Root systems and spherical Coxeter groups

Noam von Rotberg

4th May 2020

Contents

1	Root systems	3
2	Positive systems and bases	4
3	Height and the highest root	5
4	Decomposition of root systems	6
5	Closed subsystems	7

1 Root systems

Definition. [1] A subset $\Phi \subseteq V$ of a finite dimensional \mathbb{R} -vector space V is called an *(abstract) root system*, if:

- (R1) Φ is finite, $0 \notin \Phi$ and $\langle \Phi \rangle_{\mathbb{R}} = V$,
- (R2) $\forall \alpha \in \Phi$: if $\lambda \alpha \in \Phi$ for $\lambda \in \mathbb{R}$, then $\lambda = \pm 1$,
- (R3) $\forall \alpha \in \Phi$ there exists a reflection $s_{\alpha} \in \operatorname{GL}(V)$ along α stabilising Φ ,
- (R4) (crystallographic condition or integrality) for all $\alpha, \beta \in \Phi$: $s_{\alpha}.\beta - \beta$ is an integral multiple of α

The group $W = W(\Phi) := \langle s_{\alpha} \mid \alpha \in \Phi \rangle$ is called a *spherical* Coxeter group or Weyl group of Φ .

Then $\Phi = \{ \alpha, \beta \}$

Running example. Consider the roots $\alpha, \beta \in \mathbb{R}^2$:

2 Positive systems and bases

Assume the vector space V is equipped with a total ordering '>' compatible with addition and scalar multiplication by positive real numbers.

Definition. The *positive system* of Φ is the subset $\Phi^+ \subseteq \Phi$ consisting of all positive roots in Φ .

A subset $\Delta \subseteq \Phi$ is called a *base* of Φ if

- $\bullet\,$ it is a vector space basis of V and
- any $\beta \in \Phi$ is a linear combination $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$ with either all $c_{\alpha} \geq 0$ or all $c_{\alpha} \leq 0$.

The roots in Δ are called *simple roots*.

Consider the root system Φ from above:

Properties. For any root system Φ :

- Every positive system contains a unique base. Any base is contained in a unique positive system.
- Any two bases of Φ are conjugate under $W(\Phi)$.
- $W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle = \langle s_{\alpha} \mid \alpha \in \Delta \rangle.$

Then $\Phi^+ = \{$ and $\Delta = \{$

Running example.

3 Height and the highest root

Definition. Let Δ be a base of Φ .

The *height* of a root $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha \in \Phi$ is $ht(\beta) := \sum_{\alpha \in \Delta} c_{\alpha}$.

One can show that there exist a unique root in Φ with largest height. This root is called *highest root*.

Running example. Consider the root system Φ from above with $\Delta = \{\alpha, \beta\}$:

4 Decomposition of root systems

Definition. A non-empty root system Φ with base Δ is called *decomposable* if there exists a non-trivial partition $\Delta = \Delta_1 \sqcup \Delta_2$ such that $(\alpha_1, \alpha_2) = 0$ for all $\alpha_1 \in \Delta_1$, $\alpha_2 \in \Delta_2$.

 Φ is called *indecomposable* if no such decomposition exists.

Proposition. Let Φ be a root system. There exists an (up to reordering) unique decomposition into a disjoint orthogonal union $\Phi = \Phi_1 \sqcup \cdots \sqcup \Phi_r$ of indecomposable root systems Φ_i . Also, $W(\Phi) \cong W(\Phi_1) \times \cdots \times W(\Phi_r)$.

Proposition. Let Φ be a root system and $V = \langle \Phi \rangle_{\mathbb{R}}$. Then the following are equivalent:

- (a) Φ is indecomposable,
- (b) $W(\Phi)$ acts irreducibly on V and
- (c) $W(\Phi)$ is irreducible.

Corollary. Let Φ be indecomposable. Then:

- (a) There are at most two different root lengths in Φ .
- (b) All roots of the same length are conjugate under $W(\Phi)$.

Running example. The root system Φ from above with $\Delta = \{\alpha, \beta\}$ is indecomposable:

These green subsystems are decomposable:

5 Closed subsystems

Running example. Consider the subsystems of Φ from above:

Definition. A subset $\Psi \subseteq \Phi$ is called *closed*, if for all $\alpha, \beta \in \Psi$:

(C1) $s_{\alpha}.\beta \in \Psi$ and

(C2) if $\alpha + \beta \in \Phi$ also $\alpha + \beta \in \Psi$.

Closed subsets are indeed subsystems.

Theorem (Borel-de Siebenthal). Let Φ be an indecomposable root system with base $\Delta = \{\alpha_1, \ldots, \alpha_l\}$ and highest root $\alpha_0 = \sum_{i=1}^l n_i \alpha_i$ with respect to Δ . Then the maximal closed subsystems of Φ up to conjugation by $W(\Phi)$ are those with bases

(1) $\Delta \setminus \{\alpha_i\}$ with $n_i = 1$, and

(2) $\Delta \setminus \{\alpha_i\} \cup \{-\alpha_0\}$ for $1 \le i \le l$ with n_i a prime.

Again, let $\Delta = \{\alpha, \beta\}$ and thus the highest root is $2\alpha + \beta$.

Thank you for your attention!

References

G. Malle and D. Testerman, *Linear Algebraic Groups and Finite Groups of Lie Type*. Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011.