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Recapitulation: The Poincaré return map3

Def.: (global surface of section)

• 𝑀 closed 3-manifold, 𝑋 (smooth) vector field on 𝑀

• Σ ⊂ 𝑀 embedded compact surface satisfying:

i. Each component of 𝜕Σ is a periodic orbit of 𝑋

ii. Int(Σ) is transverse to 𝑋

iii. The orbit of 𝑋 through any point in 𝑀\𝜕Σ intersects Int(Σ) in forward and 
backward time

Then Σ is called a global surface of section.
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Def.:

An area-preserving diffeomorphism𝜓: Σ ⟶ Σ embeds into a Reeb flow on 𝑀

if 𝜓 is the Poincaré return map for some Reeb vector field on 𝑀.

Def: (Poincaré return map)
Let 𝜙𝑋

𝑡 be the flow of 𝑋. The Poincaré return map of 𝑋 is defined as
𝜓: Int(Σ) ⟶ Int(Σ)

𝑝 ⟼ 𝑞 = 𝜙𝑋
𝑡 (𝑝) with minimal 𝑡 so that 𝜙𝑋

𝑡 𝑝 ∈ Int(Σ)
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Source:
https://de.wikipedia.org/wiki/Poincar%C3%A9-Abbildung#/media/Datei:Poincareschnitt.jpg



Main Theorem6

Assumption:
Write (𝑟, 𝜃) for polar coordinates on 𝐷2. 
Let 𝐻 = (𝐻𝑠)𝑠∈ℝ/2𝜋ℤ be a smooth family of Hamiltonian functions (i.e. functions) on the 2-

disc 𝐷2 and assume there is a neighbourhood of the boundary 𝜕𝐷2 in 𝐷2 on which 𝐻 only
depends on 𝑟, not on 𝜃 or the ‘time-parameter‘ 𝑠.
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Main Theorem:

Let 𝐻 be as in our assumption and 𝑋 the associated Hamiltonian vector field. 

𝜓 ≔ 𝜙𝑋
2𝜋, where 𝜙𝑋 denotes the flow of the time dependent vector field 𝑋.

Then 𝜓 embeds into a Reeb flow on 𝑆3.  

Def.: (Hamiltonian vector field)

𝜆 ≔ 𝑟2 ⅆ𝜃 = 2𝑥 ⅆ𝑦

𝜔 ≔ ⅆ𝜆 = 2𝑟 ⅆ𝑟 ∧ ⅆ𝜃

Then 𝐷2, 𝜔 is a symplectic manifold. 

For 𝑠 ∈ Τℝ 2𝜋ℤ = 𝑆1 define the time dependent vector field 𝑋 = (𝑋𝑠) on 𝐷2 via
𝜄𝑋𝑠𝜔 = 𝜔(𝑋𝑠,∙) = ⅆ𝐻𝑠

𝑋 is called the Hamiltonian vector field of 𝐻𝑠.



First steps
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Notice:

• 𝑋𝑠 is a multiple of the angular vector field 𝜕𝜃 near the boundary

𝜕 𝑆1 × 𝐷2 = 𝑆1 × 𝜕𝐷2 of  𝑉 ≔ 𝑆1 × 𝐷2

• We can add any constant to 𝐻𝑠 without changing 𝑋𝑠, so we may assume:

𝐻𝑠|𝜕𝐷2 = ℎ ∈ ℕ (applying our assumption)

• The canonical transformation of 𝑋 into a autonomous vector field 𝑅 on 𝑆1 × 𝐷2 is
𝑅 ≔ 𝜕𝑠 + 𝑋𝑠

Then:  𝜓 = 𝜙𝑋
2𝜋 = 𝜙𝑅

2𝜋
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Visualization of the flow of 𝑅 on 𝜕𝑉:

Source (modified version):
https://www.google.de/imgres?imgurl=https%3A%2F%2Fqph.fs.quoracdn.net%2Fmain-qimg-
79d8ddf944f86ebcc57aedc4926780ad.webp&imgrefurl=https%3A%2F%2Fwww.quora.com%2FWhat-is-an-intuitive-explanation-of-a-fundamental-
group&tbnid=E8n6APQkOwsn5M&vet=10CHsQMyidAWoXChMI2Pv547PZ6gIVAAAAAB0AAAAAEAM..i&docid=9_GM5ieaZ_Y6eM&w=600&h=303&q=2%20torus&ved=0CHsQMyidAWoX
ChMI2Pv547PZ6gIVAAAAAB0AAAAAEAM



Topological cuts
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Setting:

• smooth action 𝑆1 ×𝑀 ⟶ 𝑀, 𝜆,𝑚 ↦ 𝜆 ∗ 𝑚 on manifold 𝑀

• 𝑓:𝑀 ⟶ ℝ smooth 𝑆1-invariant function with regular value 𝑎 ∈ ℝ

• 𝑆1-action on 𝑓−1(𝑎) is free

Define the equivalence relation~ on 𝑓−1([𝑎,∞)) through: For
𝑚 ≠ 𝑛:𝑚~𝑛 ⟺ 𝑚,𝑛 ∈ 𝑓−1 𝑎 and

𝑚, 𝑛 are in the same 𝑆1-orbit

𝑀[𝑎,∞) ≔ Τ𝑓−1([𝑎,∞)) ~



11 • We have the natural 𝑆1-action 𝜆 ∗ (𝑚, 𝑧) ≔ (𝜆 ∗ 𝑚, 𝜆−1𝑧) on 𝑀 × ℂ

• Ψ: 𝑀 × ℂ ⟶ ℝ, 𝑚, 𝑧 ↦ 𝑓 𝑚 − |𝑧|2 is 𝑆1-invariant and 𝑎 is a regular value of Ψ

• 𝑆1 acts freely on Ψ−1 𝑎

• 𝜎: 𝑓−1 𝑎,∞ ⟶ Ψ−1 𝑎 ,𝑚 ↦ (𝑚, 𝑓 𝑚 − 𝑎) descends to a homeomorphism

𝜎: 𝑀[𝑎,∞) ෦⟶ ΤΨ−1 𝑎 𝑆1 and hence𝑀[𝑎,∞) carries a smooth structure

• 𝑓−1((𝑎,∞)) is open and dense in 𝑀[𝑎,∞) and 

𝑀[𝑎,∞) \𝑓
−1((𝑎,∞)) is diffeomorphic to Τ𝑓−1(𝑎) 𝑆1.



Contact cuts
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Setting:

• Contact manifold (𝑁, 𝛼) with strict contact 𝑆1-action generated by vector field 𝑌

( i.e. (𝜙𝑌
𝑡 )∗𝛼 = 𝛼 )

• Define the momentum map 𝜇𝑁: 𝑁 ⟶ ℝ , 𝜇𝑁 ≔ 𝛼(𝑌)

By Cartan, we have:

(1)             ⅆ𝜇𝑁 = ℒ𝑌𝛼 − 𝜄𝑌ⅆ𝛼 = −𝜄𝑌ⅆ𝛼



13 Consequences of (1):

• 𝑌 is tangent to 𝜇𝑁
−1(0)

• 𝜇𝑁
−1(0) regular ⟺ 𝑌 ≠ 0 along 𝜇𝑁

−1(0)

• the 𝑆1-action restricts to 𝜇𝑁
−1(0) and is locally free

Furthermore we assume:
𝑆1-action is free on 𝜇𝑁

−1(0).

• By Quotient manifold theorem we have: Τ𝜇𝑁
−1(0) 𝑆1 smoooth manifold

• There is a unique contact form ො𝛼 on Τ𝜇𝑁
−1(0) 𝑆1 with 𝜋𝑁

∗ ො𝛼 = 𝛼|𝑇𝜇𝑁
−1(0)

with 𝜋𝑁: 𝜇𝑁
−1(0) ⟶ Τ𝜇𝑁

−1(0) 𝑆1 the projection
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Now consider the contact manifold (𝑁 × ℂ, 𝛼 + 𝑥ⅆ𝑦 − 𝑦ⅆ𝑥) with 𝑆1-action generated by
the vector field 𝑌 − 𝑥𝜕𝑦 − 𝑦𝜕𝑥

Notice that this action is compatible with the action on 𝑁 × ℂ defined in the ‘Topological
cut‘ section since

𝜙𝑌− 𝑥𝜕𝑦−𝑦𝜕𝑥

𝑡 𝑝, 𝑥0 + 𝑖𝑦0 = (𝜙𝑌
𝑡 𝑝 , 𝑥0 + 𝑖𝑦0 cos(−𝑡) + 𝑖 sin(−𝑡) )

The action on 𝑁 × ℂ is also a strict contact 𝑆1-action with momentum map
𝜇 𝑝, 𝑧 = 𝜇𝑁 𝑝 − |𝑧|2

(with the notation from the ‘Topological cut‘ section:

𝑀 = 𝑁, 𝑓 = 𝜇𝑁, Ψ = 𝜇)

Using the results from above for an arbitrary contact manifold satisfying our assumptions
and the section ‘Topological cut‘, we get:



15 ( Τ𝜇−1 0 𝑆1 , ത𝛼) is a contact form of dimension dim 𝑁 where

𝜋: 𝜇−1(0) ⟶ Τ𝜇−1 0 𝑆1 and

𝜋∗ ത𝛼 = 𝛼 + 𝑥ⅆ𝑦 − 𝑦ⅆ𝑥 |𝑇𝜇−1(0)

Also
𝜇𝑁
−1 0,∞ ↪ Τ𝜇−1 0 𝑆1

Τ𝜇𝑁
−1 𝑆1 ↪ Τ𝜇−1 0 𝑆1

are contact embeddings.



Contact cuts on the disc D2 and related
constructions
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Lemma 1:

For 𝐻𝑠 sufficiently large, the 1-form 
𝛼 ≔ 𝐻𝑠ⅆ𝑠 + 𝜆

is a positive contact form on 𝑆1 × 𝐷2.

The condition for 𝛼 to be a positive contact form is given by

(2) 𝐻𝑠 + 𝜆(𝑋𝑠) > 0 or equivalently

(2‘) 𝑟
𝜕𝐻𝑠

𝜕𝑟
< 2𝐻𝑠
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Proof:

(3) 𝛼 ∧ ⅆ𝛼 = 𝐻𝑠ⅆ𝑠 + 𝜆 ∧ ⅆ𝐻𝑠 ∧ ⅆ𝑠 + 𝜔 = ⅆ𝑠 ∧ (𝐻𝑠𝜔 + 𝜆 ∧ ⅆ𝐻𝑠)

(4) 𝜆 ∧ ⅆ𝐻𝑠 = 𝜆 𝑋𝑠 𝜔

⟹ 𝛼 ∧ ⅆ𝛼 = (𝐻𝑠 + 𝜆(𝑋𝑠))ⅆ𝑠 ∧ 𝜔

⟹ (2)

𝜆 = 𝜄𝑟
2
𝜕𝑟
𝜔

⟹ 𝜆 𝑋𝑠 = −ⅆ𝐻𝑠(
𝑟

2
𝜕𝑟)

⟹ (2‘)
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Now assume that the contact condition is fulfilled.

Lemma 2:
𝑅 = 𝜕𝑠 + 𝑋𝑠 = 𝑓𝑅𝛼 for some positive function 𝑓, where 𝑅𝛼 denotes
the Reeb vector field of 𝛼.

Proof:
𝜄𝑅ⅆ𝛼 = 𝜄𝑅 ⅆ𝐻𝑠 ∧ ⅆ𝑠 + 𝜔 = −ⅆ𝐻𝑠 + ⅆ𝐻𝑠 = 0

and
𝛼 𝑅 = 𝐻𝑠 + 𝜆(𝑋𝑠) > 0

(2)



19 Lemma 3:

On a collar neighbourhood of 𝜕𝑉 = 𝜕(𝑆1 × 𝐷2) in 𝑆1 × 𝐷2 where H = (𝐻𝑠)𝑠
depends only on 𝑟, the 𝑆1-action generated by 𝑌 ≔ 𝜕𝑠 − ℎ𝜕𝜃 is a strict contact 𝑆1-
action with respect to 𝛼.

The momentum map is 𝜇𝑉 = 𝛼 𝑌 = 𝐻𝑠 − ℎ𝑟2 and since 𝐻𝑠|𝜕𝐷2 = ℎ we have:
𝜕𝑉 ⊂ 𝜇𝑉

−1(0)

𝑌 ≠ 0 ⟹ 𝜕𝑉 regular component

(2‘) on 𝜕𝑉 ⟹ ⅆ𝜇𝑉(𝜕𝑟) < 0 on 𝜕𝑉 ⟹ 𝜇𝑉> 0 on an interior neighbourhood
of 𝜕𝑉

Lemma 4:

The contact cut Τ(𝑆1 × 𝐷2) ~ is contactomorphic to 𝑆3 endowed with the standard
contact structure.    



Proof of the main theorem20

• 𝐷2 ≅ 0 × 𝐷2 ↪ 𝑆1 × 𝐷2 ⟶ Τ(𝑆1 × 𝐷2) ~ ≅ 𝑆3 is an embedding, smooth on Int(𝐷2)

• Since 𝑋𝑠 is a multiple of the angular vector field 𝜕𝜃 near the boundary it suffices to
consider the flow of 𝑋𝑠 on Int(𝑉)≅ ( Τ𝑉 ~)\(𝜕𝑉 ∕ ~)

• On Int(𝑉)=Int(𝑆1 × 𝐷2) this follows from Lemma 2

• Under the above identification 𝑆1 = 𝜕𝐷2 ≅ 𝜇𝑉
−1(0)/𝑆1 and 𝜇𝑉

−1(0)/𝑆1 ↪ 𝑆3is a 
contact embedding and therefore 𝜕𝐷2 is a periodic orbit of the Reeb vector field on 𝑆3
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