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1 Introduction

Let us fix a finite extension E/Qp with uniformizer π and residue field Fq, and let F be an
algebraically closed extension of Fq that is complete with respect to a non-trivial valuation v.
In modern parlance one might call F perfectoid, since F is of characteristic p (not all perfectoid
fields are algebraically closed, however).

Attached to this data, Fargues and Fontaine construct in their paper [2] a complete curve
XE,F (now also refered to as the fundamental curve of p-adic Hodge theory), study its properties
and classify vector bundles on it. They show that these vector bundles are closely related to p-
adic representations ofGK , whereK is any finite extension ofQp. Using these constructions, they
are able to reprove/restate “Theorem A and B” of p-adic Hodge theory (namely, the classification
of (crystalline/semistable/de Rham) p-adic representations of GK via (ϕ,N)-modules and the
fact that potentially semistable implies de Rham, respectively)

We remark that Fargues and Fontaine’s fundamental curve has already been successfully
used by Weinstein (see [5]) to give a new description of the absolute Galois group Gal(Qp/Qp)
as the étale fundamental group of an adic curve defined over Cp. There is an upcoming workshop
(Heidelberg/Münster) dedicated to understanding Weinstein’s paper, and this seminar’s goal is
to give a good understanding of one of the basic ingredients.

The primary aim of our seminar is the construction of XE,F and the classification of vector
bundles on it. In order to expand a bit on that, we quickly sketch the construction in section 2.
For the interested reader we have put together some motivation for the construction in section
3. Section 4 consists of the talks of the seminar.
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2 Construction of XE,F

We start with E,F as before, and denote by OE resp. OF the ring of integers of E resp. F . Set

Bb,+
E := WOE

(OF )[
1

π
] =

{ ∑
n�−∞

[xn]πn : xn ∈ OF

}
,

the OE-Witt vectors of the perfect ring OF of characterstic p. For any r ∈ R+ there is, induced
from the valuation v on OF , a valuation vr on Bb,+

E . Let B+
E,r be the completion of Bb,+

E with

respect to this valuation and set B+
E :=

⋂
r≥0B

+
E,r.

For example, if E = Qp, F = Frac(R(OCp/p)) (R(−) denotes Fontaine’s “épaississement

universelle” construction, a universal construction that produces a perfect ring), then B+ = B̃+
rig

in the notation of Berger.
The Frobenius on F induces by the definition of the Witt vectors a Frobenius ϕ on B+

E . Let

PE,π :=
⊕
d≥0

(B+
E )ϕ=π

d

as a graded algebra, where we denote by PE,π,d = (B+
E )ϕ=π

d
the piece of degree d. Define

XE,F := Proj(PE,π).
In the first major theorem ([2], Theorem 10.2), some important results are the following:

Theorem 2.1. a) XE,F is a complete curve over E, and all its closed points are of degree 1.

b) If E′/E then XE′,F = XE,F ⊗E E′

c) One has a natural bijection (PE,π,1 \ 0)/E× → |XE,F |, where |XE,F | are the closed points
of XE,F .

d) Pic(XE,F ) ∼= Z via the degree map.

XE,F is not of finite type over E (hence not proper), so what does “complete” mean in this
context? Fargues and Fontaine demand that a curve X over Z comes equipped with a degree
map deg : |X| → N. Any element f 6= 0 in the function field of X gives rise to a divisor div(f),
and X is called complete if deg(div(f)) = 0.

Let now d ∈ Z and PE,π[d] be the graded algebra which has as underlying algebra PE,π, but

the grading is shifted by d. We consider OXE,F
(d) = P̃E [d] as a sheaf of OXE,F

-modules. It is
possible to generalize this definition to all d ∈ Q.

The second major theorem ([2], Theorem 12.8) then contains the following result:

Theorem 2.2. The map

{(λi)1≤i≤n ∈ Qn| λ1 ≥ . . . ≥ λn} −→ {Isomorphism classes of vector bundles on XE,F }

(λ1, . . . , λn) 7−→
n⊕
i=1

OXE,F
(λi)

is a bijection.
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Let us remark that there exist more general constructions of XE,F . For instance, F need
not be algebraically closed. Statements in this setting are deduced by going to the algebraic
closure und using descent theory on the original setting of [2] (see [3]). Also, E need not be of
characteristic zero, but may be replaced by a general local field. As is mostly the case, in this
equal characterstic situtation the constructions and proofs become considerably easier, which is
why we will focus on the char(E) = 0 case.

Another way to study this construction is to attach an analytic space (in the flavour of
Berkovich or Huber) to XE,F . However, the absence of a noetherian condition complicates
things. Nevertheless, Fargues ([1]) was able to construct an adic space Xad

E,F such that a GAGA

formalism holds for coherent sheaves on XE,F and Xad
E,F .

Let us finally remark that it is this adification of XE,F that plays a decisive role in Weinstein’s
paper.

3 Motivation for the construction

3.1 Vector bundles on XE,F as B-pairs

One of the most direct ways to see why one should look at XE,F as defined above is the following,
if one is interested in studying p-adic representations. For simplicity we assume that E = Qp.
Let t ∈ PE,π,1\0 and set Be = (B+

E [1/t])ϕ=id = (PE,π[1/t])0. Define B+
dR as the t-adic completion

of B+
E (for now we don’t care about the dependence on t), which comes equipped with an action

of GQp .
We recall that Berger has defined the category of B-pairs as follows: elements are pairs

(We,W
+
dR), where We is a free Be-module of finite type (equipped with a semi-linear ϕ-action),

and W+
dR is a B+

dR-lattice of BdR ⊗Be We. Berger has shown that the category of p-adic repre-
sentations of GQp embeds into the category of B-pairs by the simple rule

V 7→ (V ⊗Qp Be, V ⊗Qp B
+
dR),

where V is any such representation.
Now, vector bundles on a general curve X with an open affine subset U = Spec(B) ⊂ X such

that Pic(U) = 0 and X \U = {∞} can be characterized by the following data: a free B-module
M of finite type, a free ÔX,∞-module N of finite type and an isomorphism M ⊗B Frac(ÔX,∞) ∼=
N ⊗ÔX,∞

Frac(ÔX,∞). If we apply this to the curve XE,F with U = Spec(Be), we obtain from

a vector bundle F a free Be-module of finite type F|U , a free ÔX,∞-module of finite type F̂∞,

and an isomorphism as before. Since one can easily show that ÔX,∞ = B+
dR (where the closed

point ∞ corresponds to t as chosen before) it follows that this is precisely the data of a B-pair.

3.2 |XE,F | as holomorphic functions on a rigid analytic space

A second point of view is the following: one would like to find a rigid analytic space Y such
that the elements of the Fréchet algebra B+

E are the holomorphic functions on Y . From the
classical point of view one should consider MaxSpec(B+

E ), although the ring B+
E is nothing like

a Tate-algebra. Nevertheless, it is possible to attach an adic space Y := Spa(B+
E ) to B+

E . We
note that one has an action of ϕ on B+

E , induced by the Frobenius on F . Let us denote by
|Y | = MaxSpec(B+

E ) ⊂ Spa(B+
E ) the subset of closed maximal ideals.
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If we want to classify ϕ-modules on B+
E , that is, free B+

E -modules with a semi-linear action
of ϕ, we should consider them as vector bundles on Y/ϕZ. Hence, one is looking for a “proper”
curve X that should be “equal” to Y/ϕZ. Classically, for a projective curve X over a field, one
finds a very ample line bundle L on X, so that

X = Proj

⊕
n≥0

H0(X,L⊗n)

 .

In our situation such a line bundle should come from a line bundle on Y that is ϕ-equivariant.
If one puts L = B+

E · e such that ϕ(e) = p−1e, then

H0(X,L⊗n) = (B+
E · e

⊗n)ϕ=id = (B+
E )ϕ=p

n
.

Surprisingly, this turns out to be correct and explains the construction of XE .
With this in hand one can show that |Y |/ϕZ = |XE,F |.

3.3 XQp,F parametrizes all un-tilts of F

Another interesting point of view in light of the tilting process by Scholze can be made as follows.
Recall that a nonarchimedean valued field L is called perfectoid if |L×| is not discrete and if the
Frobenius x 7→ xp on OL/p is surjective, where OL denotes the ring of integers of L.

Now, if L is a non-archimedean field of characteristic 0, on may associate to it the following
ring of characteristic p

OL[ := lim←−
x 7→xp

OL/p,

which is an integral domain. We denote L[ := Frac(OL[), and call it the tilt of L.
Suppose we are given a perfectoid field F of characteristic p. If L is a perfectoid field of

characteristic 0 and F embeds into L[ such that L[/F is finite, we call L an un-tilt of F .
How can we classify all un-tilts of F? Here is how the fundamental curve comes into play.

Any un-tilt L of F is given by a map F → L[. This gives rise to a map # : OE → OL
via the #-map from the tilting formalism, and hence to maps WQp(OF ) → OL and θL :
WQp(OF )[1/p] → L. The kernel of this last map is a maximal ideal. Unfortunately, it seems
that MaxSpec(WQp(OF )[1/p]) is too big, which is why one considers WQp(OF )[1/p] ↪→ B+

E . By
continuity, the map θL extends to B+

E , and its kernel is again a maximal ideal that, as one can
show, corresponds precisely to one un-tilt L of F .

From the preceeding subsection, if we are now interested in ϕ-equivalence classes of un-tilts
of F , we see that we may parametrize them by |Y |/ϕZ = |XQp,F |.
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4 List of talks

The numbers are in reference to the article [2]. [4] and [3] are overview articles, where the focus
in the first article is on the relation with p-adic representations, and the second article also
incorporates statements about the cases when E is not necessarily of characteristic 0 and when
F is not necessarily algebraically closed. Unfortunately, it skips some essential proofs, which is
why we will stick to the original article [2].

1. Curves and Fiber bundles (1.1-2.3). Define complete curves X over Z, almost euclidean
rings. Prove Theorem 1.13, skip 1.2.4, state the classification for fiber bundles on X in 2.1,
show Lemma 2.5 and Proposition 2.6.

2. Properties of Fiber bundles (3.1, 3.2.1, 4.1, 4.2.2). Explain the Harder-Narasimhan
formalism, define semi-stability, state Theorems 3.2, 3.3, 3.4 without proof. Give example
3.2.1. Define Riemannian spheres, sketch the proof of Theorem 4.2, state Proposition 4.3
without proof, treat section 4.2.2 as detailed as time permits.

3. Generalized Riemannian spheres (4.2.3). Define generalized Riemannian spheres, give
example 4.21, prove Proposition 4.23, define pure vector bundles, give Proposition 4.25 and
show the classification Theorem 4.26.

4. Some Rings (5.1-5.2). Define WOE
(OF ), define the standard operations F and V , treat the

“torsion”-case by a Lubin-Tate law associated to E, define the rings Bb,+
E and the valuations

wk as well as vr, define the rings Sr and B+ and state the elementary properties of these.

5. Newton Polygons, Bivectors, the ring R (5.3, 5.4, 5.6). Define the Legendre transform
and the Newton polygon Newt(b) of elements b ∈ Bb,+ and b ∈ B+, show basic properties
of Newt(−), define bivectors, skip 5.5. Define the ring RQ and the map θ, state the basic
functorial properties and give the example 5.6.3.

6. Elements of degree 1 (6.1, 6.2.1). Define primitivity and the degree for elements in
WOE

(OF ) (compare also Definition 6.41), define the set A and A associated to a ∈ A, prove
Lemma 6.2, sketch Proposition 6.5, explain the non-unique Weierstrass decomposition in this
situation, show the identification OF = R(A), only sketch Proposition 6.19, deduce Corollary
6.21. Define the set Y and the metric d on Y .

7. Properties of Y and elements of degree > 1 (6.2.2, 6.3, 6.4). Give the parametrization
of Y by elements of mF , show the homeomorphism in Proposition 6.33, explain how Y may
be viewed as a subspace of a Berkovich space, show basic functorial properties in 6.3, prove
Theorem 6.42 and state the Weierstrass decomposition in this case, show Theorems 6.45 and
6.46.

8. Further study of elements of B+
E (6.5, 6.6, 6.7, 7.1, 7.2). Show Theorems 6.49 and 6.50

which decompose elements of B+
E , explain how one can attach a ring B+

dR,m and a valuation

ordm to WOE
(OF ) for any m ∈ Y , define Div+(Y ) and div(f) for f ∈ B+

E , show Corollary
6.54 and only state Theorem 6.55. Show Proposition 7.1, define B, show Proposition 7.6.
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9. Fundamental exact sequence and main properties of the curve (9.1-9.4, 10.1).
Define the graded algebra PE,π, the sets Md, M and the map Π. Define Div+(Y/ϕZ) and
show the Theorem 9.7. Explain the relation of Π with the Lubin-Tate logarithm, show the
fundamental exact sequence 9.10, state Corollary 9.12 and Theorem 9.13. Prove the main
theorem 10.2 and state Corollary 10.3.

10. Vector bundles on the curve (12.1-12.5). Define OXE,F
(d), first for d ∈ Z (Definition

12.2), then for λ ∈ Q (Definition 12.4), show the statements 12.2-12.7. Prove Theorem 12.8
via Theorem 12.9, which in turn is proved via Banach-Colmez spaces, 12.5.1. Explain the
proof as it is done in 12.5.2.
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