QS(C),+,0) is a complete monoid. It remains to be shown that the
summation law satisfies the infinite distributivity requirement with respect to · on QS(C).
As above, γ : X → Y is a morphism in C. Given an element g ∈ QS(C), an index set J
and a family ( f j) j∈J of elements f j ∈ QS(C), let Γ = {(β ,α) | βα = γ} and let P be the
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cartesian product P = J×Γ. Note that P comes with two natural partitions, namely into
sets { j}×Γ, j ∈ J, and into sets J×{(β ,α)}, (β ,α) ∈ Γ. Using the infinite distribution
axiom for S and the partition axiom, we have

(g ·∑
j∈J

f j)XY (γ) = ∑
(β ,α)∈Γ

(∑
j∈J

f j)ZY (β ) ·gXZ(α) = ∑
(β ,α)∈Γ

(∑
j∈J

(( f j)ZY (β ))) ·gXZ(α)

= ∑
( j,(β ,α))∈P

( f j)ZY (β ) ·gXZ(α) = ∑
j∈J

( ∑
(β ,α)∈Γ

( f j)ZY (β ) ·gXZ(α))

= ∑
j∈J

((g · f j)XY (γ)) = (∑
j∈J

(g · f j))XY (γ).

Similarly (∑ f j) ·g = ∑( f j ·g). �

The above proof shows that the (strict) associativity of the composition law ◦ of C
implies the associativity of the multiplication · in QS(C). Similarly, the presence of identity
morphisms in C implies the existence of a unit element 1 for the multiplication. It is clear
that the multiplication · on QS(C) is generally noncommutative, even if S happens to be
commutative. For example, let C be the category given by two distinct objects X ,Y and
morphisms

HomC(X ,X) = {idX}, HomC(Y,Y ) = {idY}, HomC(X ,Y ) = {γ}, HomC(Y,X) =∅.

The composition law is uniquely determined. Let S = B be the Boolean semiring, which
is commutative. If f (γ) = 1, g(idX ) = 0, g(γ) = 0, g(idY ) = 1, then ( f · g)(γ) = 1, but
(g · f )(γ) = 0.

Now suppose that (C,⊗, I) is a strict monoidal category. Then, using the monoidal
structure, we can define a different multiplication× : QS(C)×QS(C)→QS(C) by ( fXY )×
(gXY ) = (hXY ), with hXY : HomC(X ,Y )→ S defined on a morphism γ : X → Y as the
convolution

hXY (γ) = ∑
α⊗β=γ

gX ′′Y ′′(β ) · fX ′Y ′(α),

where α,β range over all α ∈ HomC(X ′,Y ′), β ∈ HomC(X ′′,Y ′′) such that X = X ′⊗X ′′,
Y = Y ′⊗Y ′′ and γ = α ⊗ β . Again, the right hand side of this formula uses the multi-
plication of the complete ground semiring S. An element 1× ∈ QS(C) is given by ( fXY )
with

fXY =

{
fII , X = Y = I (unit obj.)
0 otherwise

, fII(α) =

{
1, α = idI

0, α 6= idI
.

Proposition 4.3. The quintuple (QS(C),+,×,0,1×) is a complete semiring.

Proof. We check that (QS(C), ·,1×) is a monoid, knowing already that (QS(C),+,0) is a
commutative monoid. Given ( fXY ), (gXY ) and (hXY ) ∈ QS(C), let (lXY ) = ( fXY )× (gXY )
and (rXY ) = (gXY )× (hXY ). Let γ : X → Y be a morphism in C. Then

((lXY )× (hXY ))XY (γ) = ∑
α⊗β=γ

hX ′′Y ′′(β ) · lX ′Y ′(α)

= ∑
α⊗β=γ

hX ′′Y ′′(β ) · ∑
σ⊗τ=α

gX2Y2(τ) · fX1Y1(σ)

= ∑
σ⊗τ⊗β=γ

hX ′′Y ′′(β ) ·gX2Y2(τ) · fX1Y1(σ)

= ∑
ζ∈L

s(ζ ),
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where L = {ζ = (σ ,τ,β ) | σ ⊗ τ⊗β = γ}, involving all possible factorizations of γ into
three tensor factors

X = X1⊗X2⊗X ′′
σ⊗τ⊗β−→ Y1⊗Y2⊗Y ′′ = Y,

and the function s is given by s(σ ,τ,β ) = hX ′′Y ′′(β ) · gX2Y2(τ) · fX1Y1(σ). (Note that since
(C,⊗, I) is strict, we do not have to indicate parentheses. As is customary in strict monoidal
categories, we write X1⊗X2⊗X ′′ for (X1⊗X2)⊗X ′′ = X1⊗ (X2⊗X ′′). Similarly for
morphisms.) On the other hand,

(( fXY )× (rXY ))XY (γ) = ∑
α⊗β=γ

rX ′′Y ′′(β ) · fX ′Y ′(α)

= ∑
α⊗β=γ

( ∑
σ⊗τ=β

hX2Y2(τ) ·gX1Y1(σ)) · fX ′Y ′(α)

= ∑
α⊗σ⊗τ=γ

hX2Y2(τ) ·gX1Y1(σ) · fX ′Y ′(α)

= ∑
ζ∈R

s(ζ ),

where R = {ζ = (α,σ ,τ) | α⊗σ ⊗ τ = γ}, involving all possible factorizations of γ into
three tensor factors

X = X ′⊗X1⊗X2
α⊗σ⊗τ−→ Y ′⊗Y1⊗Y2 = Y,

and the function s is the same as above. As C is strict, we have L = R, which shows that the
multiplication × on QS(C) is associative. The element 1× ∈ QS(C) is neutral with respect
to this multiplication, for

(( fXY )×1×)XY (γ) = ∑
α⊗β=γ

1×X ′′Y ′′(β ) · fX ′Y ′(α)

= ∑
α⊗β=γ, X ′′ 6=I or Y ′′ 6=I

1×X ′′Y ′′(β ) · fX ′Y ′(α)

+ ∑
α⊗β=γ, X ′′=Y ′′=I

1×X ′′Y ′′(β ) · fX ′Y ′(α)

= ∑
α⊗β=γ

1×II(β ) · fX ′Y ′(α)

= ∑
α⊗β=γ, β 6=idI

1×II(β ) · fX ′Y ′(α)+ ∑
α⊗β=γ, β=idI

1×II(β ) · fX ′Y ′(α)

= ∑
α⊗idI=γ

fXY (γ)

= fXY (γ)

and similarly 1××( fXY ) = ( fXY ). (In this calculation, we have used X ′⊗ I = X ′, α⊗ idI =
α, valid in a strict monoidal category such as C.) Therefore, (QS(C), ·,1×) is a monoid.
The distribution laws are satisfied and the element 0 ∈ QS(C) is absorbing.

By Proposition 4.1, (QS(C),+,0) is a complete monoid. It remains to be shown that the
summation law satisfies the infinite distributivity requirement with respect to × on QS(C).
As above γ : X → Y is a morphism in C. Given an element g ∈ QS(C), an index set J and
a family ( f j) j∈J of elements f j ∈ QS(C), let Γ = {(α,β ) | α ⊗ β = γ} and let P be the
cartesian product P = J×Γ. Note that P comes with two natural partitions, namely into
sets { j}×Γ, j ∈ J, and into sets J×{(α,β )}, (α,β ) ∈ Γ. Using the infinite distribution
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axiom for S and the partition axiom, we have

(g×∑
j∈J

f j)XY (γ) = ∑
(α,β )∈Γ

(∑
j∈J

f j)X ′′Y ′′(β ) ·gX ′Y ′(α)

= ∑
(α,β )∈Γ

(∑
j∈J

(( f j)X ′′Y ′′(β ))) ·gX ′Y ′(α)

= ∑
( j,(α,β ))∈P

( f j)X ′′Y ′′(β ) ·gX ′Y ′(α)

= ∑
j∈J

( ∑
(α,β )∈Γ

( f j)X ′′Y ′′(β ) ·gX ′Y ′(α))

= ∑
j∈J

((g× f j)XY (γ))

= (∑
j∈J

(g× f j))XY (γ).

�

It is crucial in the above proof to know that C is strict. In order for the multiplication ×
to be associative, one must know that the sets of factorizations Lγ = {(σ ,τ,β ) | (σ ⊗ τ)⊗
β = γ} and Rγ = {(σ ,τ,β ) | σ ⊗ (τ⊗β ) = γ} are equal. This holds when C is strict, but
may fail when C is not strict. Similarly, we used the property α⊗ idI = α , which holds in
a strict category but may fail to do so in a nonstrict one, to prove that 1× is a unit element
for the multiplication ×.

We shall refer to the semiring Qc = (QS(C),+, ·,0,1) as the composition semiring of C
(with ground semiring S), and to Qm = (QS(C),+,×,0,1×) as the monoidal semiring of C.

Given morphisms

X ′
ξ ′−→ Z′

η ′−→ Y ′, X ′′
ξ ′′−→ Z′′

η ′′−→ Y ′′,
the identity

(4) (η ′ ◦ξ
′)⊗ (η ′′ ◦ξ

′′) = (η ′⊗η
′′)◦ (ξ ′⊗ξ

′′)

holds. This shows that the composition-tensor-composition (CTC) set of a morphism γ :
X → Y in C,

CTC(γ) = {(ξ ′,ξ ′′,η ′,η ′′) ∈Mor(C)4 | (η ′ ◦ξ
′)⊗ (η ′′ ◦ξ

′′) = γ}
is a subset of the tensor-composition-tensor (TCT) set of γ ,

TCT (γ) = {(ξ ′,ξ ′′,η ′,η ′′) ∈Mor(C)4 | (η ′⊗η
′′)◦ (ξ ′⊗ξ

′′) = γ},
since the equation (η ′ ◦ ξ ′)⊗ (η ′′ ◦ ξ ′′) = γ implies that codξ ′ = domη ′ and codξ ′′ =
domη ′′, so that (4) is applicable. However, knowing only (η ′⊗η ′′) ◦ (ξ ′⊗ ξ ′′) = γ , one
can infer cod(ξ ′⊗ξ ′′) = dom(η ′⊗η ′′), but not the individual statements codξ ′ = domη ′

and codξ ′′ = domη ′′. Thus (4) is not necessarily applicable and TCT (γ) is in general
strictly larger than CTC(γ).

Proposition 4.4. Let C be a strict monoidal category. Then TCT (γ) = CTC(γ) for all
morphisms γ in C if and only if C is a monoid, i.e. has only one object.

Proof. If C has only one object, then this object must be the unit object I and codξ ′ =
I = domη ′ and codξ ′′ = I = domη ′′ for all (ξ ′,ξ ′′,η ′,η ′′) ∈ TCT (γ). Thus TCT (γ) =
CTC(γ) for all morphisms γ . For the converse direction, suppose TCT (γ) = CTC(γ) for
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all morphisms γ , and let X be any object of C. Write γ = idX = (idX⊗ idI) ◦ (idI⊗ idX ).
Then (idI , idX , idX , idI) ∈ TCT (idX ) =CTC(idX ) and hence idX = (idX ◦ idI)⊗ (idI ◦ idX ).
It follows that X = dom(idX ) = cod(idI) = I. �

Let us translate the equivalent statements of the preceding proposition into a statement
about the algebraic structure of QS(C).

Proposition 4.5. If C is a monoid (i.e. has only one object), then for any elements
a,b,c,d ∈ QS(C) such that b or c maps entirely into the center of S, the multiplicative
compatibility relation

(a×b) · (c×d) = (a · c)× (b ·d)

holds.

Proof. On an endomorphism γ : I→ I in C,

((a×b) · (c×d))II(γ) = ∑
η◦ξ=γ

(c×d)II(η) · (a×b)II(ξ )

= ∑
η◦ξ=γ

{
∑

η ′⊗η ′′=η

dII(η
′′) · cII(η

′)
}
·
{

∑
ξ ′⊗ξ ′′=ξ

bII(ξ
′′) ·aII(ξ

′)
}

= ∑
(ξ ′,ξ ′′,η ′,η ′′)∈TCT (γ)

dII(η
′′) · cII(η

′) ·bII(ξ
′′) ·aII(ξ

′)

= ∑
(ξ ′,ξ ′′,η ′,η ′′)∈CTC(γ)

dII(η
′′) ·bII(ξ

′′) · cII(η
′) ·aII(ξ

′)

= ∑
γ ′⊗γ ′′=γ

{
∑

η ′′◦ξ ′′=γ ′′
dII(η

′′) ·bII(ξ
′′)
}
·
{

∑
η ′◦ξ ′=γ ′

cII(η
′) ·aII(ξ

′)
}

= ∑
γ ′⊗γ ′′=γ

(b ·d)II(γ
′′) · (a · c)II(γ

′)

= ((a · c)× (b ·d))II(γ).

In this calculation, we were able to commute cII(η
′) and bII(ξ

′′) because one of these two
commutes with every element of S. �

When ξ ′ and ξ ′′ are fixed, we shall also write

CTC(γ;ξ
′,ξ ′′) = {(η ′,η ′′) ∈Mor(C)2 | (η ′ ◦ξ

′)⊗ (η ′′ ◦ξ
′′) = γ},

TCT (γ;ξ
′,ξ ′′) = {(η ′,η ′′) ∈Mor(C)2 | (η ′⊗η

′′)◦ (ξ ′⊗ξ
′′) = γ}.

For certain applications, let us record the following simple observation.

Lemma 4.6. A commutative monoid (C, ·,1C) determines a small strict monoidal category
C = C(C) by

ObC = {I}, EndC(I) =C, I⊗ I = I, α ◦β = α ·β = α⊗β

for all α,β ∈C.
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5. FIELDS AND CATEGORY-VALUED ACTIONS

The two ingredients needed to form a field theory are the fields and an action functional
on these fields. Both have to satisfy certain natural axioms. Regarding the fields, our ax-
ioms will not deviate essentially from the usual axioms as employed in [Kir10], [Fre92],
for example. We emphasize, however, that our axiomatization assigns fields only in codi-
mensions 0 and 1, and not in higher codimensions. Closed n-dimensional topological
manifolds will be denoted by M,N,P,M0, etc. Our manifolds need not be orientable. The
empty set ∅ is a manifold of any dimension. The symbol t denotes the ordinary ordered
disjoint union of manifolds. It is not commutative and not associative (see the Remark
on p. 72 of [MR94]), but there are obvious canonical homeomorphisms MtN ∼= N tM,
(MtN)tP ∼= Mt (N tP), Mt∅ ∼= M ∼= ∅tM. Note that the triple union MtN tP
is well-defined and canonically homeomorphic to both (MtN)tP and Mt (N tP). An
(n+1)-dimensional bordism (sometimes also called spacetime in the literature) is a triple
(W,M,N), where W is a compact (n+1)-dimensional topological manifold with boundary
∂W = M tN. The closed n-manifold M is called the incoming boundary of W and N is
called the outgoing boundary of W . (Strictly speaking, recording the outgoing boundary
is redundant since N = ∂W −M; nevertheless we find it convenient to include N in the
notation as well.) We shall also say that W is a bordism from M to N. Setting ∂W in = M,
∂W out = N, we may simply write W for the bordism (W,∂W in,∂W out). For example,
the cylinder M× [0,1] on a connected M gives rise to three distinct bordisms, namely
(M× [0,1],M×{0,1},∅), (M× [0,1],M×0,M×1) and (M× [0,1],∅,M×{0,1}). The
operation disjoint union is defined on bordisms by

(W,M,N)t (W ′,M′,N′) = (W tW ′,MtM′,NtN′).

If the outgoing boundary N of W is the incoming boundary of a bordism W ′, then we may
glue along N to obtain the bordism

(W,M,N)∪N (W ′,N,P) = (W tN W ′,M,P).

A homeomorphism φ : (W,M,N)→ (W ′,M′,N′) of bordisms is a homeomorphism W →
W ′, which preserves incoming boundaries and outgoing boundaries, φ(M) = M′, φ(N) =
N′. The bordism (W0,M0,N0) is a subbordism of (W,M,N) if W0 is a codimension 0
submanifold of W and the following two conditions are satisfied: For every connected
component C of M0 either C∩ ∂W = ∅ or C ⊂M, and for every connected component C
of N0 either C∩∂W =∅ or C⊂N. For instance, (W,M,N) is a subbordism of (W,M,N)t
(W ′,M′,N′) and it is a subbordism of (W,M,N)∪N (W ′,N,P).

Definition 5.1. A system F of fields assigns to each (n+1)-dimensional bordism W a set
F(W ) (whose elements are called the fields on W ) and to every closed n-manifold M a set
F(M) such that F(∅) is a set with one element and the following axioms are satisfied:

(FRES) Restrictions: If W0 ⊂W is a subbordism, then there is a restriction map F(W )→
F(W0). If M0 ⊂M is a codimension 0 submanifold, then there is a restriction map F(M)→
F(M0). If M ⊂W is a closed (as a manifold) codimension 1 submanifold, then there
is a restriction map F(W )→ F(M). If f ∈ F(W ) is a field, we will write f |M for its
restriction to M, and similarly for the other types of restriction. All these restriction maps
are required to commute with each other in the obvious way, e.g. for M0 ⊂ M ⊂W, the
map F(W )→ F(M0) is the composition F(W )→ F(M)→ F(M0). Let M be a closed (as
a manifold) codimension 0 submanifold of ∂W . A given field f ∈ F(M) may be imposed
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as a boundary condition by setting

F(W, f ) = {F ∈ F(W ) | F |M = f}.

If W is a bordism from M to N and f ∈ F(M), g ∈ F(N), we shall also use the notation
F(W, f ,g)⊂ F(W ) for the set of all fields on W which restrict to f on the incoming bound-
ary M and to g on the outgoing boundary N.

(FHOMEO) Action of homeomorphisms: A homeomorphism φ : W →W ′ of bordisms
induces contravariantly a bijection φ ∗ : F(W ′)→ F(W ) such that (idW )∗ = idF(W ) and
(ψ ◦ φ)∗ = φ ∗ ◦ψ∗ for a homeomorphism ψ : W ′ →W ′′. Similarly for n-dimensional
homeomorphisms M→ N. These induced maps are required to commute with the restric-
tion maps of (FRES). For example, if M⊂W and M′⊂W ′ are codimension 1 submanifolds
and φ : W →W ′ restricts to a homeomorphism φ | : M→M′, then the diagram

F(W ′)
φ∗
//

res
��

F(W )

res
��

F(M′)
(φ |)∗

// F(M)

is to commute.

(FDISJ) Disjoint Unions: The product of restrictions

F(W tW ′)−→ F(W )×F(W ′)

is a bijection, that is, a field on the disjoint union W tW ′ is uniquely determined by its
restrictions to W and W ′, and a field on W and a field on W ′ together give rise to a field on
W tW ′. Similarly, F(MtN)−→ F(M)×F(N) must be a bijection in dimension n.

(FGLUE) Gluing: Let W ′ be a bordism from M to N and let W ′′ be a bordism from N to P.
Let W = W ′ ∪N W ′′ be the bordism from M to P obtained by gluing W ′ and W ′′ along N.
Let F(W ′,W ′′) be the pullback F(W ′)×F(N)F(W

′′) fitting into a cartesian square

F(W ′,W ′′) //

��

F(W ′)

res
��

F(W ′′) res // F(N).

Since
F(W )

res //

res
��

F(W ′)

res
��

F(W ′′) res // F(N)

commutes, there exists a unique map F(W )→F(W ′,W ′′) such that F(W )→F(W ′,W ′′)→
F(W ′) is the restriction to W ′ and F(W )→ F(W ′,W ′′)→ F(W ′′) is the restriction to W ′′.
We require that F(W )→ F(W ′,W ′′) is a bijection.

Note that the convention for F(∅) is consistent with axioms (FHOMEO) and (FDISJ):
The homeomorphism φ : Mt∅

∼=−→M induces a bijection φ ∗ : F(M)
∼=−→ F(Mt∅). Thus
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by (FDISJ),
F(M)∼= F(Mt∅)∼= F(M)×F(∅) = F(M)×{pt}.

For bordisms W ′ with empty outgoing boundary and bordisms W ′′ with empty incoming
boundary, axiom (FDISJ) follows from (FGLUE) by taking N =∅. For then W ′∪∅W ′′ =
W ′ tW ′′ and F(W ′,W ′′) = F(W ′)×F(W ′′). However, since not all bordisms are of this
type, the (n+1)-dimensional part of axiom (FDISJ) is not redundant.

Lemma 5.2. Let F be a system of fields and M⊂ ∂W, M′⊂ ∂W ′ closed codimension 0 sub-
manifolds. Then axiom (FDISJ) continues to hold in the presence of boundary conditions.
More precisely: If f ∈F(MtM′) is a field, then the bijection F(W tW ′)→F(W )×F(W ′)
restricts to a bijection

F(W tW ′, f )−→ F(W, f |M)×F(W ′, fM′).

Proof. The bijection σ : F(W tW ′)→ F(W )×F(W ′) is given by σ(G) = (G|W ,G|W ′).
To show that it restricts as claimed, let G ∈ F(W tW ′) be a field with G|MtM′ = f . Using
the diagram of restrictions

(5) F(W tW ′) //

��

F(W )

��

F(MtM′) // F(M),

which commutes by axiom (FRES), (and using also the analogous diagram for M′), we
have

(G|W )|M = (G|MtM′)|M = f |M, (G|W ′)|M′ = (G|MtM′)|M′ = f |M′ .
Thus σ(G) ∈ F(W, f |M)×F(W ′, f |M′) and σ restricts preserving boundary conditions.

This restriction is injective as the restriction of the injective map σ . To show that the
restriction is surjective, let F ∈F(W ) and F ′ ∈F(W ′) be fields with F |M = f |M and F ′|M′ =
f |M′ . Since σ is surjective, there exists a field G ∈ F(W tW ′) such that G|W = F and
G|W ′ = F ′. Using again diagram (5), we find

((G|MtM′)|M,(G|MtM′)|M′) = ((G|W )|M,(G|W ′)|M′) = (F |M,F ′|M′) = ( f |M, f |M′).
Since F(M tM′)→ F(M)×F(M′) is a bijection by axiom (FDISJ), we conclude that
G|MtM′ = f , that is, G ∈ F(W tW ′, f ). �

Lemma 5.3. Let F be a system of fields, let W ′ be a bordism from M to N and let W ′′ be a
bordism from N to P. Let W =W ′∪N W ′′ be the bordism from M to P obtained by gluing
W ′ and W ′′ along N. Then axiom (FGLUE) continues to hold in the presence of boundary
conditions. More precisely: Given fields g′ ∈ F(M), g′′ ∈ F(P), let F(W ′,W ′′,g′,g′′) be
the pullback F(W ′,g′)×F(N) F(W

′′,g′′). Then, given a field f ∈ F(∂W ), the unique map
ρ such that

F(W, f )

((

ρ

((

''

F(W ′,W ′′, f |M, f |P) //

��

F(W ′, f |M)

��

F(W ′′, f |P) // F(N)
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commutes is a bijection.

Proof. The bijection σ : F(W )→ F(W ′,W ′′) is given by σ(G) = (G|W ′ ,G|W ′′). Let G ∈
F(W ) be a field with G|∂W = f . Using the diagram of restrictions

(6) F(W ) //

��

F(W ′)

��

F(MtP) // F(M),

which commutes by axiom (FRES), (and using also the analogous diagram for P), we have

(G|W ′)|M = (G|MtP)|M = f |M, (G|W ′′)|P = (G|MtP)|P = f |P.
Since in addition (G|W ′)|N = (G|W ′′)|N , we conclude that σ(G) ∈ F(W ′,W ′′, f |M, f |P) and
thus ρ is the restriction of σ to F(W, f )⊂ F(W ).

This restriction ρ is injective as the restriction of the injective map σ . To show that ρ is
surjective, let

(F ′,F ′′) ∈ F(W ′,W ′′, f |M, f |P)⊂ F(W ′,W ′′).
Since σ is surjective, there exists a field G ∈ F(W ) such that G|W ′ = F ′ and G|W ′′ = F ′′.
Using again diagram (6), we find

((G|∂W )|M,(G|∂W )|P) = ((G|W ′)|M,(G|W ′′)|P) = (F ′|M,F ′′|P) = ( f |M, f |P).
Since F(∂W ) = F(MtP)→ F(M)×F(P) is a bijection by axiom (FDISJ), we conclude
that G|∂W = f , that is, G ∈ F(W, f ). �

Remark 5.4. As with all axiomatic systems, the above axioms may need to be appropri-
ately adapted to concrete situations. For instance, the manifolds to be considered may be
decorated with additional structure, for instance orientations. If the fields interact with the
additional structure, then the restrictions in axiom (FRES) will in general only be available
for inclusions that preserve the additional structure. In (FHOMEO), only those homeo-
morphisms that preserve the structure will act on the fields. For example, in an equivariant
context, one may wish to impose (FHOMEO) only on equivariant homeomorphisms. In
(FDISJ), the disjoint union will be assumed to be equipped with the structure compatible
to the structures on the component manifolds. Analogous provisos apply to (FGLUE). The
axioms can be adapted to the category of smooth manifolds and smooth maps. The main
issue there is to arrive at a correct version of (FGLUE), since gluing two smooth maps that
agree on the common boundary component N only yields a map which is continuous but
usually not smooth. This can be achieved by not only requiring equality of the function
values (as we have done in (FGLUE)), but also equality of all higher partial derivatives.
Another possibility is to require the functions to be equal on collar neighborhoods of N
and then to glue the collars. See also Section 10 for a concrete solution.

Example 5.5. Let B be a fixed space. Taking F(W ) and F(M) to be the set of all continu-
ous maps W → B, M→ B, respectively, and using the ordinary restrictions of such maps to
subspaces in (FRES), one obtains a system F of fields in the sense of Definition 5.1. The
action of homeomorphisms on fields is given by composition of fields with a given home-
omorphism. In practice, B is often the classifying space BG of some topological group
G (which may be discrete), so that fields in that case have the interpretation of principal
G-bundles over W and M. This has been considered for finite groups G in work of Freed
and Quinn [QF93], [Qui95], [Fre92], see also [DW90]. Fields of this kind are also used in
the construction of the twisted signature TFT given in Section 11.3. Let us note in passing
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that taking manifolds endowed with maps to a fixed space B as objects (and not as fields
on objects), one arrives at the notion of a homotopy quantum field theory (HQFT), [Tur10].
Taking B to be a point, HQFTs are seen to be generalizations of TQFTs. In the smooth
category, one may fix B to be a smooth manifold and consider F(W ) =C∞(W,B), the space
of smooth maps W → B. This is roughly the setting for Chern-Simons theory.

Remark 5.6. Walker’s axiomatization of fields, [Wal06], differs from ours (and from [Kir10],
[Fre92]) in that he does not allow for codimension 0 restrictions and he requires the exis-
tence of an injection F(W ′,W ′′) ↪→ F(W ) in the context of the gluing axiom. However, he
does assume any field on W to be close to a field in the image of the injection in the sense
that the field on W can be moved by a homeomorphism, which is isotopic to the identity
and supported in a small neighborhood of N ⊂W , to a field coming from F(W ′,W ′′) under
gluing. Walker does not require a bijection because he wants to allow for the following
application: Fields could be embedded submanifolds, or even more intricate “designs” on
manifolds, which are transverse to the boundary. Given any submanifold of W , there is no
way of guaranteeing that it is transverse to N (though it can be made so by an arbitrarily
small movement). Thus there is no restriction map from such fields on W to fields on W ′,
and not every field on W comes from one on W ′ and one on W ′′ by gluing.

Given a system F of fields, the second ingredient necessary for a field theory is an action
functional defined on F(W ) for bordisms W . In classical quantum field theory, the action
is usually a system of real-valued functions SW : F(W )→R such that the additivity axiom

(7) SWtW ′( f ) = SW ( f |W )+SW ′( f |W ′), f ∈ F(W tW ′),

is satisfied for disjoint unions, and the additivity axiom

(8) SW ( f ) = SW ′( f |W ′)+SW ′′( f |W ′′), f ∈ F(W ),

is satisfied for W =W ′∪N W ′′, the result of gluing a bordism W ′ with outgoing boundary N
to a bordism W ′′ with incoming boundary N. Moreover, the action should be topologically
invariant: if φ : W →W ′ is a homeomorphism, then for any field f ∈ F(W ′), one requires
that under the bijection φ ∗ : F(W ′)→ F(W ) of (FHOMEO), the action is preserved,

(9) SW (φ ∗ f ) = SW ′( f ).

Sometimes, for example in Chern-Simons theory, the action is only well-defined up to an
integer, that is, takes values in R/Z. Thus it is better to exponentiate and consider the
complex-valued function TW = e2πiSW : F(W )→C whose image lies in the unit circle. The
above two additivity axioms are then transformed into the multiplicativity axioms

(10) TWtW ′( f ) = TW ( f |W ) ·TW ′( f |W ′),
and

(11) TW ( f ) = TW ′( f |W ′) ·TW ′′( f |W ′′).
These axioms express that the action should be local to a certain extent.

Example 5.7. In the smooth oriented category, for the system of fields F(W ) =C∞(W,B),
B a fixed smooth manifold, fix a differential (n+1)-form ω ∈Ωn+1(B) on B. Setting

SW ( f ) =
∫

W
f ∗ω,

the axioms (7) and (8) are satisfied. For an orientation preserving diffeomorphism φ :
W →W ′, (9) holds. If ω is closed and W has no boundary, then SW ( f ) only depends on the
homotopy class of f . For if f ,g : W → B are homotopic, then a homotopy between them
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gives rise to a homotopy operator h : Ω∗(B)→ Ω∗−1(W ), dh+ hd = f ∗− g∗, so that for
closed ω one has f ∗(ω)−g∗(ω) = dh(ω). By Stokes theorem,∫

f ∗ω−
∫

g∗ω =
∫

dh(ω) = 0.

The Chern-Simons action is roughly of this type.

For a number of purposes, remembering only a real number for a given field is too
restrictive and it is desirable to retain more information about the field. The present paper
thus introduces category valued actions. We will in fact directly axiomatize the analog of
the exponential T of an action. Let (C,⊗, I) be a strict monoidal category. (The strictness
is not a very serious assumption, as a well-known process turns any monoidal category into
a monoidally equivalent strict one, see [Kas95]). Since in a monoidal context of bordisms,
disjoint union corresponds to the tensor product, while gluing of bordisms corresponds to
the composition of morphisms, it is natural to modify the classical axioms (10) and (11) as
follows:

Definition 5.8. Given a system F of fields, a system T of C-valued action exponentials
consists of functions TW : F(W )→Mor(C), for all bordisms W , such that for the empty
manifold, T∅(p) = idI , where p is the unique element of F(∅), and the following three
axioms are satisfied:

(TDISJ) If W tW ′ is the ordered disjoint union of two bordisms W,W ′, then

TWtW ′( f ) = TW ( f |W )⊗TW ′( f |W ′)
for all f ∈ F(W tW ′),

(TGLUE) If W = W ′ ∪N W ′′ is obtained by gluing a bordism W ′ with outgoing boundary
N to a bordism W ′′ with incoming boundary N, then

TW ( f ) = TW ′′( f |W ′′)◦TW ′( f |W ′)
for all f ∈ F(W ), and

(THOMEO) If φ : W →W ′ is a homeomorphism of bordisms, then for any field f ∈F(W ′),
we require that under the bijection φ ∗ : F(W ′)→ F(W ) of (FHOMEO),

TW (φ ∗ f ) = TW ′( f ).

If W = M× I is the cylindrical bordism from M to M, then we do not require that TM×I
is an identity morphism. In particular, T cannot be rephrased as a monoidal functor. There
is a simple test that shows that both the tensor product and the composition product of C
must enter into the axioms for a category-valued action, underlining the correctness of the
above definition:

Example 5.9. (The tautological action.) Let C =Bord(n+1)str a strict version of the (n+
1)-dimensional bordism category. A bordism W defines a morphism [W ] ∈Mor(Bord(n+
1)str). Then one has the tautological action exponential TW ( f ) = [W ]. It satisfies

TWtW ′( f ) = [W tW ′] = [W ]⊗ [W ′] = TW ( f |)⊗TW ′( f |)
and

TW ′∪NW ′′( f ) = [W ′∪N W ′′] = [W ′′]◦ [W ′] = TW ′′( f |)◦TW ′( f |).
This forces the above axioms (TDISJ) and (TGLUE).
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If the manifolds W are equipped with some extra structure, then one will in practice
usually modify (THOMEO) to apply only to those homeomorphisms that preserve the
extra structure. For example, if the W are oriented, one will usually require φ to preserve
orientations. Note that under the canonical homeomorphism φ : W ∼=W t∅,

TW (φ ∗ f ) = TWt∅( f ) = TW ( f |W )⊗T∅( f |∅) = TW ( f |W )⊗ idI = TW ( f |W ),

using axioms (TDISJ) and (THOMEO). If W ′ has empty outgoing boundary and W ′′ empty
incoming boundary, then we can “glue” along the empty set and get W ′∪∅W ′′ =W ′tW ′′.
Thus (TGLUE) and (TDISJ) apply simultaneously and yield

TW ′( f )⊗TW ′′(g) = TW ′′(g)◦TW ′( f ).

In particular, the domain of any TW ′( f ) must be the tensor product of the domain of TW ′( f )
with the domain of any TW ′′(g). In practice, this usually means that the domains of all
TW ′′(g) are the unit object I of C. But the domain of TW ′′(g) equals the codomain of
TW ′( f ). So in practice, the codomains of the TW ′( f ) are usually I as well. We would like
to emphasize again that these remarks apply only to bordisms whose incoming or outgoing
boundary is empty.

Let W ′1 be a bordism with empty outgoing boundary, W ′2 a bordism from ∅ to N, W ′′2 a
bordism from N to ∅ and let W ′′1 be a bordism with empty incoming boundary. Then we
can form the bordism

W = (W ′2tW ′1)∪N (W ′′2 tW ′′1 ),
which we can also think of as

W = (W ′2∪N W ′′2 )t (W ′1∪∅W ′′1 ).

These two representations of W allow us to calculate the action associated with W in two
different ways:

TW ( f ) = TW ′′2 tW ′′1
( f |)◦TW ′2tW ′1

( f |) = (TW ′′2
( f |)⊗TW ′′1

( f |))◦ (TW ′2
( f |)⊗TW ′1

( f |))

and

TW ( f ) = TW ′2∪NW ′′2
( f |)⊗TW ′1∪∅W ′′1

( f |) = (TW ′′2
( f |)◦TW ′2

( f |))⊗ (TW ′′1
( f |)◦TW ′1

( f |)).

This implies the equation

(TW ′′2
( f |)◦TW ′2

( f |))⊗(TW ′′1
( f |)◦TW ′1

( f |)) = (TW ′′2
( f |)⊗TW ′′1

( f |))◦(TW ′2
( f |)⊗TW ′1

( f |)),

which indeed holds automatically in any monoidal category C.
The result of gluing two copies W ′ = M× [0,1] and W ′′ = M× [0,1] of the unit cylin-

der on M, identifying M× 1 ⊂W ′ with M× 0 ⊂W ′′, is W = M× [0,2]. For (F ′,F ′′) ∈
F(W ′,W ′′), axioms (TGLUE) and (THOMEO) imply the formula

(12) TM×[0,1](2
∗
σ
−1(F ′,F ′′)) = TM×[0,1](F

′′)◦TM×[0,1](F
′),

where σ : F(W )→ F(W ′,W ′′) is the bijection of axiom (FGLUE) and 2 : M× [0,1]→
M× [0,2] is the stretching homeomorphism 2(x, t) = (x,2t), x ∈M, t ∈ [0,1].

Remark 5.10. The classical axioms (10) and (11) do fit into the framework of Definition
5.8. From the perspective of this definition, the fact that in both (10) and (11) the ordinary
multiplication of complex numbers appears is just a reflection of the coincidence that under
the standard isomorphism C⊗C∼=C, the tensor product of two C-linear maps α,β : C→
C is given by multiplication α ·β , and the composition of two linear maps α,β : C→ C
also happens to be given by multiplication, α · β . More precisely, let Ĉ be the category
which has C as its single object and HomĈ(C,C) = {α : C→ C | α is C-linear}. Such an
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α is of course determined by α(1), whence HomĈ(C,C) ∼= C. In Ĉ, define C⊗C := C
and define α⊗β : C⊗C= C→ C= C⊗C by (α⊗β )(1) = α(1) ·β (1). Taking I = C,
(Ĉ,⊗, I) is a strict monoidal category. If a classical action exponential TW : F(W )→ C
is interpreted as a Ĉ-valued action exponential TW : F(W )→ C ∼= Mor(Ĉ), then (TDISJ)
translates to (10) and (TGLUE) translates to (11).

Remark 5.11. (On cutting.) Suppose that W is an oriented bordism and M ↪→W a closed
oriented codimension 1 submanifold situated in the interior of W . Let W cut be the compact
manifold with boundary ∂W cut = ∂W tMtM obtained from W by cutting along M. The
problem is that, contrary to the operations of disjoint union and gluing, this construction is
not well-defined on bordisms because there is no canonical way to define the incoming and
outgoing boundary of W cut. (Should MtM belong to the incoming or outgoing boundary?
Should one of them belong to the incoming and the other to the outgoing boundary? If
so, which of the two copies is incoming and which outgoing?) Our field axioms do not
provide for an equalizer diagram F(W )→ F(W cut)⇒ F(M) and our action axioms do not
stipulate

(13) TW cut( f cut) = TW ( f ),

where f cut is the image of f under a putative F(W )→F(W cut). Such axioms are classically
sometimes adopted, for example in [Fre92], and are strongly motivated by thinking of
actions as being given by integrals of pullbacks of differential forms. In the setting of
the present paper, we wish to think of actions in much more general terms. For instance,
actions might be certain subspaces of W associated to fields. But if W is cut, then these
subspaces are also cut and consequently (13) cannot hold.

The next definition will be used in Section 9, when we discuss the behavior of a certain
projection operator on tensor products of states. The projection is associated to the state
sum of cylinders.

Definition 5.12. A system T of C-valued action exponentials is called cylindrically firm,
if

CTC(γ;TM×[0,1](FM),TN×[0,1](FN)) = TCT (γ;TM×[0,1](FM),TN×[0,1](FN))

for all morphisms γ in C, closed n-manifolds M,N and fields FM ∈ F(M× [0,1]), FN ∈
F(N× [0,1]). Here, M× [0,1] is to be read as the bordism from M×0 to M×1, similarly
for N× [0,1].

For instance, by Proposition 4.4, T is cylindrically firm if C is a monoid.

Proposition 5.13. Let T be cylindrically firm. Then the codomain of every TM×[0,1](F) is
the unit object I of C. Furthermore, if F |M×0 = F |M×1, then TM×[0,1](F) is an endomor-
phism of the unit object.

Proof. For M = ∅, we have TM×[0,1](FM) = T∅(p) = idI . Taking γ = TN×[0,1](FN), the
equation

(idX⊗ idI)◦ (T∅(p)⊗TN×[0,1](FN)) = TN×[0,1](FN)

holds, where X is the codomain of TN×[0,1](FN). This places (η ′,η ′′) = (idX , idI) into

TCT (TN×[0,1](FN);T∅(p),TN×[0,1](FN)) =CTC(TN×[0,1](FN);T∅(p),TN×[0,1](FN)).

Therefore,
(idX ◦ idI)⊗ (idI ◦TN×[0,1](FN)) = TN×[0,1](FN)



28 MARKUS BANAGL

so that in particular X = I. Let M be any closed n-manifold. If F ∈ F(M× [0,1]) satisfies
F |M×0 = F |M×1, then the diagonal element (F,F) lies in the pullback F(M× [0,1],M×
[0,1]) and thus Equation (12) shows that domTM×[0,1](F) = codTM×[0,1](F) = I. �

It follows from the proposition that for a cylindrically firm system of action exponen-
tials, the above TCT and CTC sets can be nonempty only for γ that factor through the unit
object.

6. QUANTIZATION

We shall define our positive TFT Z in this section. We will specify the state module
Z(M) for a closed n-manifold M as well as an element ZW ∈ Z(∂W ), the Zustandssumme,
for a bordism W , which may have a nonempty boundary ∂W . Neither M nor W have to
be oriented; thus Z will be a nonunitary theory. In [Wit89], Witten starts out with the
phase space M0 of all connections on a trivial G-bundle over Σ×R1, where Σ is a Rie-
mann surface and G a compact simple gauge group. In Section 3 of loc. cit., he carries out
the quantization of Chern-Simons theory on Σ in two steps: First, constraint equations are
imposed, which reduce M0 to the finite dimensional moduli space M of flat connections,
where two flat connections are identified if they differ by a gauge transformation. Second,
Witten’s quantum Hilbert space (state module) HΣ is obtained by taking functions on M,
more precisely, global holomorphic sections of a certain line bundle on M. This provides
a model for our construction of the state module Z(M).

Fix a complete semiring S, which will play the role of a ground semiring for the theory
to be constructed. To any given system F of fields, strict monoidal small category (C,⊗, I),
and system T of C-valued action exponentials, we shall now associate a positive topolog-
ical field theory Z. In Section 4, we have seen that C determines two complete semir-
ings: the composition semiring Qc = (QS(C),+, ·,0,1), whose multiplication · encodes
the composition law of C, and the monoidal semiring Qm = (QS(C),+,×,0,1×), whose
multiplication × encodes the monoidal structure on C, i.e. the tensor functor ⊗. Both of
these semirings have the same underlying (complete) additive monoid (QS(C),+,0). For
a closed n-dimensional manifold M, we define its pre-state module to be

E(M) = FunQ(F(M)),

where we have abbreviated Q = QS(C). By Proposition 3.1, E(M) is a two-sided Qc-
semialgebra and a two-sided Qm-semialgebra. We observe that for the empty manifold,

E(∅) = FunQ(F(∅)) = FunQ({pt})∼= Q.

We recall that a pseudo-isotopy is a homeomorphism H : M× [0,1]→ N× [0,1] such that
H(M×{0}) =N×{0} and H(M×{1}) =N×{1}. Except for 0 and 1, such a homeomor-
phism need not preserve the levels of the cylinders. The homeomorphisms H|M×{0} and
H|M×{1} are then said to be pseudo-isotopic to each other. We now impose the constraint
equation

(14) z(φ ∗ f ) = z( f )

on pre-states z ∈ E(M), where f ∈ F(M) and φ : M→M is a homeomorphism, which is
pseudo-isotopic to the identity. In other words, call two fields f ,g ∈ F(M) equivalent, if
there is a φ , pseudo-isotopic to the identity, such that g = φ ∗( f ). Let F(M) be the set of
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equivalence classes. If M is empty, F(M) consists of a single element. We define the state
module (or quantum Hilbert space) of M to be

Z(M) = FunQ(F(M)) = {z :F(M)→Q | z(φ ∗ f ) = z( f ) for all φ ∈Homeo0(M)}⊂ E(M),

where Homeo0(M) denotes all homeomorphisms φ : M→M pseudo-isotopic to the iden-
tity. Then Z(M) is a two-sided Qc-semialgebra and a two-sided Qm-semialgebra. It is in
general infinitely generated as a semimodule. Again, for the empty manifold Z(∅)∼= Q.

Remark 6.1. Attempting to define the (pre-)state module of a manifold M with connected
components M1, . . . ,Mk as the subsemimodule of FunQ(F(M1t·· ·tMk)) consisting of all
z that can be written as

z( f ) =
l

∑
i=1

zi1( f |M1)× zi2( f |M2)×·· ·× zik( f |Mk)

for suitable functions zi j ∈ FunQ(F(M j)), leads to an incorrect state module. The reason is
that it will generally not contain the state sum of an (n+1)-manifold W with ∂W = M, as
Example 6.9 below shows. See also Remark 3.3.

Proposition 6.2. If M and N are closed n-manifolds and M tN their ordered disjoint
union, then the restrictions to M and N induce an isomorphism

Z(MtN)∼= Z(M)⊗̂Z(N)

of two-sided Qc-semialgebras and of two-sided Qm-semialgebras.

Proof. We define a map

ρ : F(MtN)−→ F(M)×F(N)

by [ f ] 7→ ([ f |M], [ f |N ]). We need to prove that this is well-defined. Suppose that φ ∈
Homeo(M tN) is pseudo-isotopic to the identity, so that [φ ∗ f ] = [ f ]. Then φ induces
the identity map on π0(MtN) and thus restricts to homeomorphisms φ |M ∈ Homeo(M),
φ |N ∈Homeo(N). Similarly, a pseudo-isotopy H : (MtN)× [0,1]→ (MtN)× [0,1] from
φ to the identity restricts to pseudo-isotopies H| : M× [0,1]→M× [0,1], H| : N× [0,1]→
N× [0,1]. Hence φ |M is pseudo-isotopic to idM and φ |N is pseudo-isotopic to idN . Using
the commutative diagram

F(MtN)
φ∗

∼=
//

res
��

F(MtN)

res
��

F(M)
(φ |M)∗

∼=
// F(M)

provided by axiom (FHOMEO), we arrive at [(φ ∗ f )|M] = [(φ |M)∗( f |M)] = [ f |M], and sim-
ilarly [(φ ∗ f )|N ] = [ f |N ]. A map in the other direction

(15) F(M)×F(N)−→ F(MtN)

is given as follows: By axiom (FDISJ), the product of restrictions ρ : F(MtN)→ F(M)×
F(N) is a bijection. Thus given a pair of fields ( f , f ′)∈F(M)×F(N), there exists a unique
field F ∈ F(MtN) such that F |M = f and F |N = f ′. Then (15) is defined as ([ f ], [ f ′]) 7→
[F ]. Again, it must be checked that this is well-defined. Suppose φ ∈ Homeo(M),ψ ∈
Homeo(N) are pseudo-isotopic to idM, idN , respectively, so that [φ ∗ f ] = [ f ] and [ψ∗ f ′] =
[ f ′]. Let G ∈ F(M tN) be the unique field with G|M = φ ∗ f and G|N = ψ∗ f ′. We have
to show that [G] = [F ] on the disjoint union. The disjoint union Φ = φ tψ defines a
homeomorphism Φ : MtN→MtN. It is pseudo-isotopic to the identity via the disjoint
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union HtH ′ : (MtN)× [0,1]→ (MtN)× [0,1] of pseudo-isotopies H from φ to idM and
H ′ from ψ to idN . Since (Φ∗F)|M = φ ∗(F |M) = φ ∗ f = G|M and similarly (Φ∗F)|N = G|N ,
we have Φ∗F = G by uniqueness. Therefore, [G] = [Φ∗F ] = [F ] as required.

The two maps ρ and (15) are inverse to each other, and thus are both bijections. As
discussed in Section 3, ρ induces a morphism of two-sided semialgebras (over Qc and over
Qm)

Fun(ρ) : Z(M)⊗̂Z(N) = FunQ(F(M)×F(N))−→ FunQ(F(MtN)) = Z(MtN)

and ρ
−1 induces a morphism of two-sided semialgebras

Fun(ρ−1) : Z(MtN)−→ Z(M)⊗̂Z(N).

These two morphisms are inverse to each other by the functoriality of FunQ. �

Let W be a bordism. A field F ∈ F(W ) determines an element TW (F) ∈ QS(C) by

(16) TW (F)XY (γ) =

{
1, if γ = TW (F)

0, otherwise,

where γ ranges over morphisms γ : X→Y of C and 1 is the 1-element of S. In other words,
TW (F) = χTW (F) is the characteristic function of TW (F). Suppose that W is a bordism from
M to N and f ∈ F(MtN) = F(∂W ). Then we define the state sum (or partition function)
ZW of W on f by

ZW ( f ) = ∑
F∈F(W, f )

TW (F) ∈ QS(C),

using the summation law of the complete monoid (QS(C),+,0). This is a well-defined
element of QS(C) that only depends on W and f .

Remark 6.3. This sum replaces in our context the notional path integral∫
F∈F(W, f )

eiSW (F)dµW

used in classical quantum field theory. As a mathematical object, this path integral is
problematic, since in many situations of interest, an appropriate measure µW has not been
defined or is known not to exist. The present paper utilizes the notion of completeness in
semirings to bypass measure theoretic questions on spaces of fields. The appearance of
the 1-element of S in formula (16) can be interpreted as a reflection of the fact that the
amplitude of the integrand in the Feynman path integral is always 1, |eiSW (F)|= 1.

If ∂W = ∅, then ZW ∈ Q ∼= Z(∅). If W is empty, then F(∂W ) = F(∅) = {p} is a
singleton and F(W, p) = F(W ) = {p} so that

Z∅(p) = T∅(p) = χT∅(p) = χidI = 1×,

the unit element of the semiring Qm. This accords with Atiyah’s requirement (4b) [Ati88,
p. 179]. Given a morphism γ : X → Y in C, we have the formula

ZW ( f )XY (γ) = ∑
F∈F(W, f ), TW (F)=γ

1,

which exhibits ZW ( f ) as an elaborate counting device: On a morphism γ , it “counts” for
how many fields F on W , which restrict to f on the boundary, γ appears as the action ex-
ponential of F . This is a hint that certain kinds of counting functions in number theory and
combinatorics may be expressible as state sums of suitable positive TFTs. Our theorems,
such as e.g. the gluing theorem, will then yield identities for such functions. In Section
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11.1, we illustrate this by deriving Pólya’s counting theory using positive TFT methods.
In Example 11.4, we consider arithmetic functions arising in number theory. In practice,
it is often most important to know whether ZW ( f )XY (γ) is zero or nonzero. If the ground
semiring is the Boolean semiring, then ZW ( f )XY (γ) = 1 if and only if there exists a field
F ∈ F(W, f ) such that TW (F) = γ . In this case, ZW ( f ) admits the interpretation as a subset
ZW ( f )⊂Mor(C), namely ZW ( f ) = {TW (F) | F ∈ F(W, f )}. The main results below then
show that this system of subsets transforms like a topological quantum field theory.

Returning to the general discussion and letting f vary, we have a pre-state vector

ZW ∈ E(∂W ) = E(MtN)∼= E(M)⊗̂E(N).

Let us discuss the topological invariance of the state sum. A homeomorphism φ : M→ N
induces as follows covariantly a pre-state map

φ∗ : E(M)→ E(N),

which is an isomorphism of both two-sided Qc-semialgebras and two-sided Qm-semialgebras:
By axiom (FHOMEO), φ induces a bijection φ ∗ : F(N)→ F(M). As shown in Section 3,
this bijection in turn induces a morphism

φ∗ = FunQ(φ
∗) : E(M) = FunQ(F(M))−→ FunQ(F(N)) = E(N)

of two-sided Qc- and Qm-semialgebras. Since φ ∗ is a bijection, φ∗ is indeed an isomor-
phism. Moreover, if ψ : N → P is another homeomorphism, then ψ∗ ◦ φ∗ = (ψ ◦ φ)∗ :
E(M)→ E(P) and (idM)∗ = idE(M) : E(M)→ E(M), that is, the pre-state module E(−)
is a functor on the category of closed n-manifolds and homeomorphisms. In particular the
group Homeo(M) of self-homeomorphisms M→M acts on E(M).

Let φ : W →W ′ be a homeomorphism of bordisms. Then φ restricts to a homeomor-
phism φ∂ = φ | : ∂W → ∂W ′ which induces an isomorphism φ∂∗ : E(∂W )→ E(∂W ′).

Theorem 6.4. (Topological Invariance.) If φ : W →W ′ is a homeomorphism of bordisms,
then φ∂∗(ZW ) = ZW ′ . If W and W ′ are closed, then φ∂∗ = id : Q→ Q and thus ZW = ZW ′ .

Proof. Let f ∈ F(∂W ′) be a field. We claim first that the bijection φ ∗ : F(W ′)→ F(W )
restricts to a bijection φ ∗rel :F(W ′, f )→F(W,φ ∗

∂
f ). To see this, suppose that F ′ ∈F(W ′, f ).

Then the field φ ∗F ′ ∈ F(W ) satisfies (φ ∗F ′)|∂W = φ ∗
∂
(F ′|∂W ′) = φ ∗

∂
( f ), where we have

used the commutative diagram

F(W ′)
φ∗

∼=
//

res
��

F(W )

res
��

F(∂W ′)
φ∗

∂

∼=
// F(∂W )

provided by axiom (FHOMEO). Thus φ ∗F ′ ∈F(W,φ ∗
∂

f ) and the desired restriction φ ∗rel ex-
ists. As φ ∗ is injective, φ ∗rel is injective as well. Given F ∈ F(W,φ ∗

∂
f ), the field (φ−1)∗(F)

lies in F(W ′, f ) and

φ
∗
rel((φ

−1)∗(F)) = φ
∗(φ−1)∗(F) = (φ−1

φ)∗(F) = F.

This shows that φ ∗rel is surjective, too, and proves the claim.
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Axiom (THOMEO) for the system T of action exponentials asserts that TW (φ ∗F ′) =
TW ′(F ′). Consequently, for a morphism γ : X → Y in C,

TW ′(F
′)XY (γ) =

{
1, if γ = TW ′(F ′)
0, otherwise

=

{
1, if γ = TW (φ ∗F ′)
0, otherwise

= TW (φ ∗rel(F
′))XY (γ),

that is,
TW (φ ∗rel(F

′)) = TW ′(F
′).

The bijection φ ∗rel : F(W ′, f )→ F(W,φ ∗
∂

f ) implies the identity

∑
F∈F(W,φ∗

∂
f )

TW (F) = ∑
F ′∈F(W ′, f )

TW (φ ∗relF
′).

Hence, the pushforward of the state sum of W , subject to the boundary condition f , can be
calculated as

(φ∂∗(ZW ))( f ) = (FunQ(φ
∗
∂
)(ZW ))( f ) = ZW (φ ∗

∂
( f ))

= ∑
F∈F(W,φ∗

∂
f )

TW (F) = ∑
F ′∈F(W ′, f )

TW (φ ∗relF
′)

= ∑
F ′∈F(W ′, f )

TW ′(F
′) = ZW ′( f ).

If W and W ′ are closed, then φ ∗
∂
= id : F(∅) = {p}→ {p}= F(∅). Hence,

φ∂∗ = FunQ(φ
∗
∂
) = FunQ(id) = id : E(∅) = FunQ(F(∅)) = Q−→ Q = E(∅).

�

We will now use topological invariance to show that the state sum is really a state, not
just a pre-state.

Proposition 6.5. The state sum ZW ∈ E(∂W ) solves the constraint equation (14). Thus
ZW lies in the state module Z(∂W )⊂ E(∂W ).

Proof. Given a field f ∈ F(∂W ) and φ ∈ Homeo(∂W ) pseudo-isotopic to the identity, we
need to show that ZW (φ ∗ f ) = ZW ( f ). Let H : ∂W × [0,1]→ ∂W × [0,1] be a pseudo-
isotopy, H(x,0) = x, H(x,1) = φ(x), for all x ∈ ∂W . This pseudo-isotopy fits into a com-
mutative diagram

W ∂W_?oo � � (id∂W ,0)
// ∂W × [0,1]

H∼=
��

W ∂W_?oo � � (id∂W ,0)
// ∂W × [0,1]

The pushout of the rows is homeomorphic to W (using collars, which are available in
the topological category by Marston Brown’s collar neighborhood theorem [Bro62]) via
a homeomorphism which is the identity on the boundary. Thus the universal property of
pushouts applied to the above diagram yields a homeomorphism Φ : W →W of bordisms,
whose restriction to the boundary Φ∂ is φ . By Theorem 6.4 on topological invariance, we
have Φ∂∗(ZW ) = ZW . Consequently, ZW ( f ) = Φ∂∗(ZW )( f ) = φ∗(ZW )( f ) = ZW (φ ∗ f ). �

Homeomorphisms between closed n-manifolds induce isomorphisms on the associated
state modules, as we will now explain.
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Lemma 6.6. Let φ : M → N be any homeomorphism of closed n-manifolds. Then the
induced isomorphism φ∗ : E(M)→ E(N) of pre-state modules restricts to an isomorphism
φ∗ : Z(M)→ Z(N) of state modules.

Proof. Let z ∈ Z(M) be a state, that is, z : F(M)→ Q is a function with z(ψ∗ f ) = z( f )
for all ψ ∈ Homeo(M) pseudo-isotopic to the identity. Let g ∈ F(N) be any field on N
and ξ ∈ Homeo(N) pseudo-isotopic to idN . Let ψ ∈ Homeo(M) be the homeomorphism
ψ = φ−1ξ φ . If H : N× [0,1]→ N× [0,1] is a pseudo-isotopy from ξ to idN , then

M× [0,1]
φ×id[0,1]−→ N× [0,1] H−→ N× [0,1]

φ−1×id[0,1]−→ M× [0,1]

is a pseudo-isotopy from ψ to idM . Thus

φ∗(z)(ξ ∗g) = (z◦φ
∗)(ξ ∗g) = z((ξ φ)∗g) = z((φψ)∗g)

= z(ψ∗(φ ∗g)) = z(φ ∗g) = φ∗(z)(g).

Hence φ∗(z) solves the constraint equation on N and so φ∗(z) ∈ Z(N). Its inverse is given
by (φ−1)∗ : Z(N)→ Z(M). �

By the above lemma, any homeomorphism φ : M → N induces an isomorphism φ∗ :
Z(M)→ Z(N). If ψ : N→P is another homeomorphism, then ψ∗◦φ∗= (ψ ◦φ)∗ : Z(M)→
Z(P) and (idM)∗= idZ(M) : Z(M)→ Z(M), that is, the state module Z(−) is a functor on the
category of closed n-manifolds and homeomorphisms. In particular the group Homeo(M)
of self-homeomorphisms M→M acts on Z(M).

Theorem 6.7. (Pseudo-Isotopy Invariance.) Pseudo-isotopic homeomorphisms φ ,ψ : M→
N induce equal isomorphisms φ∗ = ψ∗ : Z(M)→ Z(N) on state modules. In particular, the
action of Homeo(M) on Z(M) factors through the mapping class group.

Proof. Let H : M× [0,1]→ N × [0,1] be a pseudo-isotopy from φ to ψ . Then (ψ−1×
id[0,1]) ◦H : M× [0,1]→ M× [0,1] is a pseudo-isotopy from ψ−1φ to idM . Hence for
z ∈ Z(M), (ψ−1φ)∗(z)( f ) = z((ψ−1φ)∗ f ) = z( f ). It follows that

(ψ∗)
−1 ◦φ∗ = (ψ−1)∗ ◦φ∗ = (ψ−1

φ)∗ = idZ(M)

and therefore φ∗ = ψ∗. �

As there are two multiplications available on QS(C), there are also two correspond-
ing QQQ-linear maps β c,β m : E(M)×E(N)→ E(M)⊗̂E(N), given by β c(z,z′)( f ,g) =
z( f ) · z(g), using the multiplication · of the composition semiring Qc, and β m(z,z′)( f ,g) =
z( f )× z(g), using the multiplication × of the monoidal semiring Qm. If (z,z′) ∈ Z(M)×
Z(N), and φ ∈Homeo(M), ψ ∈Homeo(N) are pseudo-isotopic to the respective identities,
then

β
c(z,z′)(φ ∗ f ,ψ∗g) = z(φ ∗ f ) · z′(ψ∗g) = z( f ) · z′(g) = β

c(z,z′)( f ,g).

Therefore, β c(z,z′) ∈ Z(M)⊗̂Z(N). Similarly, we have a QQQ-linear map β m : Z(M)×
Z(N)→ Z(M)⊗̂Z(N). Thus a pair of vectors (z,z′) ∈ Z(M)×Z(N) determines two gen-
erally different tensor products in Z(M)⊗̂Z(N), namely z⊗̂mz′ = β m(z,z′) and z⊗̂cz′ =
β c(z,z′).

Theorem 6.8. The state sum ZWtW ′ ∈ Z(∂W t∂W ′) of an ordered disjoint union of bor-
disms W and W ′ is the tensor product

ZWtW ′ = ZW ⊗̂mZW ′ ∈ Z(∂W )⊗̂Z(∂W ′)∼= Z(∂W t∂W ′).
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Proof. Let F ∈ F(W tW ′) be a field on the disjoint union. Then, regarding QS(C) as the
monoidal semiring Qm, we have on a morphism γ : X → Y of C,

(TW (F |W )×TW ′(F |W ′))XY (γ) = ∑
α⊗β=γ

TW ′(F |W ′)X ′′Y ′′(β ) ·TW (F |W )X ′Y ′(α).

The element TW (F |W )X ′Y ′(α) ∈ S is 1 when α = TW (F |W ) and 0 otherwise. Similarly,
TW ′(F |W ′)X ′′Y ′′(β ) ∈ S is 1 when β = TW ′(F |W ′) and 0 otherwise. Thus

(TW (F |W )×TW ′(F |W ′))XY (γ) = ∑
TW (F |W )⊗TW ′ (F |W ′ )=γ

1 ·1

=

{
1, if γ = TW (F |W )⊗TW ′(F |W ′)
0, otherwise.

Now by axiom (TDISJ), TW (F |W )⊗TW ′(F |W ′) = TWtW ′(F), which implies

TW (F |W )×TW ′(F |W ′) = TWtW ′(F)

in Qm. We apply this identity in calculating the state sum of the disjoint union subject to
the boundary condition f ∈ F(∂W t∂W ′):

ZWtW ′( f ) = ∑
F∈F(WtW ′, f )

TWtW ′(F) = ∑
F∈F(WtW ′, f )

TW (F |W )×TW ′(F |W ′).

As pointed out in Section 2, if (mi)i∈I , (n j) j∈J are families of elements in a complete
monoid and σ : J→ I is a bijection such that mσ( j) = n j, then ∑i∈I mi = ∑ j∈J n j. Applying
this principle to the families

(TW (G)×TW ′(G
′))(G,G′)∈F(W, f |∂W )×F(W ′, f |

∂W ′ )
,

(TW (F |W )×TW ′(F |W ′))F∈F(WtW ′, f )

and to the bijection

σ : F(W tW ′, f )−→ F(W, f |∂W )×F(W ′, f |∂W ′)

given by Lemma 5.2, we obtain that

ZWtW ′( f ) = ∑
(G,G′)∈F(W, f |∂W )×F(W ′, f |

∂W ′ )

TW (G)×TW ′(G
′)

=

 ∑
G∈F(W, f |∂W )

TW (G)

×
 ∑

G′∈F(W ′, f |
∂W ′ )

TW ′(G
′)


= ZW ( f |∂W )×ZW ′( f |∂W ′)

= β
m(ZW ,ZW ′)( f |∂W , f |∂W ′)

= (ZW ⊗̂mZW ′)( f |∂W , f |∂W ′).

�

Especially in light of the decomposition of the state sum of a disjoint union provided
by Theorem 6.8, one may wonder whether the state sum ZW ∈ Z(M1)⊗̂ · · · ⊗̂Z(Mk) of
any compact manifold W whose boundary has the connected components M1, . . . ,Mk, can
always be written as

ZW ( f ) =
l

∑
i=1

zi1( f |M1)× zi2( f |M2)×·· ·× zik( f |Mk)
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for suitable functions zi j ∈ FunQ(F(M j)), see Remarks 3.3 and 6.1. The following example
shows that this is not the case.

Example 6.9. Take n = 0 and the Boolean semiring B as the ground semiring. Let C be
the category with one object I and one morphism, idI : I→ I. This category has a unique
monoidal structure, which is strict. Then

QB(C) = FunB(HomC(I, I)) = FunB({idI})∼= B
is the Boolean semiring. For a 1-dimensional bordism W , let F(W ) be the locally constant
functions on W with values in the natural numbers N = {0,1,2, . . .}, that is, if W has k
connected components, then F(W ) = Nk. Fields F(M) on a closed n-manifold M are de-
fined in the same way. The restrictions are given by the ordinary restriction of functions
to subspaces. Homeomorphisms W ∼= W ′ and M ∼= N act on fields by permuting function
values in a manner consistent with the permutation which the homeomorphism induces on
the connected components. Since two locally constant functions that agree on a common
boundary component glue to give a locally constant function again, F is a system of fields.
The action exponential TW : F(W )→Mor(C), TW (F) = idI is uniquely determined. Then
T is indeed a valid system of action exponentials. Now let W be the unit interval [0,1],
whose boundary ∂W = MtN is given by the incoming boundary M = {0} and the outgo-
ing boundary N = {1}. Let f = (m,n) ∈ F(∂W )∼= F(M)×F(N) = N×N be a boundary
condition. If m 6= n, then F(W, f ) is empty, for there is no constant function on the unit
interval that restricts to two distinct numbers on the endpoints. Consequently,

ZW (m,n) = ∑
F∈F(W,(m,n))

TW (F) = 0 ∈ Q∼= B.

On the other hand, if m = n, then F(W,(m,n)) consists of a single element, namely m =
n, so that ZW (m,n) = TW (m) = 1 ∈ B. Therefore, ZW (m,n) = δmn, that is, viewed as a
countably infinite Boolean value matrix, ZW is the identity matrix. But it follows from
results of [Ban13] that the identity matrix is not in the image of

µ : FunB(N)⊗FunB(N)−→ FunB(N×N).

This can also be seen directly by observing that a representation δmn = ∑
l
i=1 zi(m)z′i(n)

(where we assume that δmn cannot be expressed in such a form with fewer than l terms),
implies that zi(m) = δmni , z′i(n) = δnin for certain n1, . . . ,nl . But the finite sum ∑

l
i=1 δmniδnin

can certainly not equal δmn for all m,n as follows by taking m = n 6∈ {n1, . . . ,nl}.

Let M,N,P be closed n-manifolds. The contraction γ of Section 3 defines a map

γ : E(M)⊗̂E(N)⊗̂E(N)⊗̂E(P)−→ E(M)⊗̂E(P).

This contraction allows us to define an inner product 〈z,z′〉 of a vector z ∈ E(M)⊗̂E(N)
and a vector z′ ∈ E(N)⊗̂E(P) by setting

〈z,z′〉= γ(z⊗̂cz′) ∈ E(M)⊗̂E(P),

where we have used the composition product ⊗̂c. By Proposition 3.6, this inner product

〈−,−〉 : (E(M)⊗̂E(N))× (E(N)⊗̂E(P))−→ E(M)⊗̂E(P)

is Qc
QcQc-linear. By Proposition 3.7, the inner product is associative, i.e. for a fourth n-

manifold R and a vector z′′ ∈E(P)⊗̂E(R), one has 〈〈z,z′〉,z′′〉= 〈z,〈z′,z′′〉〉 in E(M)⊗̂E(R).
An injection Z(M)⊗̂Z(N) ↪→ E(M)⊗̂E(N) is given by sending z : F(M)×F(N)→ Q to

F(M)×F(N)
quot×quot

// // F(M)×F(N)
z
// Q.
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Then the inner product 〈z,z′〉 of a state vector z ∈ Z(M)⊗̂Z(N) and a state vector z′ ∈
Z(N)⊗̂Z(P) satisfies the constraint equation and is thus a state 〈z,z′〉 ∈ Z(M)⊗̂Z(P). There-
fore, restriction defines an inner product

〈−,−〉 : (Z(M)⊗̂Z(N))× (Z(N)⊗̂Z(P))−→ Z(M)⊗̂Z(P).

Theorem 6.10. (Gluing Formula.) Let W ′ be a bordism from M to N and let W ′′ be a
bordism from N to P. Let W =W ′∪N W ′′ be the bordism from M to P obtained by gluing
W ′ and W ′′ along N. Then the state sum of W can be calculated as the contraction inner
product

ZW = 〈ZW ′ ,ZW ′′〉 ∈ Z(M)⊗̂Z(P)∼= Z(MtP).

Proof. Let F ∈ F(W ) be a field on the glued bordism. Then, regarding QS(C) as the
composition semiring Qc, we have on a morphism γ : X → Y of C,

(TW ′(F |W ′) ·TW ′′(F |W ′′))XY (γ) = ∑
β◦α=γ

TW ′′(F |W ′′)ZY (β ) ·TW ′(F |W ′)XZ(α).

(Here, Z is of course an object of C and not a state sum.) The element TW ′(F |W ′)XZ(α)∈ S
is 1 when α = TW ′(F |W ′) and 0 otherwise. Similarly, TW ′′(F |W ′′)ZY (β ) ∈ S is 1 when
β = TW ′′(F |W ′′) and 0 otherwise. Thus

(TW ′(F |W ′) ·TW ′′(F |W ′′))XY (γ) = ∑
TW ′′ (F |W ′′ )◦TW ′ (F |W ′ )=γ

1 ·1

=

{
1, if γ = TW ′′(F |W ′′)◦TW ′(F |W ′)
0, otherwise.

Now by axiom (TGLUE), TW ′′(F |W ′′)◦TW ′(F |W ′) = TW (F), which implies

TW ′(F |W ′) ·TW ′′(F |W ′′) = TW (F)

in Qc. Let f ∈ F(∂W ) = F(MtP). Lemma 5.3 asserts that the unique map ρ such that

F(W, f )

((

ρ

((

''

F(W ′,W ′′, f |M, f |P) //

��

F(W ′, f |M)

��

F(W ′′, f |P) // F(N)

commutes, is a bijection. Therefore,

∑
F∈F(W, f )

TW ′(F |W ′) ·TW ′′(F |W ′′) = ∑
(G′,G′′)∈F(W ′,W ′′, f |M , f |P)

TW ′(G
′) ·TW ′′(G

′′).

The pullback F(W ′,W ′′, f |M, f |P) possesses the natural partition

F(W ′,W ′′, f |M, f |P) =
⋃

g∈F(N)

F(W ′, f |M,g)×F(W ′′,g, f |P),

which enables us to rewrite the sum over the pullback as

∑
(G′,G′′)∈F(W ′,W ′′, f |M , f |P)

TW ′(G
′) ·TW ′′(G

′′) =

= ∑
g∈F(N)

∑
(G′,G′′)∈F(W ′, f |M ,g)×F(W ′′,g, f |P)

TW ′(G
′) ·TW ′′(G

′′)
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according to the partition property that the summation law in a complete monoid satisfies.
Thus for the state sum of the glued bordism, subject to the boundary condition f ,

ZW ( f ) = ∑
F∈F(W, f )

TW (F)

= ∑
F∈F(W, f )

TW ′(F |W ′) ·TW ′′(F |W ′′)

= ∑
(G′,G′′)∈F(W ′,W ′′, f |M , f |P)

TW ′(G
′) ·TW ′′(G

′′)

= ∑
g∈F(N)

∑
G′∈F(W ′, f |M ,g)

∑
G′′∈F(W ′′,g, f |P)

TW ′(G
′) ·TW ′′(G

′′)

= ∑
g∈F(N)

(
∑

G′∈F(W ′, f |M ,g)

TW ′(G
′)
)
·
(

∑
G′′∈F(W ′′,g, f |P)

TW ′′(G
′′)
)

= ∑
g∈F(N)

ZW ′( f |M tg) ·ZW ′′(gt f |P)

= ∑
g∈F(N)

β
c(ZW ′ ,ZW ′′)( f |M tg,gt f |P)

= γ(ZW ′⊗̂cZW ′′)( f )

= 〈ZW ′ ,ZW ′′〉( f ).

(Note that via the identification F(MtP)∼=F(M)×F(P), we may also think of the bound-
ary condition f as the pair ( f |M, f |P).) �

Taking bordisms with N = ∅ is allowed in the above gluing theorem. In such a situa-
tion, W = W ′ ∪∅W ′′ = W ′ tW ′′ so that by using the gluing theorem in conjunction with
Theorem 6.8 on disjoint unions, we obtain 〈ZW ′ ,ZW ′′〉= ZW ′⊗̂mZW ′′ .

As an application of our theorems, let us derive the well-known zig-zag equation. Given
a closed n-manifold, we write M2 = MtM and M3 = MtMtM. The cylinder M× [0,1]
can be interpreted as a bordism in three different ways:

C = (M× [0,1],M,M), C⊂ = (M× [0,1],∅,M2), C⊃ = (M× [0,1],M2,∅).

Using these, we can form the bordisms

W ′ =C⊂tC, W ′′ =CtC⊃, W =W ′∪M3 W ′′.

Then W is homeomorphic to C by a homeomorphism φ which is the identity on the bound-
ary, φ∂ = idM2 . Thus, by topological invariance of the state sum, ZW = ZC. On the other
hand, using Theorems 6.8 and 6.10,

ZW = 〈ZW ′ ,ZW ′′〉= 〈ZC⊂tC,ZCtC⊃〉= 〈ZC⊂⊗̂mZC,ZC⊗̂mZC⊃〉.

Thus we arrive at the zig-zag equation

〈ZC⊂⊗̂mZC,ZC⊗̂mZC⊃〉= ZC,

relating the state sums of the three bordisms associated to M× [0,1].

Finally, we introduce a new kind of invariant A(M) ∈ Z(M), the coboundary aggregate
of a closed n-manifold M, which has no counterpart in classical topological field theories.
Call two bordisms (W1,∅,M) and (W2,∅,M) equivalent, if there exists a homeomorphism
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W1 ∼=W2 whose restriction to the boundary is the identity on M. (This is indeed an equiva-
lence relation.) Let Cob(M) be the collection of all equivalence classes of bordisms (“M-
coboundaries”) (W,∅,M). If W1 and W2 are equivalent, then Theorem 6.4 implies that they
have equal state sums, ZW1 = ZW2 ∈ Z(M). Therefore, the state sum can be viewed as a
well-defined function Z : Cob(M)→ Z(M).

Definition 6.11. The coboundary aggregate A(M) ∈ Z(M) of a closed topological n-
manifold is the state vector

A(M) = ∑
[W ]∈Cob(M)

Z[W ].

Note that this is a well-defined element of Z(M), since the completeness of Q together
with Proposition 3.1 implies that Z(M) is complete as well.

Theorem 6.12. If φ : M → N is a homeomorphism, then φ∗A(M) = A(N). That is, the
coboundary aggregate is a topological invariant.

Proof. Given a bordism W with ∂W in = ∅ and ∂W out = M, let ψ(W ) = W ∪φ N× [0,1],
that is, let ψ(W ) be the mapping cylinder of φ−1 followed by the inclusion M ⊂W . Then
ψ(W ) is a bordism with ∂ψ(W )in = ∅ and ∂ψ(W )out = N. Suppose that W1 and W2 rep-
resent the same element of Cob(M). Then there exists a homeomorphism Φ : W1 →W2
whose restriction to the boundary is the identity on M. The pushout of the top row of the
commutative diagram

W1

Φ ∼=
��

M_?oo � � (φ ,0)
// N× [0,1]

W2 M_?oo � � (φ ,0)
// N× [0,1]

is ψ(W1), while the pushout of the bottom row is ψ(W2). Thus the universal property of
pushouts applied to the above diagram yields a homeomorphism ψ(W1) ∼= ψ(W2), whose
restriction to the boundary is the identity on N. Hence ψ(W1) and ψ(W2) are equivalent
and represent the same element of Cob(N). Consequently, ψ induces a well-defined map
ψ : Cob(M)→Cob(N). Reversing the roles of M and N (using φ−1), we also obtain a map
ψ ′ : Cob(N)→ Cob(M). We claim that ψ and ψ ′ are inverse to each other: The colimit of
the top row of the commutative diagram

W M_?oo � � (idM ,0)
// M× [0,1]

φ×id[0,1]∼=
��

M_?
(idM ,1)
oo � � (idM ,0)

//

φ∼=
��

M× [0,1]

W M_?oo � � (φ ,0)
// N× [0,1] N_?

(idN ,1)
oo � � (φ−1,0)

// M× [0,1]

is homeomorphic to W (using the collar neighborhood theorem [Bro62]) via a homeo-
morphism which is the identity on the boundary, while the colimit of the bottom row is
ψ ′(ψ(W )). Thus the universal property of colimits applied to the above diagram yields
a homeomorphism W ∼= ψ ′(ψ(W )), whose restriction to the boundary is the identity. We
conclude that [W ] = ψ ′ψ[W ] ∈ Cob(M). By symmetry we also have [W ′] = ψψ ′[W ′] ∈
Cob(N). This shows that ψ ′ = ψ−1 and ψ is a bijection.

Given a field f ∈ F(N), let us show that

(17) ZW (φ ∗ f ) = Zψ(W )( f ).
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The pushout of the top row of the commutative diagram

W M_?oo � � (idM ,0)
// M× [0,1]

φ×id[0,1]∼=
��

W M_?oo � � (φ ,0)
// N× [0,1]

is homeomorphic to W (using the collar neighborhood theorem) via a homeomorphism
which is the identity on the boundary, while the pushout of the bottom row is ψ(W ). Thus
the universal property of pushouts applied to the above diagram yields a homeomorphism
of bordisms W ∼= ψ(W ), whose restriction to the boundary is φ . By topological invariance
of the state sum (Theorem 6.4), φ∗(ZW ) = Zψ(W ), proving equation (17). Consequently,

(φ∗A(M))( f ) = A(M)(φ ∗ f ) = ∑
[W ]∈Cob(M)

Z[W ](φ
∗ f ) = ∑

[W ]∈Cob(M)

Zψ[W ]( f )

= ∑
[W ′]∈ψ(Cob(M))

Z[W ′]( f ) = A(N)( f ).

�

7. THE FROBENIUS STRUCTURE

We shall show that the state modules Z(M), in any dimension n, come naturally equipped
with the structure of a Frobenius semialgebra. Let S be any semiring, not necessarily com-
mutative.

Definition 7.1. A Frobenius semialgebra over S is a two-sided S-semialgebra A together
with an S-bisemimodule homomorphism ε : A→ S, called the counit functional (or some-
times trace), such that the SSS-linear form

A×A→ S, (a,b) 7→ ε(a ·b)

is nondegenerate. A morphism φ : A→ B of Frobenius S-semialgebras is a morphism of
two-sided S-semialgebras which commutes with the counits, i.e. εA = εB ◦φ .

Proposition 7.2. The state module Z(M) of a closed, n-dimensional manifold M becomes
a Frobenius semialgebra over Qm and over Qc when endowed with the counit functional

ε = εM : Z(M)→ Q, ε(z) = ∑
f∈F(M)

z( f ).

Proof. The functional is clearly a Qc-bisemimodule homomorphism and a Qm-bisemimodule
homomorphism. To show that Z(M) is indeed Frobenius over the monoidal semiring
Qm = (QS(C),+,×,0,1×), we shall, to a given nonzero z ∈ Z(M), construct a nonzero
z′ ∈ Z(M) such that ε(z× z′) is not zero. If z 6= 0, then there exists a class [ f0] ∈ F(M),
represented by a field f0, such that z[ f0] 6= 0. Setting

z′[ f ] =

{
1×, if [ f ] = [ f0]

0, otherwise,
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we obtain a state z′ ∈ Z(M). Using the partition F(M) =
⋃

c∈F(M) c, the trace of the product
is

ε(z× z′) = ∑
f∈F(M)

z( f )× z′( f ) = ∑
c∈F(M)

∑
f∈c

z( f )× z′( f ) = ∑
f∈[ f0]

z( f )× z′( f )

= ∑
f∈[ f0]

z( f )× z′( f0) = ∑
f∈[ f0]

z( f ) = ∑
f∈[ f0]

z( f0).

Now if R is a complete semiring, r ∈ R a nonzero element and J an arbitrary nonempty
index set, then ∑ j∈J r cannot be zero. For if it were zero, then 0 = ∑ j∈J r = r+∑ j∈J−{ j0} r.
But as R is complete, it is in particular zerosumfree, which would imply r = 0, a contra-
diction. Thus, since z( f0) 6= 0, we have ∑ f∈[ f0] z( f0) 6= 0. Similarly, to prove that Z(M) is
Frobenius over the composition semiring Qc = (QS(C),+, ·,0,1), take

z′[ f ] =

{
1, if [ f ] = [ f0]

0, otherwise.

�

Remark 7.3. As every state is constant over classes [ f ] ∈ F(M), it might at first seem more
natural to construct the counit functional by summing over classes, rather than individual
fields. However, summing over classes would invalidate Proposition 7.5, and thus would
be less compatible with the existing formalism.

More generally, we can also define counits of the form εM,− : Z(M)⊗̂Z(N)→ Z(N) on
the tensor product of the state modules of two closed n-manifolds M and N by

εM,−(z)(g) = ∑
f∈F(M)

z( f ,g),

z : F(M)×F(N)→ Q, g ∈ F(N); similarly for ε−,N . The next proposition shows that the
Frobenius counit interacts multiplicatively with the tensor product of vectors.

Proposition 7.4. Given two vectors z ∈ Z(M), z′ ∈ Z(N), we have the formula

εMtN(z⊗̂cz′) = εM(z) · εN(z′)

in the composition semiring Qc, and

εMtN(z⊗̂mz′) = εM(z)× εN(z′)

in the monoidal semiring Qm.

Proof. Viewing Q as Qc,

εMtN(z⊗̂cz′) = ∑
f∈F(MtN)

(z⊗̂cz′)( f ) = ∑
f∈F(MtN)

β
c(z,z′)( f |M, f |N)

= ∑
(g,g′)∈F(M)×F(N)

β
c(z,z′)(g,g′) = ∑

g∈F(M)

∑
g′∈F(N)

z(g) · z′(g′)

=

 ∑
g∈F(M)

z(g)

 ·
 ∑

g′∈F(N)

z′(g′)

= εM(z) · εN(z′),

using axiom (FDISJ) for systems of fields. If one replaces · by × and c by m in this
calculation, one obtains the corresponding formula in Qm. �
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Let W tW ′ be a disjoint union of two bordisms W,W ′. By Theorem 6.8, the state sum
of the disjoint union decomposes as ZWtW ′ = ZW ⊗̂mZW ′ and thus by the above Proposition

ε∂ (WtW ′)(ZWtW ′) = ε∂W (ZW )× ε∂W ′(ZW ′).

Given three n-manifolds M,N,P and two vectors z ∈ Z(M)⊗̂Z(N), z′ ∈ Z(N)⊗̂Z(P),
we may form their contraction product 〈z,z′〉 ∈ Z(M)⊗̂Z(P). The following proposition
expresses the counit image of 〈z,z′〉 in terms of the counits εM,− : Z(M)⊗̂Z(N)→ Z(N),

ε−,P : Z(N)⊗̂Z(P)→ Z(N) and εN : Z(N)→ Q.

Proposition 7.5. Given vectors z ∈ Z(M)⊗̂Z(N), z′ ∈ Z(N)⊗̂Z(P), the identity

εMtP〈z,z′〉= εN(εM,−(z) · ε−,P(z′))

holds in Q, using on the right hand side the composition semiring-multiplication on Z(N).

Proof. In the following calculation, γ is the contraction defined in Section 3.

εMtP〈z,z′〉 = εMtPγ(z⊗̂cz′) = ∑
f∈F(MtP)

γ(β c(z,z′))( f |M, f |P)

= ∑
f∈F(M)

∑
h∈F(P)

γ(β c(z,z′))( f ,h)

= ∑
f∈F(M)

∑
h∈F(P)

∑
g∈F(N)

β
c(z,z′)( f ,g,g,h)

= ∑
g∈F(N)

∑
f∈F(M)

∑
h∈F(P)

z( f ,g) · z′(g,h)

= ∑
g∈F(N)

 ∑
f∈F(M)

z( f ,g)

 ·
 ∑

h∈F(P)

z′(g,h)


= ∑

g∈F(N)

εM,−(z)(g) · ε−,P(z′)(g)

= ∑
g∈F(N)

(εM,−(z) · ε−,P(z′))(g)

= εN(εM,−(z) · ε−,P(z′)).

�

Let W ′ be a bordism from M to N and let W ′′ be a bordism from N to P. By Theorem
6.10, the state sum ZW of the bordism W =W ′∪N W ′′ obtained by gluing W ′ and W ′′ along
N is given by the contraction product ZW = 〈ZW ′ ,ZW ′′〉. Thus by Proposition 7.5,

εMtP(ZW ) = εN(εM,−(ZW ′) · ε−,P(ZW ′′)).

A homeomorphism φ : M→ N induces covariantly an isomorphism φ∗ : Z(M)→ Z(N)
of both two-sided Qc-semialgebras and Qm-semialgebras. This is even an isomorphism of
Frobenius semialgebras, as the calculation

εNφ∗(z) = ∑
g∈F(N)

φ∗(z)(g) = ∑
g∈F(N)

FunQ(φ
∗)(z)(g)

= ∑
g∈F(N)

z(φ ∗g) = ∑
f∈F(M)

z( f ) = εM(z),
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z ∈ Z(M), shows, where we have used the bijection φ ∗ : F(N)→ F(M) provided by axiom
(FHOMEO). If φ : W →W ′ is a homeomorphism of bordisms with restriction φ∂ : ∂W →
∂W ′, then by Theorem 6.4,

ε∂W ′(ZW ′) = ε∂W ′(φ∂∗ZW ) = ε∂W (ZW ).

Thus state sums of homeomorphic bordisms have equal Frobenius traces.

8. LINEAR REPRESENTATIONS

Let Vect denote the category of vector spaces over some fixed field, with morphisms
the linear maps. While category-valued systems T of action exponentials, as formulated
in Definition 5.8, provide a lot of flexibility, one is often ultimately interested in linear
categories, as those are thoroughly understood and possess a rich, well developed theory
of associated invariants. Thus in practice, the process of constructing a useful positive TFT
will consist of two steps: First, find a (small) strict monoidal category C and a system of
fields that possesses an interesting system of action exponentials into C. The morphisms
of C may still be geometric or topological objects associated to the fields in a monoidal
way. In the second step, construct a linear representation of C, that is, construct a monoidal
functor R : C→ Vect. This converts the morphisms of C into linear maps, which can then
be analyzed using tools from linear algebra. From this perspective, the category C plays
an intermediate role in the construction of a TFT: it ought to be large enough to be able to
record interesting information of the fields on a manifold, but small enough so as to allow
for manageable linear representations. We will verify in this section (Proposition 8.1) that
the composition of the C-valued action exponentials with the representation R yields a
system of Vect-valued action exponentials, which then have their associated positive TFT
Z, provided that Vect is endowed with the structure of a strict monoidal category. At this
point, we face a formal problem: The ordinary tensor product of vector spaces is not strictly
associative and the unit is not strict either. This problem can be solved by endowing Vect,
without changing its objects and morphisms, with a strict (symmetric) monoidal structure,
which is monoidally equivalent to the usual monoidal structure on Vect.

8.1. The Schauenburg Tensor Product. The ordinary tensor product of vector spaces
is well-known not to be associative, though it is associative up to natural isomorphism.
Thus, if we endowed Vect with the ordinary tensor product and took the unit object I
to be the one-dimensional vector space given by the ground field, then, using obvious
associators and unitors, Vect would become a monoidal category, but not a strict one.
There is an abstract process of turning a monoidal category C into a monoidally equivalent
strict monoidal category Cstr. However, this process changes the category considerably and
is thus not always practical. Instead, we base our monoidal structure on the Schauenburg
tensor product � introduced in [Sch01], which does not change the category Vect at all.
The product � satisfies the strict associativity

(U�V )�W =U� (V �W ).

We shall thus simply write U �V �W for this vector space. The unit object I remains the
same as in the usual nonstrict monoidal structure, and one has

V � I =V, I�V =V.

The strict monoidal category (Vect,�, I) thus obtained is monoidally equivalent to the
usual nonstrict monoidal category of vector spaces. The underlying functor of this monoidal
equivalence is the identity. In particular, there is a natural isomorphism ξ : ⊗ → �,
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ξVW : V ⊗W → V �W , where ⊗ denotes the standard tensor product of vector spaces.
Naturality means that for every pair of linear maps f : V →V ′, g : W →W ′, the square

V ⊗W
ξVW

∼=
//

f⊗g
��

V �W

f�g
��

V ′⊗W ′
ξV ′W ′

∼=
// V ′�W ′

commutes. Note that via ξ we can speak of elements v�w ∈V �W, v�w = ξVW (v⊗w),
v ∈V, w ∈W . As the diagram

(U⊗V )⊗W
ξ⊗id

//

a
��

(U�V )⊗W
ξ
// (U�V )�W

U⊗ (V ⊗W )
id⊗ξ

// U⊗ (V �W )
ξ
// U� (V �W )

commutes, the identity
(u� v)�w = u� (v�w)

holds for elements u ∈U,v ∈V and w ∈W .

The basic idea behind the construction of � is to build a specific new equivalence of
categories L : Vect� Vectstr : R such that LR is the identity and then setting V �W =
R(LV ∗LW ), where ∗ is the strictly associative tensor product in Vectstr. Then

(U�V )�W = R(L(U�V )∗LW ) = R(LR(LU ∗LV )∗LW ) = R((LU ∗LV )∗LW )

= R(LU ∗ (LV ∗LW )) = R(LU ∗LR(LV ∗LW )) = R(LU ∗L(V �W ))

= U� (V �W ).

For the rest of this section we will always use the Schauenburg tensor product on Vect and
thus will from now on write ⊗Vect or simply ⊗ for �.

A braiding on the strict monoidal category Vect is defined by taking b : V ⊗W ∼=W ⊗V
to be v⊗w 7→ w⊗ v. The hexagon equations are satisfied. As b2 = 1, Vect endowed with
b is thus a symmetric strict monoidal category.

8.2. Linear Positive TFTs. Let (C,⊗, I) be a strict monoidal small category and let R :
C→ Vect be any strict monoidal functor, that is, a linear representation of C. Let F be a
system of fields and T a system of C-valued action exponentials. The R-linearization L of
T is given on a bordism W by the composition

LW : F(W )
TW−→Mor(C)

R−→Mor(Vect).

Proposition 8.1. The R-linearization L of T is a system of Vect-valued action exponen-
tials.

Proof. Using axiom (TDISJ) for T, we have for a disjoint union W tW ′ and a field f ∈
F(W tW ′):

LWtW ′( f ) = R(TWtW ′( f )) = R(TW ( f |W )⊗C TW ′( f |W ′))
= RTW ( f |W )⊗Vect RTW ′( f |W ′) = LW ( f |W )⊗Vect LW ′( f |W ′).
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This proves (TDISJ) for L. If W = W ′ ∪N W ′′ is obtained by gluing a bordism W ′ with
outgoing boundary N to a bordism W ′′ with incoming boundary N, then on f ∈ F(W ),

LW ( f ) = R(TW ( f )) = R(TW ′′( f |W ′′)◦C TW ′( f |W ′))
= RTW ′′( f |W ′′)◦Vect RTW ′( f |W ′) = LW ′′( f |W ′′)◦Vect LW ′( f |W ′),

using (TGLUE) for T. This establishes (TGLUE) for L. Lastly, for a homeomorphism
φ : W →W ′ and a field f ∈ F(W ′), LW (φ ∗ f ) = RTW (φ ∗ f ) = RTW ′( f ) = LW ′( f ), using
(THOMEO) for T and proving this axiom for L. �

Using the quantization of Section 6, the linearization L thus determines a positive TFT
with state modules Z(M), which are Frobenius semialgebras over the semiring QS(Vect)c

and over the semiring QS(Vect)m. If W is a closed (n+ 1)-manifold, then its state sum
ZW lies in Z(∅) = QS(Vect). Thus given any two vector spaces V,V ′ and a linear operator
A : V → V ′, the state sum yields topologically invariant values (ZW )VV ′(A) in S. If W is
not closed, then we may apply the Frobenius counit to ZW ∈ Z(∂W ) to get topological
invariants (εW (ZW ))VV ′(A) ∈ S.

9. THE CYLINDER, IDEMPOTENCY, AND PROJECTIONS

Let M be a closed n-manifold. The cylinder W = M× [0,1], viewed as a bordism from
M = M×{0} to M = M×{1}, plays a special role in any topological quantum field theory,
since its homeomorphism class functions as the identity morphism M→M in cobordism
categories. Thus in such categories, the cylinder is in particular idempotent and in light of
the Gluing Theorem 6.10 it is reasonable to expect the state sum ZM×[0,1] to be idempotent
as well. We shall show below that this can indeed be deduced from our axioms. It does
not, however, follow from these axioms that ZM×[0,1] must be a predetermined universal
element in Z(M)⊗̂Z(M) which only depends on M and not on the action. This creates
problems for any attempt to recast positive TFTs as functors on cobordism categories. One
could of course add axioms to the definition of category valued action exponentials T that
would force ZM×[0,1] to be a “canonical” element. Practical experience indicates that this is
undesirable, as it would suppress a range of naturally arising, interesting actions. We shall
write M2 = MtM.

Proposition 9.1. The state sum ZM×[0,1] of a cylinder is idempotent, that is,

〈ZM×[0,1],ZM×[0,1]〉= ZM×[0,1] ∈ Z(M2).

Proof. Let φ : M× [0,1]→ M× [0, 1
2 ] be the homeomorphism φ(x, t) = (x, t/2), x ∈ M,

t ∈ [0,1]. Then the restriction φ∂ : M2 → M2 of φ to the boundary is the identity map,
φ∂ = idM2 . Consequently, φ∂∗ : Z(M2)→ Z(M2) is the identity as well. By Theorem 6.4,

ZM×[0,1] = φ∂∗(ZM×[0,1]) = Z
M×[0, 1

2 ]
.

Similarly, ZM×[0,1] = Z
M×[ 1

2 ,1]
. Let W ′ = M× [0, 1

2 ], W ′′ = M× [ 1
2 ,1] and N = M×{ 1

2}.

Then M× [0,1] =W ′∪N W ′′ and we deduce from the Gluing Theorem 6.10 that

〈ZM×[0,1],ZM×[0,1]〉= 〈ZW ′ ,ZW ′′〉= ZM×[0,1].

�
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Let M and N be two closed n-manifolds. Define a map πM,N : Z(MtN)→ Z(MtN)
by πM,N(z) = 〈ZM×[0,1],z〉. By Proposition 3.6, πM,N is right Qc-linear. The contraction
involved here is

γ : E(M×0)⊗̂E(M×1)⊗̂E(M×1)⊗̂E(N)−→ E(M×0)⊗̂E(N).

Thus, technically, πM,N is a map πM,N : Z(M×1)⊗̂Z(N)→ Z(M×0)⊗̂Z(N) given explic-
itly by

πM,N(z)( f ,g) = ∑
h∈F(M×1)

ZM×[0,1]( f ,h) · z(h,g),

f ∈ F(M×0), g ∈ F(N).

Proposition 9.2.
(1) The state sum ZW of any bordism W from M to N is in the image of πM,N . In fact

ZW = πM,N(ZW ), i.e. πM,N acts as the identity on the set of all state sums.
(2) The map πM,N is a projection, that is, π2

M,N = πM,N .

Proof. We prove (1): Let Ŵ = M× [0,1]∪M×{1}W be the topological manifold obtained
from attaching the cylinder along M×{1} to the incoming boundary M of W . By Brown’s
collar neighborhood theorem [Bro62], the boundary ∂W of the topological manifold W
possesses a collar. Using this collar, there exists a homeomorphism φ : Ŵ

∼=−→W, which
is the identity on the boundary, φ∂ = idMtN : ∂Ŵ = MtN→MtN = ∂W . By Theorem
6.4, ZŴ = φ∂∗(ZŴ ) = ZW . By the Gluing Theorem 6.10,

ZW = ZŴ = 〈ZM×[0,1],ZW 〉= πM,N(ZW ).

We prove (2): By Proposition 3.7, the contraction 〈−,−〉 is associative. Therefore, using
the idempotency of ZM×[0,1] (Proposition 9.1),

π
2
M,N(z) = 〈ZM×[0,1],〈ZM×[0,1],z〉〉= 〈〈ZM×[0,1],ZM×[0,1]〉,z〉

= 〈ZM×[0,1],z〉= πM,N(z).

�

Taking N to be the empty manifold, we obtain a projection

πM = πM,∅ : Z(M) = Z(M×1)−→ Z(M) = Z(M×0).

(In the case N =∅, the map γ involved in the inner product defining πM,N becomes

γ : E(M×0)⊗̂E(M×1)⊗̂E(M×1)−→ E(M×0)

under the identifications E(∅)∼= Q, E⊗̂Q∼= E.) For z ∈ Z(M), this projection is given by
the explicit formula

πM(z)( f ) = ∑
h∈F(M×1)

ZM×[0,1]( f ,h) · z(h),

f ∈ F(M×0). In passing, let us observe the formal analogy to integral transforms

(T g)(x) =
∫

K(x,ξ )g(ξ )dξ ,

given by an integral kernel K. Thus the state sum ZM×[0,1] of the cylinder can be interpreted
as such a kernel. We shall now pursue the question how to compute the projection πMtN
of a tensor product of state vectors. Is the image again a tensor product?



46 MARKUS BANAGL

Lemma 9.3. Let T be a cylindrically firm system of C-valued action exponentials. Given
fields fM ∈ F(M× 0), gM ∈ F(M× 1), fN ∈ F(N× 0), gN ∈ F(N× 1) and state vectors
zM ∈ Z(M×1), zN ∈ Z(N×1), the identity(

ZM×[0,1]( fM,gM)×ZN×[0,1]( fN ,gN)
)
·
(
zM(gM)× zN(gN)

)
=
(
ZM×[0,1]( fM,gM) · zM(gM)

)
×
(
ZN×[0,1]( fN ,gN) · zN(gN)

)
holds in QS(C).

Proof. We put a = ZM×[0,1]( fM,gM), b = ZN×[0,1]( fN ,gN), c = zM(gM) and d = zN(gN).
On a morphism ξ ′,

a(ξ ′) = ∑
FM∈F(M×[0,1], fMtgM)

TM×[0,1](FM)(ξ ′),

with

TM×[0,1](FM)(ξ ′) =

{
1, ξ ′ = TM×[0,1](FM)

0, otherwise.

Similarly, on a morphism ξ ′′,

b(ξ ′′) = ∑
FN∈F(N×[0,1], fNtgN)

TN×[0,1](FN)(ξ
′′),

with

TN×[0,1](FN)(ξ
′′) =

{
1, ξ ′′ = TN×[0,1](FN)

0, otherwise.

Thus (see also the proof of Proposition 4.5),

((a×b) · (c×d))XY (γ) = ∑
(ξ ′,ξ ′′,η ′,η ′′)∈TCT (γ)

d(η ′′)c(η ′)b(ξ ′′)a(ξ ′)

= ∑
FM ,FN

(
∑

(ξ ′,ξ ′′,η ′,η ′′)∈TCT (γ)
d(η ′′)c(η ′)TN×[0,1](FN)(ξ

′′)TM×[0,1](FM)(ξ ′)

)

= ∑
FM ,FN

 ∑
(η ′,η ′′)∈TCT (γ;TM×[0,1](FM),TN×[0,1](FN))

d(η ′′)c(η ′)


= ∑

FM ,FN

 ∑
(η ′,η ′′)∈CTC(γ;TM×[0,1](FM),TN×[0,1](FN))

d(η ′′)c(η ′)


= ∑

FM ,FN

(
∑

(ξ ′,ξ ′′,η ′,η ′′)∈CTC(γ)

d(η ′′)TN×[0,1](FN)(ξ
′′)c(η ′)TM×[0,1](FM)(ξ ′)

)
= ∑

(ξ ′,ξ ′′,η ′,η ′′)∈CTC(γ)

d(η ′′)b(ξ ′′)c(η ′)a(ξ ′)

= ((a · c)× (b ·d))XY (γ).

Here, the FM range over F(M× [0,1], fMtgM) and the FN over F(N× [0,1], fN tgN). The
sets CTC and TCT have been defined near the end of Section 4. Note that the element
TN×[0,1](FN)(ξ

′′) commutes with any element of S, since it is either 1 or 0. �
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Theorem 9.4. Let M,N be closed n-manifolds and zM ∈ Z(M), zN ∈ Z(N). If T is a
cylindrically firm system of C-valued action exponentials, then

πMtN(zM⊗̂mzN) = πM(zM)⊗̂mπN(zN).

Proof. Using Theorem 6.8 to decompose Z(MtN)×[0,1]=ZM×[0,1]⊗̂mZN×[0,1], axiom (FDISJ)
to decompose F((MtN)× 1) ∼= F(M× 1)×F(N× 1) and Lemma 9.3, we compute the
value of πMtN(zM⊗̂mzN) on a field f ∈ F((MtN)×0):

πMtN(zM⊗̂mzN)( f ) = ∑
g∈F((MtN)×1)

Z(MtN)×[0,1]( f ,g) · (zM⊗̂mzN)(g)

= ∑
g
(ZM×[0,1]⊗̂mZN×[0,1])( f ,g) · (zM⊗̂mzN)(g)

= ∑
g

(
ZM×[0,1]( f |M×0,g|M×1)×ZN×[0,1]( f |N×0,g|N×1)

)
·
(

zM(g|M×1)× zN(g|N×1)
)

= ∑
(gM ,gN)∈F(M)×F(N)

(
ZM×[0,1]( f |M,gM)×ZN×[0,1]( f |N ,gN)

)
·
(

zM(gM)× zN(gN)
)

= ∑
gM∈F(M)

∑
gN∈F(N)

(
ZM×[0,1]( f |M,gM) · zM(gM)

)
×
(

ZN×[0,1]( f |N ,gN) · zN(gN)
)

=
{

∑
gM∈F(M)

ZM×[0,1]( f |M,gM) · zM(gM)
}
×
{

∑
gN∈F(N)

ZN×[0,1]( f |N ,gN) · zN(gN)
}

= πM(zM)( f |M×0)×πN(zN)( f |N×0)

= (πM(zM)⊗̂mπN(zN))( f ).

�

Corollary 9.5. If C is a monoid, then

πMtN(zM⊗̂mzN) = πM(zM)⊗̂mπN(zN).

(Note that if C is a monoid, then Proposition 4.5 is available.)

Remark 9.6. Following classical topological field theory, and informed by Proposition 9.2,
one might now attempt to set Z′(M) = πMZ(M). In the present framework of positive
topological field theory, this smaller state module is not serviceable, for at least the fol-
lowing reason: In order to obtain an analog of Proposition 6.2 for Z′, i.e. a decomposition
Z′(MtN)∼= Z′(M)⊗̂Z′(N), one would have to rely on results such as Theorem 9.4, which
breaks up a projection of a tensor product on a disjoint union into a tensor product of pro-
jections on the components. But for many interesting actions that one wishes to apply the
present framework to, the assumption of cylindrical firmness is not germane. So we refrain
from passing to the images of the projections πM .

10. SMOOTH MANIFOLDS AND POSITIVE TFTS

We sketch an application of the positive TFT method to constructing a concrete new
TFT defined on smooth bordisms of any dimension ≥ 2. Detailed statements and proofs
will appear in a separate publication. As has been pointed out before, the smooth situation
necessitates some small adaptations of the general framework. We shall indicate most of
these during the construction below. The main idea is to take (certain) fold maps into the
plane as the system of fields and certain linear operators assigned to the singular set of such
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fold maps as the action functional.

The Brauer algebras Dm arose in the representation theory of the orthogonal group O(n),
see [Bra37], [Wen88], and have since played an important role in knot theory. We shall
require a categorification, which we denote by Br, of Brauer’s algebras. Let V be a finite
dimensional real vector space. A duality structure on V is a pair (i,e) whose components
are a symmetric copairing i : R→ V ⊗V and a symmetric pairing e : V ⊗V → R, called
unit and counit, respectively, satisfying the zig-zag equation, i.e. the composition

V =V ⊗ I
1V⊗i−→V⊗3 e⊗1V−→ I⊗V =V

is the identity. Constructing concrete duality structures on a given V involves solving a
system of quadratic equations. The trace of the duality structure (i,e) is Tr(i,e) = e ◦ i =
dimV . We use such duality structures to construct linear monoidal representations of a
natural categorification Br of the Brauer category. But first let us introduce this categori-
fication. Loosely speaking, the morphisms will be 1-dimensional unoriented tangles in a
high-dimensional Euclidean space. As those can always be disentangled, Br is very close,
but not equal, to the category of 1-dimensional cobordisms. One difference is that the
objects of the latter, being 0-manifolds, are unordered (finite) sets, whereas the objects
of Br will be ordered tuples of points. Another difference is that the cobordism cate-
gory has a huge number of objects (though few isomorphism types), whereas the Brauer
category has very few objects to begin with and has the property that two objects are iso-
morphic if and only if they are equal. Let us detail the formal definition of Br. Given
n = 1,2, . . . , we write [n] for the set {1, . . . ,n}. We write [0] for the empty set. The objects
of Br are [0], [1], [2], . . .. Each object [n] determines a 0-submanifold M[n] of R1 by taking
M[n] = {1, . . . ,n} ⊂ R1. Morphisms [m]→ [n] in Br are represented by compact smooth
1-manifolds W , smoothly embedded in [0,1]×R3, such that ∂W =W ∩ ({0,1}×R3) with

∂W ∩{0}×R3 = 0×M[m]×0×0, ∂W ∩{1}×R3 = 1×M[n]×0×0.

We require that near the boundary, the embedding of W is the product embedding

[0,ε]×M[m]×0×0t [1− ε,1]×M[n]×0×0,

for some small ε > 0. Two such W for fixed [m], [n] define the same morphism in Br, if
they are smoothly isotopic in [0,1]×R3 by an isotopy that is the identity near {0,1}×R3.
The composition of two morphisms φ : [m]→ [n], ψ : [n]→ [p] is defined in the most natu-
ral manner: If φ is represented by the cobordism V and ψ by W , then we translate W from
[0,1]×R3 to [1,2]×R3 and define a cobordism U as the union along {1}×M[n]×0×0
of V and the translated copy of W . Then we reparametrize the embedding of U from
[0,2]×R3 to [0,1]×R3. The resulting cobordism represents ψ ◦ φ ; its isotopy class de-
pends clearly only on φ and ψ , not on the particular choice of representatives V and W .
The identity 1[0] : [0]→ [0] is represented by the empty cobordism W = ∅. For n > 0,
the identity 1[n] : [n]→ [n] is represented by the product [0,1]×M[n]× 0× 0. Then Br is
indeed a category. Note that HomBr([m], [n]) is empty for m+ n odd and nonempty for
m+ n even. We make Br into a strict monoidal category by defining a tensor product
⊗ : Br×Br→ Br on objects by [m]⊗ [n] = [m+n]. Let the unit object I be [0]. The tensor
product φ ⊗ φ ′ of two morphisms φ : [m]→ [n] and φ ′ : [m′]→ [n′] is defined by “stack-
ing” a representative W ′ of φ ′ on top of a representative W of φ . There is precisely one
endomorphism λ : [0]→ [0], λ 6= 1[0], such that λ is represented by a connected, nonempty
manifold. This morphism is represented by the embedding of a circle in (0,1)×R3. We
will call this endomorphism λ the loop. Given two objects [m] and [n] in Br, we define
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the braiding bm,n : [m]⊗ [n]→ [n]⊗ [m] to be the isomorphism represented by a Brauer
diagram which is loop-free and connects i ∈ M([m]⊗ [n]) = {1, . . . ,m,m+ 1, . . . ,m+ n},
1 ≤ i ≤ m, to n+ i ∈M([n]⊗ [m]) = {1, . . . ,n,n+1, . . . ,n+m} and m+ i ∈M([m]⊗ [n]),
1≤ i≤ n, to i ∈M([n]⊗ [m]). Since we are in codimension 3, b is symmetric, bm,n = b−1

n,m.
Particularly important is the elementary braiding b1,1. Then the structure (Br,⊗, I,b) is a
symmetric strict monoidal category. A unit in : I → [n]⊗ [n] is given by interpreting the
cylinder [0,1]×M[n]× 0× 0 as a morphism I→ [n]⊗ [n]. In particular, we have the ele-
mentary unit i1. Similarly, a counit en : [n]⊗ [n]→ I is given by this time interpreting the
cylinder [0,1]×M[n]×0×0 as a morphism [n]⊗ [n]→ I. The elementary counit is e1. We
summarize: The structure (Br,⊗, I,b, i,e) is a compact (i.e. every object is dualizable),
symmetric, strict monoidal category.

We use duality structures on vector spaces to construct linear representations of Br, i.e.
symmetric strict monoidal functors Y : Br→Vect which preserve duality. Let V be a finite
dimensional real vector space and (i,e) a duality structure on V . Then there exists a unique
symmetric strict monoidal functor Y : Br→ Vect which satisfies Y ([1]) =V and preserves
duality, that is, Y (i1) = i, Y (e1) = e. This can be proven by finding an explicit presentation
of Br by generators and relations. Such a presentation can either be found directly, or
can be derived from the presentation of oriented tangles in [0,1]×R2 given in [Tur89], by
forgetting orientation and adding one relation enabling strands to cross through each other.
One particular example of a duality structure on V = R2 is

(18) e(e11) = 0, e(e12) = 1, e(e21) = 1, e(e22) =−1, i(1) = e11 + e12 + e21,

where ei j = ei⊗ e j, and e1,e2 is the standard basis of R2. The symmetric monoidal repre-
sentation Y : Br→ Vect determined by the duality structure (18) is faithful on loops, that
is, if φ and ψ are any two morphisms in Br such that Y (φ) =Y (ψ), then φ and ψ have the
same number of loops.

We discuss next an algebraic process of profinite idempotent completion. Given objects
[m], [n] of Br, we define a subset Hm,n of the vector space HomVect(V⊗m,V⊗n) by

Hm,n = Y (HomBr([m], [n])).

This set is nonempty only if m+n is even. From now on, assume that the duality structure
(i,e) is given on a vector space V with dimV ≥ 2 and is such that Y is faithful on loops.
This is for instance the case for the duality structure (18). Applying Y to the loop λ , we
obtain a scalar λ̂ = Y (λ ) ∈ HomVect(Y [0],Y [0]) = R, which is just the trace of the duality
structure (i,e). If S is any complete semiring, then the semiring S[[q]] of formal power
series in q becomes a complete semiring by transferring the summation law on S pointwise
to S[[q]], see [Kar92]. Hence, B[[q]] is a complete idempotent semiring. The Boolean
monoid B is an N-semimodule in a natural way. Thus, by letting τ act as multiplication
by q, B[[q]] becomes a semimodule over the polynomial semiring N[τ]. If A is a set, let
FM(A) denote the free commutative monoid generated by A. Suppose that A is equipped
with an action N×A→ A of the monoid (N,+), (τ i,a) 7→ τ ia, where we have written the
additive monoid N multiplicatively as N= {τ i | i ∈ N}. Then

∑
i

miτ
i ·∑

j
α ja j = ∑

i, j
(miα j)(τ

ia j), mi,α j ∈ N,a j ∈ A,

makes FM(A) into an N[τ]-semimodule. Now the sets Hm,n are naturally equipped with the
action τ ih = λ̂ ih ∈ Hm,n of the monoid N. Hence, FM(Hm,n) is an N[τ]-semimodule and
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consequently the N[τ]-semimodule

Q(Hm,n) = FM(Hm,n)⊗N[τ]B[[q]]

is defined. It is idempotent since B[[q]] is. The fact that the Boolean semiring, whose only
nonzero value is 1, appears here is a reflection of the fact that the modulus of the integrand
eiS appearing in the classical Feynman path integral is always |eiS|= 1 and only the phase
is relevant. Roughly, the terms in FM(Hm,n) play the role of the phase. One can prove that
the Q(Hm,n) are complete N[τ]-semimodules. We set

Q = Q(i,e) = ∏
m,n∈N

Q(Hm,n)

in the category of N[τ]-semimodules. A product

Q(Hm,p)×Q(Hp,n)−→ Q(Hm,n), ( f , f ′) 7→ f · f ′

is given on two elements ∑
k
i=1 hi⊗bi ∈Q(Hm,p) and ∑

l
j=1 h′j⊗b′j ∈Q(Hp,n) with hi ∈Hm,p,

h′j ∈Hp,n by ∑i, j(h′j ◦hi)⊗(bib′j). We define the product of two elements ( fm,n),( f ′m,n)∈Q
to be ( fm,n) · ( f ′m,n) = ( f ′′m,n), where the component f ′′m,n ∈ Q(Hm,n) is given by the convo-
lution f ′′m,n = ∑p∈N fm,p · f ′p,n, using the completeness of Q(Hm,n), as well as the products
declared above. An element 1 ∈ Q is given by the family 1 = ( fm,n) with

fm,n =

{
1V⊗m ⊗1, if m = n,
0, if m 6= n.

The tuple (Q,+, ·,0,1) is a complete idempotent semiring, an adaptation to the present
context of the composition semiring Qc of Section 4. The cross-product

Q(Hm,n)×Q(Hr,s)−→ Q(Hm+r,n+s), ( f , f ′) 7→ f × f ′

of two elements ∑
k
i=1 hi⊗ bi ∈ Q(Hm,n) and ∑

l
j=1 h′j ⊗ b′j ∈ Q(Hr,s) with hi ∈ Hm,n, h′j ∈

Hr,s is given by ∑i, j(hi⊗ h′j)⊗ (bib′j), where hi⊗ h′j is the Schauenburg tensor product.
We define the cross-product of two elements ( fm,n),( f ′m,n) ∈ Q to be ( fm,n)× ( f ′m,n) =

( f ′′m,n), where the component f ′′m,n ∈ Q(Hm,n) is given by f ′′m,n = ∑p+r=m
q+s=n

fp,q× f ′r,s, using

the products× declared above. (It should be pointed out that in order to prove associativity
of this product, the strict associativity of the Schauenburg tensor product enters crucially.)
An element 1× ∈ Q is given by

1×m,n =

{
1I⊗1, if m = n = 0,
0, otherwise.

Then the tuple (Q,+,×,0,1×) is a complete idempotent semiring, an adaptation to the
present context of the monoidal semiring Qm of Section 4. We note in passing that these
two semirings Q can be shown to be so-called continuous semirings. This can then be used
to link the corresponding Eilenberg summation law to V. P. Maslov’s idempotent integra-
tion theory [LMS01]. Thus all invariants developed here can equivalently be phrased as
Maslov idempotent integrals.

On the topological side, a key concept in our smooth TFT is the notion of a fold map.
Let M and N be smooth manifolds. Let Jk(M,N) be the space of k-jets of smooth maps
M→N and let jk f : M→ Jk(M,N) denote the k-jet extension of a smooth map f : M→N.
The manifold J1(M,N) is canonically isomorphic to Hom(T M,T N). The subsets

Sr = {σ ∈ J1(M,N) | corankσ = r}, r = 0,1,2, . . . ,
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are submanifolds of J1(M,N). The full-rank set S0 is open in J1(M,N). Let W be an n-
manifold, n≥ 2, and let S(F)⊂W denote the singular set of a smooth map F : W →R2 =
C. The jet manifold is now given by

J1(W,R2) = S0∪S1∪S2.

A smooth map F : W → R2 is called a fold map, if j1F is transverse to S1, S(F) =
( j1F)−1(S1), and for all x ∈ S(F), TxS(F) + kerDxF = TxW. One refers to its singular
set S(F), a smoothly embedded 1-dimensional submanifold, also as the fold locus or fold
lines. Fold points possess an invariantly defined absolute index, which is constant along
connected components of S(F).

Fix an integer D≥ 2n+1. A closed (n−1)-dimensional manifold can be embedded in
RD−1 and then, after having made a choice of k∈N, into a slice {k}×RD−1⊂R×RD−1 =
RD. It is convenient to assume that closed (n−1)-manifolds M are always embedded in RD

in such a way that every connected component of M lies entirely in some slice {k0}×RD−1,
for suitable k0 ∈N. Given such an embedding, we let M(k)=M∩{k}×RD−1 be the part of
M that lies in the k-slice. A compact smooth n-dimensional manifold W with boundary can
be smoothly embedded into a closed halfspace of R2n+1 in such a way that the boundary
of W lies in the bounding hyperplane and the interior lies in the interior of the halfspace,
see e.g. [Hir76, Theorem 1.4.3]. Let M,N ⊂ RD be closed, smoothly embedded, (n−1)-
dimensional manifolds, not necessarily orientable. A cobordism from M to N is a compact,
smoothly embedded n-dimensional manifold W ⊂ [0,1]×RD with boundary ∂W = MtN,
such that

• M ⊂ {0}×RD,N ⊂ {1}×RD, W −∂W ⊂ (0,1)×RD,
• near the boundary of [0,1]×RD, the embedding is the product embedding, that is,

there exists 0 < ε < 1
2 such that W ∩ [0,ε]×RD = [0,ε]×M and W ∩ [1− ε,1]×

RD = [1− ε,1]×N, and
• every connected component of W lies entirely in some slice [0,1]×{k0}×RD−1,

k0 ∈ N.

We will see later that our invariant depends only very weakly on the embedding of W . We
refer to any ε with the above properties as a cylinder scale of W . The manifold M, i.e. the
part of ∂W that is contained in the hyperplane 0×RD, is the incoming boundary and N, i.e.
the part of ∂W that is contained in the hyperplane 1×RD, is the outgoing boundary. Let
W (k) = W ∩ [0,1]×{k}×RD−1 be the part of W that lies in the k-slice. The embedding
also enables us to chop W into the slices Wt = W ∩ ({t}×RD). The first coordinate of
RD+1 defines a smooth time-function ω : W → [0,1], i.e. ω is the composition

W ↪→ [0,1]×RD proj1−→ [0,1].

Using this function, Wt can alternatively be described as the preimage Wt = ω−1(t). Let
Reg(W ) be the set of regular values of ω .

Let W be a cobordism from M to N. Given a fold map F : W → C, we set F(k) = F | :
W (k)→C and SFt = S(F)∩Wt . We say that F has generic imaginary parts over t ∈ [0,1],
if Im◦F | : SFt → R is injective. We put

GenIm(F) = {t ∈ [0,1] | F has generic imaginary parts over t}

and
t (F) = {t ∈ Reg(W ) | S(F) tWt}.
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Note that for t ∈t (F), SFt is a compact 0-dimensional manifold and thus a finite set of
points. The set t (F) can be expressed in terms of regular values. We are ready to define
the fields F(W ) on the bordism W .

Definition 10.1. A fold field on W is a fold map F : W → C such that for all k ∈ N,
(1) 0,1 ∈ t (F(k))∩GenIm(F(k)), and
(2) GenIm(F(k)) is residual in [0,1].

For a nonempty cobordism W , let F(W ) ⊂ C∞(W,C) be the moduli space of all fold
fields on W . For W empty, we agree that F(W ) = {∗}, a set with one element.

We shall next describe the system T of action exponentials on fold fields. Let Mor(Br)
denote the set of all morphisms of the category Br. There is a natural function

S : F(W )−→Mor(Br)

defined as follows. If W is empty we define S(∗) = 1I , the identity on the unit object
I = [0] of Br. Next, suppose that W is nonempty and entirely contained in a slice [0,1]×
{k}×RD−1, i.e. W = W (k). Given F ∈ F(W ), let mS be the cardinality of S(F)∩M and
let nS be the cardinality of S(F)∩N. The Brauer morphism S(F) will be a morphism
S(F) : [mS]→ [nS]. There is a canonical identification of points of S(F)∩M with points of
M[mS] given as follows: By (1) of Definition 10.1, Im◦F is injective on S(F)∩M = SF0
and therefore induces a unique ordering p1, p2, . . . , pmS of the points of S(F)∩M such that

ImF(pi)< ImF(p j) ⇐⇒ i < j.

This is a bijection S(F)∩M ∼= M[mS], pi ↔ i. Similarly for the outgoing boundary: The
function Im◦F is injective on S(F)∩N = SF1 and therefore induces a unique ordering
q1,q2, . . . ,qnS of the points of S(F)∩N such that ImF(qi)< ImF(q j)⇔ i < j. This gives
a bijection S(F)∩N ∼=M[nS], qi↔ i. To construct the Brauer morphism S(F) : [mS]→ [nS],
connect the points of 0×M[mS]×0×0 and 1×M[nS]×0×0 by smooth arcs in [0,1]×R3

in the following manner. Let c be a connected component of the compact 1-manifold
S(F). We distinguish four cases. If ∂c = {pi, p j}, then connect (0, i,0,0) to (0, j,0,0)
by an arc. If ∂c = {pi,q j}, then connect (0, i,0,0) to (1, j,0,0). If ∂c = {qi,q j}, then
connect (1, i,0,0) to (1, j,0,0). Finally, if c is closed, i.e. ∂c = ∅, then tensor with the
loop endomorphism λ . Carrying this recipe out for every connected component c of S(F)
completes the construction of S(F). Finally, if W is nonempty but otherwise arbitrary, we
put S(F) =

⊗
k∈NS(F(k)). (This tensor product is finite, as W (k) is eventually empty.)

Let V be a real vector space of finite dimension dimV ≥ 2 and let (i,e) be a duality
structure on V such that the induced symmetric monoidal functor Y is faithful on loops.
(For instance, we may take V = R2 and (i,e) as in (18).) Let Q = Q(i,e) be the profinite
idempotent completion of Mor(Br), based on the symmetric monoidal representation Y :
Br→ Vect determined by (i,e). The composition

TW : F(W )
S−→Mor(Br) Y−→Mor(Vect)

is the action exponential TW . Thus every fold field F ∈ F(W ) determines an element
YS(F)⊗ 1 in Q(HdomS(F),codS(F)), and thus an element in Q, which we will denote by
TW (F) ∈ Q. This completes the construction of the action exponential.

We still have to define the fields on closed (n−1)-manifolds and will do so now. For a
nonempty, closed, smooth (n−1)-manifold M ⊂ RD (not necessarily orientable), we have
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the trivial cobordism from M to M, i.e. the cylinder W = [0,1]×M ⊂ [0,1]×RD, and we
put

F(M) = { f ∈ F([0,1]×M) | S( f ) = 1 ∈Mor(Br)},
where 1 denotes an identity morphism in Br. For M = ∅, we put F(∅) = {∗}, the one-
element set. These are the fields associated to a closed (n− 1)-manifold and will act as
boundary conditions.

Remark 10.2. If g : M→R is an excellent Morse function on M, then id×g : [0,1]×M→
[0,1]×R is a fold field with S(id×g) = 1 ∈Mor(Br), hence an element in F(M).

We proceed to define our smooth positive TFT Z. We take the state module to be
Z(M) = FunQ(F(M)). (We depart here slightly from the general definition as given in
Section 6 and work directly with the pre-state module without imposing the constraint
equation (14).) Let W n be a cobordism from M to N. We shall define the state sum,
ZW ∈ Z(M)⊗̂Z(N). For any closed smooth manifold X , we define an equivalence relation
on the collection of smooth maps of the form [a,b]×X → C for some real numbers a < b.
Two such maps f : [a,b]×X → C and f ′ : [a′,b′]×X → C are equivalent, written f ≈ f ′,
if and only if there exists a diffeomorphism ξ : [a,b]→ [a′,b′] with ξ (a) = a′ such that
f (t,x) = f ′(ξ (t),x) for all (t,x) ∈ [a,b]×X . Let εW > 0 be a cylinder scale of W . Given a
boundary condition ( fM, fN) ∈ F(M)×F(N), we shall write

F(W ; fM, fN) = {F ∈ F(W ) | ∃ε(k),ε ′(k) ∈ (0,εW ) :

F |[0,ε(k)]×M(k) ≈ fM(k), F |[1−ε ′(k),1]×N(k) ≈ fN(k),∀k}.
On ( fM, fN) the state sum ZW is then defined as in Section 6, that is,

ZW ( fM, fN) = ∑
F∈F(W ; fM , fN)

TW (F).

Once more we stress that this sum uses the infinite summation law of the complete semir-
ing Q and thus yields a well-defined element of Q. Using the methods developed in the
present paper, as well as certain techniques from differential topology, one can prove that
the assignment Z is a positive topological field theory, with the understanding that we do
not claim pseudo-isotopy invariance of induced maps on the full state module, since we
did not impose the corresponding constraint on states in this brief exposition. The gluing
formula of Theorem 6.10 holds. Diffeomorphism invariance is understood to apply to time
consistent diffeomorphisms: A diffeomorphism Φ : W →W ′ is said to be time consistent,
if it sends time slices Wt to time slices W ′τ . Thus our invariant perceives at most the time
function of an embedding and therefore depends only weakly (if at all) on the embedding
of W .

For cobordisms of dimension n ≥ 4, the value of the state sum on a given boundary
condition is a rational function of the loop-variable q. In fact, the denominator turns out
to be universal (independent of the cobordism), whence all the information is contained in
the polynomial numerator. These theorems lie well outside the scope of the present paper
and will be explained elsewhere.

While the invariant constructed above is simple enough to be computable by a gluing
formula, it is on the other hand subtle enough to detect exotic smooth structures, as we
shall now outline. Let Σ7 be a 7-dimensional exotic smooth sphere, for example the Mil-
nor sphere. Thus Σ7 is a smooth manifold homeomorphic, but not diffeomorphic, to the
standard sphere S7. On S7, there is of course a Morse function with precisely 2 critical
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points, that is, a map S7→ R with precisely one maximum point and one minimum point.
For n> 4, every n-dimensional exotic sphere is diffeomorphic to a twisted sphere and every
twisted sphere has Morse number 2. Thus on Σ7 there is also a Morse function with pre-
cisely 2 critical points, a maximum point and a minimum point. For two closed n-manifolds
let Cob(M,N) denote the collection of all oriented (embedded) cobordisms W n+1 from M
to N. The collection Cob(S7,Σ7) is not empty, since ΩSO

7 = 0. Let fS : S7→R, fΣ : Σ7→R
be two Morse functions, each with precisely 2 critical points. Note that fS and fΣ are both
excellent. Let f S and f Σ be the suspensions of fS and fΣ, respectively, that is,

f S = idI× fS : I×S7 −→ I×R⊂ C, f Σ = idI× fΣ : I×Σ
7 −→ I×R⊂ C.

Then f S and f Σ are fold fields with S( f S) = 1, S( f Σ) = 1, and hence define elements
f S ∈ F(S7), f Σ ∈ F(Σ7), see also Remark 10.2. For any closed, smooth manifold M home-
omorphic to a sphere, let C2(M) denote the space of all f M ∈ F(M), which are the sus-
pension of a Morse function fM : M→ R with precisely two critical points. A cobordism
W ∈ Cob(S7,M7) has a state sum ZW ∈ Z(S7)⊗̂Z(M7), ZW : F(S7)×F(M7)→ Q, so we
can evaluate on the boundary condition ( f S, f M)∈F(S7)×F(M7). We get ZW ( f S, f M)∈Q
and shall consider the coboundary aggregate invariant

A(M7) = ∑
f M∈C2(M7)

∑
W∈Cob(S7,M7)

ZW ( f S, f M) ∈ Q.

Using the concept of a Stein factorization for special generic maps and results of O. Saeki
[Sae02], together with index arguments (which would break down if cusp singularities
were present), we can prove:

Theorem 10.3. If Σ7 is an exotic sphere not diffeomorphic to S7, then the invariant A(Σ7)
is a multiple of q.

For the standard sphere, it is easy to see that A(S7) = 1V⊗V +r(q) for some power series
r(q) ∈ Q. Then, using that Y, induced by the duality structure (i,e), is faithful on loops,
one can show that A(Σ7) 6= A(S7) in the semiring Q. We conclude that the coboundary
aggregate invariant A(−) distinguishes Σ7 from S7. Dimension 7 plays no distinguished
role in the above arguments and was chosen both for historical reasons and in order to
make the exposition more concrete.

11. FURTHER EXAMPLES

11.1. The Pólya Enumeration TFT. Not all applications of positive TFTs need be topo-
logical. For instance, Pólya’s theory [Pól37] of counting colored configurations modulo
symmetries can be recreated within the framework of positive topological field theories by
making a judicious choice of monoidal category C, fields F and action functional T. One
can then derive Pólya’s enumeration formula by interpreting its terms as state sums and ap-
plying our theorems on state sums. Pólya theory has a wide range of applications, among
them chemical isomer enumeration, investigation of crystal structure, applications in graph
theory and statistical mechanics. This also proves Burnside’s lemma on orbit counting from
TFT formulae. The set C = {1,χ,µ} becomes a commutative monoid (C, ·,1) by setting

χ
2 = µ, χ ·µ = µ, µ

2 = µ.

(Associativity is readily verified.) By Lemma 4.6, (C, ·,1) determines a small strict monoidal
category C = C(C). Suppose that a finite group G acts on a finite set X (from the left). Let
Y be another finite set, whose elements we think of as “colors”. Then G acts on the set
W = FunY (X) of functions w : X → Y from the right by (wg)(x) = w(gx). We interpret
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the elements of W as colorings of X . To form our positive TFT, we also interpret W and
its subsets as 0 = (−1+1)-dimensional bordisms (whose boundary is necessarily empty).
Given a subset W ′ ⊂W, i.e. a codimension 0 submanifold, we define a set E(W ′) over it
by

E(W ′) = {(w,g) ∈W ′×G | g ∈ Gw},
where Gw ⊂ G denotes the isotropy subgroup of G at w. There is an inclusion E(W ′) ⊂
E(W ). We define the fields on W ′ to be F(W ′) = FunB(E(W ′)). Since we are working in
an equivariant context, axiom (THOMEO) has to be restricted to equivariant homeomor-
phisms. Such a homeomorphism φ : W ′→W ′′ induces a bijection E(φ) : E(W ′)→ E(W ′′)
by E(φ)(w,g) = (φ(w),g). Define the action of φ on fields by

φ
∗ = FunB(E(φ)) : F(W ′′) = FunB(E(W ′′))−→ FunB(E(W ′)) = F(W ′).

The action functional on a field F ∈ F(W ′) is by definition

TW ′(F) =


idI , if F is identically 0,
χ, if F is the characteristic function of some element,
µ, otherwise.

Let S =N∞ be the complete semiring of Example 2.1. The cardinality of a set A is denoted
|A|. Let Z be the positive TFT associated with S,C,F and T. Let W/G denote the orbit
space and let O ∈W/G be an orbit. Then the state sum of O evaluated at χ is ZO(χ) =

∑F∈F(O) TO(F)(χ) = |E(O)| = |G|. The space W can be written as a disjoint union W =⊔
O∈W/GO. Applying Theorem 6.8 to this decomposition shows that

ZW =
⊗̂

m
{ZO | O ∈W/G}.

Evaluating this on χ, we get ZW (χ) = |W/G| · |G|. On the other hand,

ZW (χ) = ∑
F∈F(W )

TW (F)(χ) = ∑
w∈W
|Gw|= ∑

g∈G
|W g|,

where W g = {w ∈W | wg = w}. Thinking of g as a permutation of X , g has a unique cycle
decomposition. Let c(g) be the number of cycles. Then |W g| = |FunY (X)g| = |Y |c(g) and
we arrive at

|FunY (X)/G|= 1
|G| ∑g∈G

|Y |c(g),

which is Pólya’s enumeration theorem. This application suggests that positive TFTs may
be instrumental in solving other types of combinatorial problems as well.

11.2. The Signature TFT. Suppose that n+1 is divisible by 4, say n+1= 4k, and assume
that bordisms W are oriented. The intersection form of W is the symmetric bilinear form

H2k(W,∂W ;R)×H2k(W,∂W ;R)−→ R

given by evaluation of the cup product on the fundamental class [W ]∈H4k(W,∂W ), (x,y) 7→
〈x∪ y, [W ]〉. (If the boundary of W is empty, this form is nondegenerate.) The signature of
W , σ(W ), is the signature of this bilinear form. Suppose that W = W ′ ∪N W ′′ is obtained
by gluing along N the bordism W ′ with outgoing boundary N to the bordism W ′′ whose
incoming boundary is also N. The orientation of W is to restrict to the orientations of W ′

and W ′′. Then Novikov additivity asserts that

σ(W ) = σ(W ′)+σ(W ′′),
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see [Nov70, p. 154] and [Wal69]. (Novikov and Rohlin were actually interested in defining
Pontrjagin-Hirzebruch classes modulo a prime p. The additivity property for the signature
enabled them to find such a definition.) The proof of Novikov additivity is provided in
[AS68, Prop. (7.1), p. 588]. It is important here that N be closed as a manifold. If W ′,W ′′

are allowed to have corners and one glues along a manifold with boundary (N,∂N), then
the signature is generally non-additive but can be calculated using a formula of Wall, which
contains a Maslov triple index correction term. More recently, Novikov has pointed out
that his additivity property is equivalent to building a nontrivial topological quantum field
theory. Let us indicate a precise construction of such a signature TFT Zsign using the
framework of the present paper. Since the signature can be negative, this example shows,
prima facie paradoxically, that invariants which require additive inverses can also often be
expressed by positive TFTs. To do this, one exploits that the monoidal category C can be
quite arbitrary.

By Lemma 4.6, the additive monoid (group) (Z,+,0) of integers determines a small
strict monoidal category Z. A system F of fields is given by admitting only a single unique
field on each manifold, that is, by taking F(W ) = {?}, F(M) = {?}, where ? denotes a
single element, which we may interpret as the unique map to a point. A system T of
Z-valued action exponentials on oriented bordisms W is given by

TW (?) = σ(W ).

Note that T∅(?) = σ(∅) = 0 = idI . In axiom (TDISJ) it is of course now assumed that
W tW ′ is oriented in agreement with the orientations of W and W ′, similarly for axiom
(TGLUE). By Novikov additivity, axiom (TGLUE) is satisfied. Let Zsign be the positive
TFT associated to (F,T). If a is any integer (a morphism in Z), then

Zsign
W (?)II(a) = TW (?)II(a) =

{
1, if a = TW (?) = σ(W )

0, otherwise.

So the signature state sum on a morphism is a Kronecker delta function,

Zsign
W (?)II(a) = δa,σ(W ).

11.3. A Twisted Signature TFT. The signature TFT can be twisted by allowing nontriv-
ial fields, as we shall now explain. Let n+ 1 be the TFT-dimension and F be a closed,
oriented, topological manifold whose dimension is such that n+1+dimF is divisible by
4. Let G be a topological group acting continuously on F by orientation preserving homeo-
morphisms. Let EG→BG be the universal principal G-bundle. The associated fiber bundle
E→ BG with fiber F is given by the total space E = EG×G F , i.e. the quotient of EG×F
by the diagonal action of G. The projection is induced by EG×F→ EG→ BG. Let W be
an oriented (n+1)-dimensional bordism with boundary ∂W . Principal G-bundles over W
have the form of a pullback f ∗EG for some continuous map f : W → BG. The associated
F-bundle p : f ∗E →W is a compact manifold with boundary ( f |∂W )∗E. (Note that the
bundle f ∗E is canonically isomorphic as a bundle to ( f ∗EG)×G F .) This manifold has
a canonical orientation. We shall again use the strict monoidal category Z of integers, as
introduced in the previous example. A system F of fields is given by

F(W ) = { f : W → BG | f continuous},

similarly for closed n-manifolds M. A system T of Z-valued action exponentials on ori-
ented bordisms W is given by the signature of the F-bundle pulled back from BG under
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f ,
TW ( f ) = σ( f ∗E).

The positive TFT Z̃sign associated to (F,T) is the F-twisted signature TFT. If f ∗E → ∂W
is an F-bundle over the boundary, given by a map f : ∂W → BG, and a any integer (a
morphism in Z), then the F-twisted signature state sum Z̃sign( f ) is the counting function
whose value on a is

Z̃sign
W ( f )II(a) = ∑

A
1,

where A is the set of all F : W → BG extending f such that σ(F∗E) = a. So roughly, the
signature state sum on a morphism a “counts” those F-bundles over W that extend f ∗E→
∂W and have signature a. Naturally, since one is not summing over distinct isomorphism
types of F-bundles, that is, distinct homotopy classes of maps W → BG, one generally
picks up either no summand or uncountably many. So, as pointed out before, what may
primarily be of interest is the zero/nonzero-pattern contained in the invariant Z̃sign

W , not the
actual value in S.

11.4. Relation to Number Theoretic Quantities. Certain number theoretic quantities,
such as arithmetic functions, can be rendered as state sums of a positive TFT. To do this,
encode natural numbers as 0-dimensional manifolds roughly by viewing the former as
finite multisets of prime numbers and prime numbers as points. Homeomorphisms are
simply bijections of multisets, i.e. bijections of the underlying sets which preserve mul-
tiplicities. The multiplicativity of arithmetic functions on coprime integers can then be
deduced from the multiplicativity of state sums on disjoint manifolds. (Disjointness is un-
derstood inside the universal multiset of all prime numbers.) The key observation is that
the set of divisors of a natural number displays exactly the same characteristics as fields
on manifolds according to Definition 5.1. Space constraints do not permit us to provide
details.
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[Gol85] Martin Goldstern, Vervollständigung von Halbringen, Diplomarbeit, Technische Universität Wien,

1985.
[Gol99] J. S. Golan, Semirings and their applications, Kluwer Academic Publishers, 1999.



58 MARKUS BANAGL

[Gro55] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of the Amer. Math.
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