

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 28.11.2014

EXERCISE SHEET 6

Length spaces

To hand in by Friday, December 5, 2014, 12:00

Exercise 1. (10 points)

Consider the real line \mathbb{R} and the map $d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ with $(x, y) \mapsto d(x, y) := \sqrt{|y - x|}$.

- (a) Show that d is a metric on \mathbb{R} .
- (b) Show that the topology on $\mathbb R$ induced by d is the same as the usual topology induced by the Euclidean metric.
- (c) Show that in the metric space (\mathbb{R}, d) every non-constant curve has infinite length.

Exercise 2. (30 points)

(a) Let (X, d) be a length space. Show that X has approximate midpoints, that is, for all $x, y \in X$ and all $\varepsilon > 0$ there is a point $c \in X$ such that

$$d(x,c), d(c,y) \leq \frac{1}{2}d(x,y) + \varepsilon.$$

- (b) Show that a complete metric space (X, d) with approximate midpoints is a length space.
- (c) Let (X, d) be a geodesic space. Show that X has (exact) midpoints, that is, for all $x, y \in X$ there is a point $c \in X$ such that

$$d(x,c) = d(c,y) = \frac{1}{2}d(x,y).$$

(d) Show that a complete metric space (X, d) with (exact) midpoints is a geodesic space.

Hint for (b) and (d): You can use the following statement without proof. Let $A \subset [0,1]$ be a dense subset, X a complete metric space and $f : A \longrightarrow X$ an L-Lipschitz function. Then f can be extended to a unique L-Lipschitz function on [0,1].

Exercise 3. (20 points) ("Hopf - Rinow" theorem)

Let (X, d) be a metrically complete and locally compact length space.

- (a) Show that X is proper, that is, every closed bounded subset of X is compact.
- (b) Show that X is a geodesic metric space.

Hints:

- (a) Show that for a fixed $z \in X$, the set $I_z := \{r \ge 0 | \overline{B_r(z)} \text{ is compact} \}$ is open and close in $\mathbb{R}_{\ge 0}$. For the closeness one can show that every sequence $(y_j)_{j \in \mathbb{N}} \subset \overline{B_R(z)}$ has a converging subsequence by additionally taking a decreasing sequence converging to 0 and using a diagonal argument.
- (b) Use Exercise 2.