An Introduction to Contact Cuts

Tom Stalljohann

July 20, 2020

Junior Geometry Seminar

Overview

- 1. Recapitulation: The Poincaré return map
- 2. Main Theorem
- 3. First steps
- 4. Topological cuts
- 5. Contact cuts
- 6. Contact cuts on the disc D² and related constructions
- 7. Proof of the main theorem
- 8. References

Recapitulation: The Poincaré return map

Def.: (global surface of section)

- M closed 3-manifold, X (smooth) vector field on M
- $\Sigma \subset M$ embedded compact surface satisfying:
 - i. Each component of $\partial \Sigma$ is a periodic orbit of X
 - ii. Int(Σ) is transverse to X
 - iii. The orbit of X through any point in $M \setminus \partial \Sigma$ intersects $Int(\Sigma)$ in forward and backward time

Then Σ is called a *global surface of section*.

Def: (Poincaré return map)

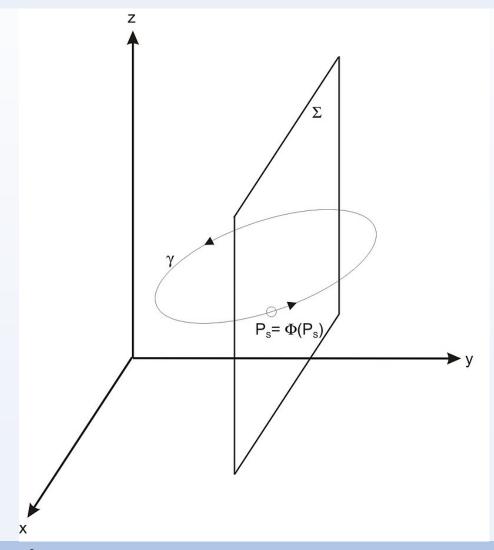
Let ϕ_X^t be the flow of X. The Poincaré return map of X is defined as

 ψ : Int(Σ) \longrightarrow Int(Σ)

 $p \mapsto q = \phi_X^t(p)$ with minimal t so that $\phi_X^t(p) \in \operatorname{Int}(\Sigma)$

Def.:

An area-preserving diffeomorphism $\psi: \Sigma \longrightarrow \Sigma$ embeds into a Reeb flow on M if ψ is the Poincaré return map for some Reeb vector field on M.



Source: https://de.wikipedia.org/wiki/Poincar%C3%A9-Abbildung#/media/Datei:Poincareschnitt.jpg

Main Theorem

Assumption:

Write (r, θ) for polar coordinates on D^2 .

Let $H = (H_s)_{s \in \mathbb{R}/2\pi\mathbb{Z}}$ be a smooth family of Hamiltonian functions (i.e. functions) on the 2-disc D^2 and assume there is a neighbourhood of the boundary ∂D^2 in D^2 on which H only depends on r, not on θ or the 'time-parameter' s.

Def.: (Hamiltonian vector field)

$$\lambda \coloneqq r^2 \ d\theta = 2x \ dy$$

$$\omega := d\lambda = 2r dr \wedge d\theta$$

Then (D^2, ω) is a symplectic manifold.

For $s\in\mathbb{R}/2\pi\mathbb{Z}=S^1$ define the time dependent vector field $X=(X_S)$ on D^2 via $\iota_{X_S}\omega=\omega(X_S,\cdot)=dH_S$

X is called the *Hamiltonian vector field* of H_S .

Main Theorem:

Let H be as in our assumption and X the associated Hamiltonian vector field.

 $\psi \coloneqq \phi_X^{2\pi}$, where ϕ_X denotes the flow of the time dependent vector field X.

Then ψ embeds into a Reeb flow on S^3 .

First steps

Notice:

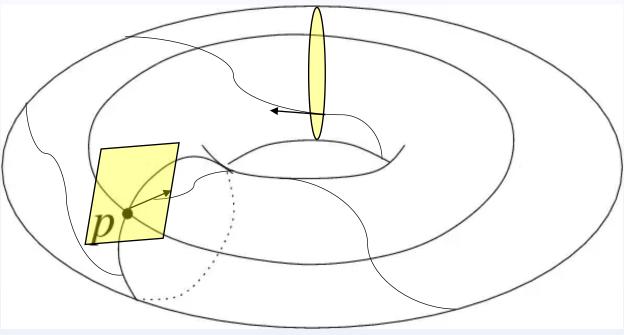
• X_s is a multiple of the angular vector field $\partial \theta$ near the boundary

$$\partial(S^1 \times D^2) = S^1 \times \partial D^2$$
 of $V := S^1 \times D^2$

- We can add any constant to H_S without changing X_S , so we may assume:
 - $H_s|_{\partial D^2} = h \in \mathbb{N}$ (applying our assumption)
- The canonical transformation of X into a autonomous vector field R on $S^1 \times D^2$ is $R \coloneqq \partial_S + X_S$

Then:
$$\psi = \phi_X^{2\pi} = \phi_R^{2\pi}$$

Visualization of the flow of R on ∂V :



Source (modified version):

https://www.google.de/imgres?imgurl=https%3A%2F%2Fqph.fs.quoracdn.net%2Fmain-qimg-79d8ddf944f86ebcc57aedc4926780ad.webp&imgrefurl=https%3A%2F%2Fwww.quora.com%2FWhat-is-an-intuitive-explanation-of-a-fundamental-group&tbnid=E8n6APQkOwsn5M&vet=10CHsQMyidAWoXChMI2Pv547PZ6gIVAAAAAB0AAAAEAM..i&docid=9_GM5ieaZ_Y6eM&w=600&h=303&q=2%20torus&ved=0CHsQMyidAWoXChMI2Pv547PZ6gIVAAAAAB0AAAAEAM..i

Topological cuts

Setting:

- smooth action $S^1 \times M \longrightarrow M$, $(\lambda, m) \mapsto \lambda * m$ on manifold M
- $f: M \to \mathbb{R}$ smooth S^1 -invariant function with regular value $a \in \mathbb{R}$
- S^1 -action on $f^{-1}(a)$ is free

Define the equivalence relation \sim on $f^{-1}([a,\infty))$ through: For $m \neq n$: $m \sim n \iff m, n \in f^{-1}(a)$ and m, n are in the same S^1 -orbit

$$M_{[a,\infty)} := f^{-1}([a,\infty))/\sim$$

- We have the natural S^1 -action $\lambda*(m,z)\coloneqq(\lambda*m,\lambda^{-1}z)$ on $M\times\mathbb{C}$
- $\Psi: M \times \mathbb{C} \longrightarrow \mathbb{R}$, $(m, z) \mapsto f(m) |z|^2$ is S^1 -invariant and a is a regular value of Ψ
- S^1 acts freely on $\Psi^{-1}(a)$
- $\sigma: f^{-1}\big([a,\infty)\big) \to \Psi^{-1}(a), m \mapsto (m,\sqrt{f(m)-a})$ descends to a homeomorphism $\overline{\sigma}: M_{[a,\infty)} \overset{\sim}{\longrightarrow} \Psi^{-1}(a)/S^1$ and hence $M_{[a,\infty)}$ carries a smooth structure
- $f^{-1}((a, \infty))$ is open and dense in $M_{[a,\infty)}$ and $M_{[a,\infty)}\setminus f^{-1}((a,\infty))$ is diffeomorphic to $f^{-1}(a)/S^1$.

Contact cuts

Setting:

- Contact manifold (N,α) with strict contact S^1 -action generated by vector field Y (i.e. $(\phi_Y^t)^*\alpha=\alpha$)
- Define the momentum map $\mu_N:N \to \mathbb{R}$, $\mu_N\coloneqq \alpha(Y)$

By Cartan, we have:

$$(1) d\mu_N = \mathcal{L}_Y \alpha - \iota_Y d\alpha = -\iota_Y d\alpha$$

Consequences of (1):

- Y is tangent to $\mu_N^{-1}(0)$
- $\mu_N^{-1}(0)$ regular $\iff Y \neq 0$ along $\mu_N^{-1}(0)$
- the S^1 -action restricts to $\mu_N^{-1}(0)$ and is locally free

Furthermore we assume: S^1 -action is free on $\mu_N^{-1}(0)$.

- By Quotient manifold theorem we have: $\mu_N^{-1}(0)/S^1$ smoooth manifold
- There is a unique contact form $\hat{\alpha}$ on $\mu_N^{-1}(0)/S^1$ with $\pi_N^*\hat{\alpha}=\alpha|_{T\mu_N^{-1}(0)}$ with $\pi_N:\mu_N^{-1}(0)\to\mu_N^{-1}(0)/S^1$ the projection

Now consider the contact manifold $(N \times \mathbb{C}, \alpha + xdy - ydx)$ with S^1 -action generated by the vector field $Y - (x\partial_y - y\partial_x)$

Notice that this action is compatible with the action on $N \times \mathbb{C}$ defined in the 'Topological cut' section since

$$\phi_{Y-(x\partial_{Y}-y\partial_{X})}^{t}(p,x_{0}+iy_{0})=(\phi_{Y}^{t}(p),(x_{0}+iy_{0})(\cos(-t)+i\sin(-t)))$$

The action on $N \times \mathbb{C}$ is also a strict contact S^1 -action with momentum map $\mu(p,z) = \mu_N(p) - |z|^2$

(with the notation from the 'Topological cut' section:

$$M = N$$
, $f = \mu_N$, $\Psi = \mu$)

Using the results from above for an arbitrary contact manifold satisfying our assumptions and the section 'Topological cut', we get:

 $(\mu^{-1}(0)/S^1$, $\bar{\alpha})$ is a contact form of dimension dim N where

$$\pi: \mu^{-1}(0) \longrightarrow \mu^{-1}(0)/S^1$$
 and

$$\pi^*\bar{\alpha} = (\alpha + xdy - ydx)|_{T\mu^{-1}(0)}$$

Also

$$\mu_N^{-1}((0,\infty)) \hookrightarrow \mu^{-1}(0)/S^1$$

 $\mu_N^{-1}/S^1 \hookrightarrow \mu^{-1}(0)/S^1$

are contact embeddings.

Contact cuts on the disc D² and related constructions

Lemma 1:

For H_s sufficiently large, the 1-form

$$\alpha \coloneqq H_s ds + \lambda$$

is a positive contact form on $S^1 \times D^2$.

The condition for α to be a positive contact form is given by

(2)
$$H_S + \lambda(X_S) > 0$$
 or equivalently

$$(2') r \frac{\partial H_S}{\partial r} < 2H_S$$

Proof:

(3)
$$\alpha \wedge d\alpha = (H_S ds + \lambda) \wedge (dH_S \wedge ds + \omega) = ds \wedge (H_S \omega + \lambda \wedge dH_S)$$

$$(4) \lambda \wedge dH_S = \lambda(X_S)\omega$$

$$\Rightarrow \alpha \wedge d\alpha = (H_S + \lambda(X_S))ds \wedge \omega$$

$$\implies$$
 (2)

$$\lambda = \iota_{\frac{r}{2}\partial_r}\omega$$

$$\implies \lambda(X_S) = -dH_S(\frac{r}{2}\,\partial_r)$$

$$\implies$$
 (2')

Now assume that the contact condition is fulfilled.

Lemma 2:

 $R = \partial_s + X_s = fR_\alpha$ for some positive function f, where R_α denotes the Reeb vector field of α .

Proof:

and

$$\iota_R d\alpha = \iota_R (dH_S \wedge dS + \omega) = -dH_S + dH_S = 0$$
$$\alpha(R) = H_S + \lambda(X_S) > 0$$

Lemma 3:

On a collar neighbourhood of $\partial V = \partial (S^1 \times D^2)$ in $S^1 \times D^2$ where $H = (H_S)_S$ depends only on r, the S^1 -action generated by $Y \coloneqq \partial_S - h\partial_\theta$ is a strict contact S^1 -action with respect to α .

The momentum map is $\mu_V = \alpha(Y) = H_S - hr^2$ and since $H_S|_{\partial D^2} = h$ we have: $\partial V \subset \mu_V^{-1}(0)$

 $Y \neq 0 \implies \partial V$ regular component

(2') on
$$\partial V \implies d\mu_V(\partial_r) < 0$$
 on $\partial V \implies \mu_V > 0$ on an interior neighbourhood of ∂V

Lemma 4:

The contact cut $(S^1 \times D^2)/\sim$ is contactomorphic to S^3 endowed with the standard contact structure.

Proof of the main theorem

- $D^2 \cong \{0\} \times D^2 \hookrightarrow S^1 \times D^2 \longrightarrow (S^1 \times D^2)/\sim \cong S^3$ is an embedding, smooth on $Int(D^2)$
- Since X_s is a multiple of the angular vector field $\partial\theta$ near the boundary it suffices to consider the flow of X_s on $\mathrm{Int}(V)\cong (V/\sim)\backslash(\partial V/\sim)$
- On $Int(V)=Int(S^1 \times D^2)$ this follows from Lemma 2
- Under the above identification $S^1 = \partial D^2 \cong \mu_V^{-1}(0)/S^1$ and $\mu_V^{-1}(0)/S^1 \hookrightarrow S^3$ is a contact embedding and therefore ∂D^2 is a periodic orbit of the Reeb vector field on S^3

References

• Peter Albers, Hansjörg Geiges, Kai Zehmisch.

"Pseudorotations of the 2-disc and Reeb flows on the 3-sphere".

arXiv:1804.07129

• Eugene Lerman. "Contact cuts".

arXiv:math/0002041