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• Consider a closed surface M ⊂ R3 immersed in a stationary
magnetic field B ∈ Γ(R3) and a charged particle q with unit
charge, constrained to M.

• The particle q is subject to the Lorentz force FR3(v) = v × B,
where v is the velocity of q.

• Goal: Want to find conditions for the existence of infinitely
many periodic orbits.
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Framework

• The Euclidean metric on R3 induces a metric g on M. Define
a two-form σ ∈ Ω(M) by σ := i∗MσR3 , where σR3 = ιBvolR3

and iM : M → R3 is the inclusion. σR3 is closed because
div(B) = 0 and thus σ is closed as well.

• Define the Lorentz force F on M by g(F (v),w) = σ(v ,w).

• ∇vv = F (v) gives rise to a flow on TM (The magnetic flow).

• This is equivalent to solving the Euler-Lagrange equation with
the Lagrangian L(q, v) = 1

2gq(v , v)− θq(v), where dθ = σ.

• Let [ : TM → T ∗M, v 7→ gq(v , .). Switching to Hamiltonian
formulation one gets the symplectic manifold
(ωσ := dλ− π∗σ,TM), where λ := [λ∗ and λ∗ is the
tautological one-form on T ∗M.

• The magnetic flow is generated by the Hamiltonian vector
field X σ

E associated to the energy function
E (q, v) = 1

2gq(v , v) via dE = ιXσ
E
ωσ.
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Framework

• The magnetic flow is generated by the Hamiltonian vector
field X σ

E on (ωσ = dλ− π∗σ,TM) associated to E .

Remark
Compare this to the better known geodesic case ∇vv = 0, where
the geodesic flow is generated by the Hamiltonian vector field on
(ω := dλ,TM) associated to the same energy function E .



Framework

• Σm := {(q, v) ∈ TM | E (q, v) = 1
2m

2 } is a S1 bundle
π : Σm → M.

• Because dE (X σ
E ) = ωσ(X σ

E ,X
σ
E ) = 0, The level sets Σm are

invariant under the magnetic flow. Therefore the restrictions
of the Hamiltonian vector field X σ

E |Σm
to the separate level

sets can be studied.

• How are X σ
E |Σm

for different m related?
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Framework

• There is a unique function f : M → R, such that σ = fvolM .

• It can be shown that X σ
E = X + fV , where X is the generator

of the geodesic flow and V is the generator of the 2π periodic
flow Φϕ : TM → TM that rotates each fiber of π : TM → M
by the angle ϕ.

• The rescaling (q, v) 7→ (q, v
m ) sends X σ

E |Σm
to

mX
σ
m
E |Σ1

= (mX + fV )|Σ1
.

• Thus, studying the dynamics of ωσ = dλ− π∗σ on Σm is the
same as studying those of ω σ

m
= dλ− π∗ σm .

• Denote ωm := mω σ
m

, ω′m := ωm|Σ1
and Xm := mX

σ
m
E |Σ1

.

kerω′m = RXm.

• Then Xm → fV and ωm → −π∗σ as m→ 0.
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Framework

• There are 1-forms λm that are contact on Σ1 and dλm = ω′m.
Contact forms on 3-dim manifolds are characterized by
λm ∧ dλm 6= 0.

• Each contact form has a unique vector field Rm ∈ Γ(Σ1),
called the Reeb vector field, that is defined by λm(Rm) = 1
and ιRmdλm = 0.

• Since ιRmω
′
m = ιRmdλm = 0, the Reeb vector field Rm lies in

the one-dimensional kernel distribution of ω′m and therefore we
can study the Reeb flow φm to understand the magnetic flow.

• It holds that Rm → V as m→ 0.
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Approach to the problem

• From now on, assume M = S2, and set Σ := Σ1.

• Recall our task: Want to find conditions for the existence of
infinitely many periodic orbits of the magnetic flow.

• Idea: Find an annulus that is a
global surface of section (SOS) for the Reeb flow and for

which the first return map is twist (For twist maps the
existence of infinitely many period orbits has been proven).
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Approach to the problem

Global surface of section
Let φ be a flow on Σ without rest points and N a compact surface.
A global surface of section for φ is an embedding S : N → Σ that
has the following properties:

• S(N̊) is transverse to the flow φ and S(∂N) is the support of
a finite collection of periodic orbits of φ.

• For each z ∈ Σ \ S(∂N), there are t− < 0 < t+ such that
φt−(z), φt+(z) lie in S(N̊).
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First return map

• The first return time τ : S(N̊)→ R,
τ(z) := inf {t > 0 |φt(z) ∈ S(N̊).

• And the first return map P : S(N̊)→ S(N̊), P(z) := φτ(z).
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Approach to the problem

Twist maps

Let h : R× [0, 1]→ R× [0, 1] be a diffeomorphism. We say that h
is twist if h(x + 1, θ) = h(x , θ) + (1, 0) and it holds the following
properties:

• h preserves the orientation and volume,

• lets the boundaries R× {0} and R× {1} invariant,

• there exists a c ∈ R, such that for every x ∈ R,
h0(x , 0) < x + c < h0(x , 1).

• We retrieve a map h̄ : S1 × [0, 1]→ S1 × [0, 1] by quotienting.
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Approach to the problem

In our case
• Recall that Rm → V as m→ 0.

• Consider polar coordinates (ϕ, θ) ∈ (0, π)× S1. For m = 0 we
have a surface of section J : (0, π)× S1 → Σ.

• J extends to [0, π]× S1.

• The first time return map is then simply the identity.



Approach to the problem

In our case
• Recall that Rm → V as m→ 0.

• Consider polar coordinates (ϕ, θ) ∈ (0, π)× S1. For m = 0 we
have a surface of section J : (0, π)× S1 → Σ.

• J extends to [0, π]× S1.

• The first time return map is then simply the identity.



Approach to the problem

In our case
• Recall that Rm → V as m→ 0.

• Consider polar coordinates (ϕ, θ) ∈ (0, π)× S1. For m = 0 we
have a surface of section J : (0, π)× S1 → Σ.

• J extends to [0, π]× S1.

• The first time return map is then simply the identity.



Approach to the problem

• Can we find a surface of section for m > 0 that gives us a
twist map?

• Let’s assume that f has non-degenerate min, max points p±
at the South and North Pole respectively.

• If π−1(p±) were still periodic orbits for Reeb flows of λm for
m small enough. Then the SOS for λ0 would still be one for
λm. Additionally, if and we can find some nice local expression
for λm close to p±, then we can check the behavior of the
Reeb flow close to the North and South Pole in coordinates
and see whether the return map is twist.
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Local coordinates

• We later want to study the Reeb vector fields near p±.

• Choose local coordinates in a neighborhood of p± such that
λ0 = dθ − r2dφ, where θ parametrizes the fibers.

• For λm there is no such local expression, but there is a
diffeomorphism ψ1 : Σ→ Σ such that ψ∗1λm = eqmλ0, where
qm : Σ→ R admits the Taylor expansion at m = 0,
qm = m2

2f + o(m2).
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Finding periodic orbits

• Ginzburg proved that one can find a periodic orbit near
non-degenerate critical points.

• There is a function Sm : Σ→ R whose critical points are the
support of periodic orbits.

• The construction is done by sending (q, v) ∈ Σ to
two-periodic loops in Σ which are then evaluated by some
action functional.
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Finding periodic orbits

• The function can be expanded Sm = 2π + π
f m

2 + o(m2).

• Write Sm = 2π + m2S̄m.

• For m = 0 the critical points for S̄m are Sp±S
2.

• For m small enough, we can still find critical points close to
the fibers since f has a non-degenerate critical point at p±.
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Normalizing the Reeb flow

• Let γ± be a periodic orbit for ψ∗1λm near p±.

• Need to find a diffeomorphism ψ2 : Σ→ Σ so that
ψ2(π−1(p±)) = γ±.

• Exists, but I didn’t understand it in detail yet.
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Putting everything together

• The form ψ∗2ψ
∗
1λm shares the same periodic orbit with λ0 at

p±. Therefore, the SOS for λ0 is one for ψ∗2ψ
∗
1λm as well.

• It can also be shown that
ψ∗2ψ

∗
1λm = ψ∗2e

qλ0 = λ0

1−m2

f

+ o(m2), for m small enough.

• Continue to study the Reeb flow locally and we might discover
that the first time return map is twist. . ..
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