
Adiabatic limits and the vortex equation

S. Schmitt

Seminar

Schmitt Adiabtic limits and the vortex equation date 1 / 48



Table of Contents

1 Vortex Equations

2 Preparation

3 The theorem

4 Seiberg-Witten theory

Schmitt Adiabtic limits and the vortex equation date 2 / 48



Table of Contents

1 Vortex Equations

2 Preparation

3 The theorem

4 Seiberg-Witten theory

Schmitt Adiabtic limits and the vortex equation date 3 / 48



Classic vortex Equations

Our central object of study are vortex equations on closed Riemann
surfaces. In the following we will denote a closed Riemann surface with Σ
and L→ Σ a Hermitian line bundle. The simplest vortex equation is the
following:

Classic vortex

We call a pair of a unitary connection A on L and a section ϕ of L,
satisfying {

∂Aϕ = 0,

iΛFA = 1− |ϕ|2,
(1)

where ΛFA is the Hodge dual of the curvature form, a (classical) vortex.
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A quick primer on necessary background

Note that the following will display the situation on vector bundles, but
can be generalized to principal bundles.

We call a triple (E ,X , π) where π : E → X is a fibre bundle with fibre
given by a vector space Kr , K ∈ {R,C}, a vector bundle and call r
the rank of the vector bundle. If r = 1, we call the bundle a
line-bundle.

A connection on a vector bundle is a choice of K-linear differential
operator ∇ : Γ(E )→ Γ(T ∗X ⊗ E ) = Ω1(E ) such that ∀f ∈ C∞(X )
and sections s ∈ Γ(E ) we have ∇(fs) = df ⊗ s + f∇s.

The curvature of ∇ is given by the operator F∇ ∈ Ω2(End(E )) with
values in the endomorphism bundle, defined by
F∇(v1, v2) = ∇v1∇v2 −∇v2∇v1 −∇[v1,v2]. Every connection over a
trivialising subset Uα differs from the trivial connection d by some
local connection one-form Aα ∈ Ω1(Uα,End(E )) with the property
that ∇ = d + Aα on Uα. In terms of this local connection form, the
curvature may be written as FA = dAα + Aα ∧ Aα.
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A quick primer on necessary background

A Hermitian line bundle is a complex line bundle with a hermitian
metric.

A gauge transformation is a diffeomorphism φ : E → E commuting
with the projection operator π which is a linear isomorphism of vector
spaces on each fibre. The gauge transformations of E form a group
under composition called the gauge group, typically denoted by G.

A gauge transformation u of E transforms a connection ∇ into a
connection u · ∇ by the conjugation (u · ∇)v (s) = u(∇v (u−1(s)).
Under a local gauge transformation g we have
Aα = gAαg

−1 − (dg)−1g .

The space of connections on a vector bundle is an infinite dimensional
affine space A modelled on the vector space Ω1(X ,End(E )). Two
connections A,A′ ∈ A are said to be gauge equivalent if there exists a
gauge transformation u such that A′ = u · A.
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Classic vortex equations

Classic vortex

We call a pair of a unitary connection A on L and a section ϕ of L,
satisfying {

∂Aϕ = 0,

iΛFA = 1− |ϕ|2,

where ΛFA is the Hodge dual of the curvature form, a (classical) vortex.

The space of vortices takes a more familiar form if we look at the gauge
equivalence classes of vortices, the equivalence classes take the form of the
symmetric product SymdΣ, where d = deg L. The points in SymdΣ
correspond to an effective divisor D with degree d . Up to gauge
equivalence there also exists a unique solution (A, ϕ) such that D is the
zero divisor of ϕ.
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A first modification

We can modify our equation above by scaling the metric on Σ, say by ε−1,
this results in the modified equation:

Modified vortex {
∂Aϕ = 0,

ε2iΛFA = 1− |ϕ|2.
(2)

This new equation poses the question how the behaviour of solutions
changes in the limiting case ε→ 0, i.e. what happens to our solutions if
the volume of Σ tends to infinity. An answer to that question was provided
by Hong, Jost, and Struwe. We will reproduce this answer in this talk,
albeit with a different approach which lends itself to proving a result of a
more general form of the above mentioned equation.
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Framed vortex equations

To introduce the general equation, we will need to fix auxiliary unitary
bundles E1, . . . ,EN over Σ together with their respective connections
B1, . . . ,BN and weights k1, . . . , kN ∈ Zx = Z \ {0}. Now taking ε > 0 and
τ ∈ R along with a connection A on L and a section
ϕ = (ϕ1, . . . , ϕN) ∈ Γ(

⊕N
j=1 Ej ⊗ L⊗kj ), gives us

Framed vortex equations{
∂A⊗Bj

ϕj = 0 for j = 1, . . . ,N,

ε2iΛFA +
∑N

j=1 kj |ϕ|2 + τ = 0
(3)

Notice that we recover equation (2), by setting N = 1, k1 = 1 and τ = 1.
The moduli space of solutions to this generalized equation admits a
holomorphic description as before. An important application of the
theorem is to Seiberg-Witten theory, which we will introduce at the end of
the talk. Finally note that solutions to (3) only exist if either the ki are of
mixed signs or ki > 0∀i and τ < 0.
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Framed vortex equations

We can now state the main theorem we are interested in:

Main theorem

Let (Ai , ϕi , εi ) be a sequence of solutions to:{
∂A⊗Bj

ϕj = 0 for j = 1, . . . ,N,

ε2iΛFA +
∑N

j=1 kj |ϕ|2 + τ = 0,

such that εi → 0 and the sequence of norms ‖ϕi‖L2 is bounded. Then
there is a finite set of points D ⊂ Σ, such that after passing to a
subsequence and applying gauge transformations, (Ai , ϕi ) converges in
C∞loc on Σ \ D. The limit (A, ϕ) satisfies the above equation with ε = 0 on
Σ \ D.
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Overview

In this section of the talk we will introduce necessary notation, additional
background knowledge and finally a series of analytical results needed to
prove our result.

An outlook on the proof

Gauge transformations

A-priori estimates

Necessary lemmas
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Proof outline

Establishing convergence in Gc ,

Establishing convergence in real moduli spaces.
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Proof outline

Convergence mod Gc
We start by using the actions of Gc = C∞(Σ,Cx) on (A, ϕ).

The moduli space of solutions to (3) is homeomorphic to the quotient
of the set of solutions to the Cauchy-Riemann equation by Gc . This
was proved by J. A. Bryan and R. Wentworth. We show that this
quotient is compact modulo the rescaling action of Cx , by using elliptic
estimates for Dolbeault operators.
This gives us complex gauge transformations gi = efiui for
fi ∈ C∞(Σ,R) and ui ∈ C∞(Σ,U(1)), such that the sequence (Ai , ϕi )
converges after rescaling it and applying gi .
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Proof outline

Real convergence

To establish convergence in the real moduli space as well, we need to
control the fi that arose in the previous step.

In the specific setting, this gives rise to the partial differential equation
for fi of the form

ε2∆f +
n∑

j=1

Aje
αj f −

m∑
j=1

Bje
−βj f + w = 0

for some functions Aj Bj ≥ 0, w and constants αj , βj > 0.
The bounds we establish will be independent of ε ∈ (0, 1] and uniform
on compact subsets of Σ \ D where D is the set of common zeroes of
Aj and Bj .
This allows us to use the Arzelà–Ascoli theorem to guarantee the
existence of a smoothly converging subsequence of fi on compact
subsets of Σ \ D.
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Gauge transformations

Taking actions of the gouge group G of unitary automorphisms of L, we
can identify G with C∞(Σ,U(1)). Given a solution to (3), (A, ϕ1, . . . , ϕN),
and a map u : Σ→ U(1), the action of u on (A, ϕ1, . . . , ϕN) is given by

u(A, ϕ1, . . . , ϕN) = (A− u−1du, uk1ϕ1, . . . , ukNϕN)

. The set of these solutions is invariant under actions of G.
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Gauge transformations

Even more so the Dolbelaut equation in (3),
(
∂A⊗Bj

ϕj = 0
)
, is also

invariant under the action of the complex gauge group Gc . Gc consists of
the complex automorphisms of L and we identify it with C∞(Σ,Cx) where
Cx is the complex numbers without 0, i.e. Cx = C \ {0}. Similar to
before, for g : Σ→ Cx and (A, ϕ1, . . . , ϕN) the action of g is given by

g(A, ϕ1, . . . , ϕN) = (A + g−1∂g − g−1∂g , gk1ϕ1, . . . , gkNϕN).

Taking s ∈ Γ(Σ,Ej ⊗L⊗kj ) the associated Dolbeault operator transforms as

∂Bj ,g(A)s = gkj∂BjA(g−kj s).
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Gauge transformations

However the action of Gc does not preserve the second equation in (3)
involving the curvature. Taking f : Σ→ R, u : Σ→ U(1) and writing
g = ef u, then we obtain:

Fg(A) = FA + 2∂∂f

or taking the Hodge dual, along with ∆ = dδ + δd, the Hodge-Laplacian
acting on functions,

iΛFg(A) = iΛFA + ∆f .
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A-priori estimates

The generalization we introduced also introduces new problems we have to
deal with. There are two features that are in particularly difficult to deal
with. The first one being that we have to introduce auxiliary cut-off
functions to deal with possibility of our manifold having a boundary. The
second major problem is having to deal with the degeneration happening if
ε = 0.
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A-priori estimates

Boundness theorem

Let X be a compact Riemannian manifold with (possibly empty) boundary
∂X , Ω ⊂ X an open subset, such that Ω ⊂ X \ ∂X . Let
ε0; α1, . . . , αn; β1, . . . , βm be positive numbers and let
A1, . . . ,An; B1, . . . ,Bm and w be smooth functions on X such that
Aj ,Bj ≥ 0∀j , and A1 + · · ·+ An > 0, B1 + · · ·+ Bm > 0. Then there
exist constants M0,M1,M2, . . . depending only on the data listed above
such that for any ε ∈ [0, ε0] and f ∈ C∞(X ) satisfying the equation

ε∆f +
n∑

j=1

Aje
αj f −

m∑
j=1

Bje
−βj f + w = 0 (4)

the following bound on f holds:

‖f ‖C k (Ω) ≤ Mk for k = 0, 1, 2, . . .
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A-priori estimates

Remark

The bound Mk depends on Aj ,Bj and w as well was their derivatives. It
will be important to consider sequences εi → 0 and
fi ,A

i
1, . . . ,A

i
n,B

i
1, . . . ,B

i
m,wi satisfying the PDE

εi∆f +
n∑

j=1

Ai
je
αj fi −

m∑
j=1

B i
j e
−βj fi + wi = 0.

Provided that Ai
j ,B

i
j and wi converge smoothly to Aj ,Bj and w

respectively where

A1 + · · ·+ An > 0, B1 + · · ·+ Bn > 0,

the proof will hold and provide a C k estimate for large i dependent on k
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Required lemmas

We also need the following fact:

Lemma

Let L→ Σ be a Hermitian line bundle, D ⊂ Σ a finite set of points, a
unitary connection A on L|Σ\D and α ∈ Γ(Σ \ D, L). If ∂Aα = 0 and
|α| = 1 everywhere on Σ \ D, then

∇Aα = 0 and FA = 0.

Moreover for a small ball B around a point p ∈ D such that in a unitary
local trivialisation A = d + a for a one-form a ∈ Ω1(B \ {p}, iR), and after
identifying α with a smooth function α : B \ {p} → S1. Then

i

2π

∫
∂B

a = deg(α|∂B).
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Remarks

We are now in a position to work on the proof. We will present the proof
for the classic vortex case, though the steps to prove the general result are
the same. First let us restate the main theorem, on slide 10, in the case of
the modified classical vortex equation, as mentioned before, we do this by
setting: N = 1, k1 = 1 and τ = 1.

Main theorem, classic case

Let (Ai , ϕi , εi ) be a solution to{
∂Aϕ = 0,

ε2iΛFA = 1− |ϕ|2
(5)

such that εi → 0. Then there is a degree d effective divisor D on Σ such
that after passing to a subsequence and applying gauge transformations
(Ai , ϕi ) converges in C∞loc on Σ \ D and 1

2πΛFA → δD :=
∑

k mkδxk as
measures. The limit (A, ϕ) satisfies FA = 0, |α| = 1 and ∇Aα = 0 on
Σ \ D.
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The proof

We will prove the theorem in multiple steps, mirroring what we outlined
before:

Convergence modulo Gc ,

Establishing C 0 estimates,

Convergence outside D,

The limiting configuration,

Convergence of measures.

To start, notice that since εi → 0, we may assume that none of the
sections ϕi are identically zero. We define A to be the space of unitary
connections on L and as before Gc to be the complex gauge group of L,
that is the space of smooth maps from Σ→ Cx .
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Convergence modulo Gc

Our claim in this step of the proof is that we can find complex gauge
transformations gi ∈ Gc such that, after passing to a subsequence,
gi (Ai , ϕi ) converges in C∞(Σ) to a pair (A′, ϕ′). Where ϕ′ is not
identically zero and satisfies ∂A′ϕ′ = 0.
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Convergence modulo Gc

To prove this we start by noting that A/Gc is homeomorphic to the
Jacobian torus H1(Σ,R)/H1(Σ,Z) in the C∞ topology. The important
consequence of this is that A/Gc is compact. This gives us the existence
of gi ∈ Gc such that, after passing to a subsequence, we get convergence
of A′i = giAi in C∞ to a connection A′. Setting µi = ‖giϕi‖−1

L2 and
replacing gi with µigi we can normalize ‖giϕi‖L2 = 1 ∀i . Since the
constant gauge transformation µi acts trivially on the space of
connections, A′i → A′ remains true. Finishing up our criterions for the
choice of gi , we assume them to be purely ”imaginary”.
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Convergence modulo Gc

For a gauge transformation u ∈ U(1) and a real f : Σ→ R we can write
any complex gauge transformation as g = uef . Enabling us to write
gi = efi/2, with fi : Σ→ R after incorporating u ∈ U(1) into our original
sequence (Ai , ϕi , βi ).
We also have that Gc preserves the Cauchy-Riemann equation, so for
ϕ′i = giϕi we have

∂A′
i
ϕ′i = ∂A′

i
giϕi = 0.

For the L2-norm this means

‖∂A′
i
ϕ′i‖L2 = ‖(∂A′ − ∂A′

i
)ϕ′i‖L2 ≤ ‖A′ − A′i‖L∞‖ϕ′i‖L2 .
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Convergence modulo Gc

For the L2-norm this means

‖∂A′
i
ϕ′i‖L2 = ‖(∂A′ − ∂A′

i
)ϕ′i‖L2 ≤ ‖A′ − A′i‖L∞‖ϕ′i‖L2 .

Since we already established A′i → A′, the right-hand side tends to zero
and we obtain a bound on ‖∂A′

i
ϕ′i‖L2 independent of i . Using the elliptic

estimate for the Dolbeault operators we can conclude that the sequence ϕ′i
is bounded in W 1,2. Bootstrapping then gives us convergence in C k for
any k. This lets us pass to another subsequence (which we will denote
with the same symbols), that convergences in C∞ to ϕ′. The limit satisfies

∂A′ϕ′ = 0 and ‖ϕ′‖L2 = 1,

this finishes step 1.
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Establishing C 0 estimates

The next step is establishing C 0 estimates. We start with D, the set of
zeroes of ϕ′. There are exactly d = deg(L) of them, counted with
multiplicity. We need to establish uniform boundness of fi on compact
subsets of Σ \ D. Since transformations in Gc do not preserve the
curvature equation, we compute

ε2
i (2iΛFA′

i
) = ε2

i (2iΛFA′
i

+ ∆fi )

= 1− |ϕi |2 + ε2
i ∆fi

= 1− e−fi |ϕ′i |2 + ε2
i ∆fi ,
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Establishing C 0 estimates

Now defining qi = |ϕ′i |2 and wi = 1− ε2
i (2iΛFA′

i
), we obtain a partial

differential equation for fi after rearranging:

ε2
i ∆fi = e−fi |ϕ′i |2 − 1 + ε2

i (2iΛFA′
i
) (6)

= qie
−fi − wi , (7)

Letting ui = efi we then obtain

ε2
i ∆ui = ε2

i (−efi |∇fi |2 + efi ∆fi )

≤ qi − wiui .
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Establishing C 0 estimates

ε2
i ∆ui ≤ qi − wiui .

The uniform convergence of wi → 1 then establishes wi ≥ 1
2 when i large

enough. Because ϕ′i converges, the qi are bounded. Using the maximum
principle we arrive at an upper bound for ui and since ui = efi , we also
arrive at one for fi . Computing further

ε2
i ∆|ϕi |2 + 2ε2

i |∂Aϕi |2 = |ϕi |2(1− |ϕi |2),

and using the maximum principle again, we get |ϕi |2 ≤ 1 ∀i . We can now
improve our estimate on fi , we have that |ϕi |2 = e−fi |ϕ′i |2 and
|ϕ′i |2 → |ϕ′|2 uniformly, this implies a uniform lower bound for fi on
compact subsets of Σ \ D.
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Convergence outside of D

The next step is to look at convergence outside of D. We pick up

ε2
i ∆fi = qie

−fi − wi ,

(6), from the previous proof. Utilizing our main result of the last chapter,
slide 20, as well as the remark following it, we can take the C 0 estimates
we established in the last step and improve them to arrive at the stronger
conclusion that fi is uniformly bounded along with its derivatives on all
compact subsets of Σ \ D.
This allows us to choose a subsequence of fi which converges uniformly
with all derivatives on compact subsets of Σ \ D to a function
f ∈ C∞(Σ \ D,R). We will call the associated complex gauge
transformation g = ef /2 and also define (A, ϕ) = (g−1A′, g−1ϕ′).
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Convergence outside of D

This pair is well-defined and in C∞loc(Σ \D) we have (Ai , ϕi )→ (A, ϕ). We
have

ϕi − ϕ = g−1
i ϕ′i − g−1ϕ′

= g−1
i ϕ′i − g−1

i ϕ′ + g−1
i ϕ′ − g−1ϕ′

= g−1
i (ϕ′i − ϕ′) + (g−1

i − g−1)ϕ′,

using the convergence of ϕ′i and g ′i , then shows that for any compact
K ⊂ Σ \ D we can find constants Ml ,K with l = 0, 1, . . . such that

‖ϕi − ϕ‖C l (K) ≤ Ml ,K (‖ϕ′i − ϕ′‖C l (K) + ‖g−1
i − g−1‖C l (K)).

Since the right-hand side tends to zero, this shows that ϕi converges to ϕ
in C l for any l on K . A similar argument establishes convergence of
connections.
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The situation at the limit

We pass to the limit in {
∂Aϕ = 0,

ε2iΛFA = 1− |ϕ|2,

which shows us that f : Σ \ D → R is given by

f = log |ϕ′|2,

since we also have ϕ = e−f /2ϕ′, this is equivalent to |ϕ| = 1. Further we
also have ∂Aϕ = 0, which means we can now use the lemma established in
the preparation chapter, slide 22, to get ∇Aϕ = 0 and FA = 0 on Σ \ D.

Schmitt Adiabtic limits and the vortex equation date 35 / 48



Convergence in measure

The last thing we need to show is that

i

2π
ΛFAi

→
d∑

j=1

δ(xj)

in measure. Equivalently we can show

lim
i→∞

∫
B

i

2π
FAi

= k

for any small disc B around xj , where k is the multiplicity of the section ϕ′

at xj .
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Convergence in measure

Choosing local coordinates for B together with a unitary trivialisation of L,
gives us Ai = d + ai as a local representation of Ai for ai ∈ Ω1(B, iR).
The curvature then takes the form FAi

= dai . Using Stokes’ theorem
allows us to make the calculation,

lim
i→∞

∫
B

i

2π
FAi

= lim
i→∞

∫
B

i

2π
dai = lim

i→∞

∫
∂B

i

2π
ai =

∫
∂B

i

2π
a,

where a ∈ Ω1(B \ {xj}, iR) is the corresponding one-form to the singular
connection A = d + a.
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Convergence in measure

Applying the same lemma we used in the last step again, gives us that

i

2π

∫
∂B

a = deg(ϕ|∂B).

Since ϕ′ and ϕ differ by a non-zero function on B \ {xj}, their degrees
around xj are the same and equal to the multiplicity of ϕ′ at xj . Finishing
the proof.
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Seiberg-Witten theory

We can apply the result in the general case to achieve a result in
three-dimensional Seiberg-Witten theory. To establish what we are talking
about, we define the Seiberg-Witten equations with multiple spinors. To
do so, let Y be a closed Riemannian spin-three manifold. Define S to be
spinor bundle and E , L vector bundles over Y with structure groups SU(n)
and U(1) respectively. Finally we equip E with a connection B. This
means for a connection A on L→ Y and Ψ ∈ Γ(Hom(E ,S ⊗ L)) the
Seiberg-Witten equations with multiple spinors are{

/DA⊗BΨ = 0

FA = ΨΨ∗ − 1
2 |Ψ|

2.
(8)

where /DA⊗B is the Dirac operator twisted by A and B, while the second
equation is based on the identification i

∧2 T ∗Y ∼= isu(S) given by
Clifford multiplication.
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Seiberg-Witten background

A. Haydys and T. Walpuski proved a result regarding the limiting
behaviour of solutions (Ai ,Ψi ) such that ‖Ψi‖L2 →∞. They showed that
there is a closed, nowhere dense subset Z ∈ Y such that after passing to a
subsequence and applying gauge transformations Ai → A in the Sobolev
space W 1,2

loc and Ψi/‖Ψi‖L2 → Ψ weakly in W 1,2
loc on Y \ Z , as well as that

the limiting configuration (A,Ψ) defined on Y \ Z satisfies{
/DA⊗BΨ = 0

0 = ΨΨ∗ − 1
2 |Ψ|

2.
(9)

Moreover, Z is the zero locus of Ψ and, if rankE = 2, A is flat with
holonmy contained in Z2. If rankE > 2, then A induces a flat Z2

connection on a rank two subbundle of E twisted by a line bundle.
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Seiberg-Witten theory - open questions

A number of open problems in Seiberg-Witten theory remain:

The question of whether Z is rectifiable or perhaps a smooth curve

Improving the convergence statement for (Ai ,Ψi/‖Ψi‖L2)

There are two ways of associating weights to the connected
components of Z: one based on Taubes’ frequency function and one
developed by Haydys using topological methods. It is currently
unknown whether these constructions are related.

Haydys conjectured that, equipped with appropriate weights, Z has
the structure of a rectifiable current and that 1

2πFAi
converges to Z as

currents.

Application of our main theorem and the method used to prove it allow us
to refine compactness and solve the above problems in the specific case
that Y = S1 × Σ.
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Seiberg-Witten theory - some answers

In this context, our main theorem takes the following form:

Main theorem Seiberg-Witten case

Let Y = S1 × Σ equipped with a product metric. Then set S the spinor
bundle, E , L vector bundles over Y with structure groups SU(n) and U(1)
respectively. Define Z to be a closed, nowhere dense subset Z ⊂ Y . Equip
E with a connection pulled back from Σ, define a connection A on L→ Y
along with Ψ ∈ Γ(Hom(E , S ⊗ L)) and let (Ai ,Ψi ) be a sequence of
solutions to {

/DA⊗BΨ = 0

FA = ΨΨ∗ − 1
2 |Ψ|

2.
(10)

where /DA⊗B is the Dirac operator twisted by A and B, while the second
equation is based on the identification iΛ2T ∗Y ∼= isu(S) given by Clifford
multiplication, such that ‖Ψi‖L2→∞. Then
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Seiberg-Witten theory - theorem results

1 The singular set Z is of the form S1 × D for a degree 2d divisor
D =

∑
k mkxk with d = degL

2 After passing to a subsequence and applying gauge transformations

Ai → A and
Ψi

‖Ψ‖L2

→ Ψ

in C∞loc on Y \ Z .
3 |Ψ|4 extends to a smooth function on Y whose zero set is Z and for

all k
|Ψ(x)| = O

(
dist(x , S1 × {xk})|mk |/2

)
4 If rank E = 2 then i

2πFAi
→ 1

2Z as currents. If rank E > 2 then there
is a rank two subbundle F ⊂ E |Y \Z such that
Ψ ∈ Γ(Y \ Z ,Hom(F ,S ⊗ L)) and the previous statement holds if we

replace A and Ai by the tensor product connections on L⊗ (detF )
1
2 .

Here F and detF are equipped with the unitary connections induced
from B.
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Seiberg-Witten equations

To apply our methods more clearly, we restate the previous discussion in
the context of vortex equations.
For that, taking (3) and setting N = 2, k1 = 1, k2 = −1 along with
choosing E1,E2 as Serre-dual to each other. Specifically, fixing a spin
structure on Σ, and taking a SU(n)-bundle E , we set E1 = E ⊗ K 1/2and
E2 = E ⊗ K 1/2, where K 1/2 is said spin structure, which may be thought
of as the square root of the canonical bundle of Σ.
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Seiberg-Witten equations

Naming our connection on L once again A, the section we need to consider
now becomes ϕ = (ϕ1, ϕ2) where ϕ1 ∈ Γ(E ⊗ K 1/2 ⊗ L) and similarly
ϕ2 ∈ Γ(E ∗ ⊗ K 1/2 ⊗ L∗), this gives us this ”modified” version of (3):


∂A⊗Bϕ

1 = 0,

∂A⊗Bϕ
2 = 0,

ϕ1ϕ2 = 0,

ε2iΛFA + |ϕ1|2 − |ϕ2|2 = 0

(11)

Notice that we have added an additional algebraic condition for
ϕ1ϕ2 ∈ Γ(K ). This is the image of (ϕ1, ϕ2) under the pairing

Γ(E ⊗ K 1/2 ⊗ L)× Γ(E ∗ ⊗ K 1/2 ⊗ L∗)→ Γ(K )

.
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Seiberg-Witten equations

This means we can restate our theorem as follows:

Main theorem, Seiberg-Witten case 2

Let (Ai , ϕi , εi ) be a sequence of solutions to (11) with ‖ϕi‖L2 = 1 and
εi → 0. Then
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1 There exists a degree 2d divisor D =
∑

k mkxk and a configuration
(A, ϕ) defined on Σ \ D and satisfying 11 with ε = 0,

2 (Ai , ϕi )→ (A, ϕ) in C∞loc on Σ \ D,

3 The function |ϕ|4 extends to a smooth function on all of Σ whose
zero set consists of the points in D and ∀k we have

|ϕ(x)| = O
(

dist(x , xk)|mk |/2
)

4 If rankE = 2, then the limiting connection A is flat, has holonomy
contained in Z2, and i

2πΛFAi
→ 1

2δD as measures. If rankE > 2, then
there exists a rank two subbundle F ⊂ E |Σ\D such that

ϕ1 ∈ Γ(Σ \ D,F ⊗ L⊗ K 1/2), ϕ2 ∈ Γ(Σ \ D,F ∗ ⊗ L∗ ⊗ K 1/2),

and the previous statement holds if we replace A and Ai by the tensor
product connections on L⊗ (detF )1/2. Here F and detF are
equipped with the unitary connections induced from B.
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