Reflection length in affine Coxeter groups

Noam von Rotberg

8th June 2020

Motivation: The conjecture

Conjecture A (Schwer). Let $W = T \rtimes W_0$ be an affine Coxeter group with spherical Coxeter group W_0 over the same root system Φ . For $w \in W$ with normal form $w = t_{\lambda}u$ the reflection length can be written as

$$\ell_R(w) = \frac{1}{2}\ell_R(t_\lambda) + \min_{v \in V_\lambda}\ell_R(vu) = \dim(\lambda) + \min_{v \in V_\lambda}\ell_R(vu).$$

Reflection length of translations: [MP11] Reflection length in spherical Coxeter groups: [Car70]

Theorem B (Small rank). Conjecture A is true in affine Coxeter groups of rank 1 and 2.

Theorem C (Upper bound). With the same notation as in Conjecture A holds

 $\ell_R(w) \le \dim(\lambda) + \min_{v \in V_\lambda} \ell_R(vu).$

Outline

The conjecture in rank $1\ {\rm Reflection}\ {\rm length},\ {\rm normal}\ {\rm forms}$

The conjecture in rank 2 dim (λ) , the set V_{λ}

The conjecture in general

Rank 1: type affine A_1

The only affine Coxeter group of rank 1 is the **infinite dihedral** group D_{∞} .

Definition (Normal form). Let $W = T \rtimes W_0$ be an affine Coxeter group. Then $w = t_{\lambda}u \in W$ is a normal form if $t_{\lambda} \in T$ and $u \in W_0$.

Proposition. Let $D_{\infty} = T \rtimes \langle s \rangle$ as above. For $w \in D_{\infty}$ with normal form $w = t_{\lambda}u$ the reflection length fulfils

$$\ell_R(w) = \frac{1}{2}\ell_R(t_\lambda) + \ell_R(v_\lambda u)$$

where

Proof.

Definition (Reflection length). Let W be an affine Coxeter group with reflections R. The *reflection length* of $w \in W$ is

 $\ell_R(w) = \min\{k \mid w = r_1 r_2 \cdots r_k \text{ with all } r_i \in R \text{ reflections}\}.$

Reflection lengths in D_{∞} :

- 1 identity $\ell_R(1) =$
- r reflection $\ell_R(r) =$
- t_{λ} translation $\ell_R(t_{\lambda}) =$

 $v_{\lambda} =$

Identify $D_{\infty} =$

Rank 2

There are three (irreducible) affine Coxeter groups of rank 2 [MT11, Prop. A.17]. These are their reflection hyperplanes in the Euclidean plane:

Type affine A_2

The affine Coxeter group W_A of type affine A_2 acting on the Euclidean plane:

The spherical Coxeter group S_3 acting on an equilateral triangle:

$$S_3 = \{1, s, r, srs, sr, rs\}$$
$$= \langle$$

Type affine A_2

 $t_{2\beta^{\vee}}\cdot u$ $t_{2\gamma^{\vee}} \cdot u$ $t_{\alpha^{\vee}+2\gamma^{\vee}}\cdot u$ $t_{3\alpha^{\vee}+2\beta^{\vee}} \cdot u$ $t_{\beta^{\vee}} \cdot u$ $t_{\gamma^{\vee}} \cdot u$ $t_{2\beta^{\vee}-\gamma^{\vee}}\cdot u$ $t_{-2\alpha^{\vee}+\gamma^{\vee}} \cdot u$ $t_{\alpha^{\vee}}s \mid t_{\alpha^{\vee}}\mathbb{1}$ $t_{-\alpha^{\vee}}s$ s1 $t_{-2\alpha} \vee \cdot u$ $t_{2\alpha^{\vee}} \cdot u$ $t_{-\alpha^{\vee}}r$ sr r $t_{-\alpha^{\vee}} rs$ srs rs $t_{\alpha^{\vee}} rs$ $t_{-\gamma^{\vee}} \cdot u$ $t_{-\beta} \cdot u$ $t_{-2\gamma^{ee}}\cdot u$ $t_{-2\beta^{\vee}} \cdot u$ $t_{-\beta^{\vee}-\gamma^{\vee}} \cdot u$ $t_{\alpha^{\vee}-s\gamma^{\vee}}\cdot u$

Identify W_A as semidirect product

$$W_A = T \rtimes S_3$$

where $T \cong \mathbb{Z}^2$.

$$\begin{split} \Phi_A^{\vee} &= \{\pm \alpha^{\vee}, \, \pm \beta^{\vee}, \, \pm (\alpha^{\vee} + \beta^{\vee}) \} \\ s_\alpha &= \\ s_\beta &= \\ s_{\alpha+\beta} &= \end{split}$$

The conjecture in type affine A_2

Proposition. Let $W_A = T \rtimes S_3$ as above. For a normal form $w = t_\lambda u \in W_A$ holds

 $\ell_R(w) = \dim(\lambda) + \min_{v \in V_\lambda} \ell_R(vu).$

What are dim (λ) and V_{λ} ?

Dimension of a vector $\boldsymbol{\lambda}$

Definition (Dimension of λ). Let Φ^{\vee} be a coroot system. The *dimension* of $\lambda \in \mathbb{Z}\Phi^{\vee}$ is defined as

$$\dim(\lambda) = \min\{k \mid \lambda = \sum_{i=1}^{k} c_i \alpha_i^{\vee} \text{ with } c_i \in \mathbb{Z}, \, \alpha_i^{\vee} \in \Phi^{\vee}\}.$$

In affine Coxeter groups it can be shown that $\dim(\lambda) = \frac{1}{2}\ell_R(t_\lambda)$ [MP11, Prop. 3.4].

The set V_{λ}

Definition (The set V_{λ}). Let Φ^{\vee} be a coroot system and $\lambda \in \mathbb{Z}\Phi^{\vee}$ of dimension k. If

$$\lambda = \sum_{i=1}^k c_i \alpha_i^{\vee}$$

with coroots $\alpha_1^{\vee}, \ldots, \alpha_k^{\vee}$ and all $c_i \in \mathbb{Z}_{\neq 0}$ then $s_{\alpha_1} \cdots s_{\alpha_k} \in V_{\lambda}$.

The set V_{λ} for λ of low dimension:

 $\dim(\lambda) = 0:$

 $\dim(\lambda) = 1:$

 $\dim(\lambda) = 2:$

$$\Phi_A^{\vee} = \{ \pm \alpha^{\vee}, \, \pm \beta^{\vee}, \, \pm (\alpha^{\vee} + \beta^{\vee}) \}$$

$$s_{\alpha} = s$$
$$s_{\beta} = r$$
$$s_{\alpha+\beta} = srs$$

The conjecture in type affine A_2

Proposition. Let $W_A = T \rtimes S_3$ as above. For a normal form $w = t_\lambda u \in W_A$ holds

$$\ell_R(w) = \dim(\lambda) + \min_{v \in V_\lambda} \ell_R(vu).$$

Proof. Case dim $(\lambda) = 0$:

Case dim $(\lambda) = 1$: $\lambda \in \mathbb{Z}\rho^{\vee}$

All coroots in Φ_A^{\vee} are conjugate [MT11, Cor. A.18]. ℓ_R is invariant under conjugacy [LMPS19, Rmk. 1.3].

 $V_{\lambda} = \{$

There are only 5 types of elements in rank two and those have the following reflection lengths [LMPS19, Table 1]:

identity	$\ell_R(w) = 0$
reflection	$\ell_R(w) = 1$
rotation	$\ell_R(w) = 2$
translation	$\ell_R(w) = 2 \text{ or } 4$
glide reflection	$\ell_R(w) = 3$

Case dim $(\lambda) = 2$: $V_{\lambda} = \{$

Type affine G_2

Identify W_G as semidirect product

$$W_G = T \rtimes D_6$$

where $T \cong \mathbb{Z}^2$ and

$$D_6 = \langle s, r \, | \, s^2, r^2, (sr)^6 \rangle.$$

Rotations in D_6 :

Let $\lambda \in \Phi_G^{\vee}$ of dimension two. Then $V_{\lambda} = \{$

 Φ_G^{\vee} is generated by α^{\vee} and β^{\vee} or all short coroots [MT11, Prop. A.11 and Lem. B.20].

The conjecture in general

Conjecture A (Schwer). Let $W = T \rtimes W_0$ be an affine Coxeter group with spherical Coxeter group W_0 over the same root system Φ . For $w \in W$ with normal form $w = t_{\lambda}u$ the reflection length can be written as

 $\ell_R(w) = \dim(\lambda) + \min_{v \in V_\lambda} \ell_R(vu).$

Root systems and spherical Coxeter groups

Definition. A subset $\Phi \subseteq V$ of a finite dimensional \mathbb{R} -vector space V is a *root system* if:

- (R1) Φ is finite, $0 \notin \Phi$ and $\langle \Phi \rangle_{\mathbb{R}} = V$,
- (R2) $\forall \alpha \in \Phi$: if $\lambda \alpha \in \Phi$ for $\lambda \in \mathbb{R}$, then $\lambda = \pm 1$,
- (R3) $\forall \alpha \in \Phi \exists$ a reflection $s_{\alpha} \in \operatorname{GL}(V)$ along α stabilising Φ ,
- (R4) (crystallographic condition or integrality) $\forall \alpha, \beta \in \Phi: \ s_{\alpha}.\beta - \beta \text{ is an integral multiple of } \alpha$

The group $W_0 = \langle s_\alpha \mid \alpha \in \Phi \rangle$ is called *spherical Coxeter group* and the set $\Phi^{\vee} = \{\frac{2}{(\alpha,\alpha)} \alpha \mid \alpha \in \Phi\}$ is the *coroot system* of Φ .

The root system Φ_G of type G_2 .

The coroot system Φ_G^{\vee} of type G_2 .

Affine Coxeter groups

Definition (Affine Coxeter groups). Let V be a finite dimensional \mathbb{R} -vector space with root system Φ . \forall roots $\alpha \in \Phi$, \forall integers $j \in \mathbb{Z}$ let

 $H_{\alpha,j}$ the *(affine) hyperplane* of points $v \in V$ with $(v, \alpha) = j$

 $r_{\alpha,j}$ the reflection about $H_{\alpha,j}$.

The set $R = \{r_{\alpha,j} \mid \alpha \in \Phi, j \in \mathbb{Z}\}$ generates the affine Coxeter group W.

The hyperplane arrangement of type A_2 with the root system Φ_A .

The upper bound of the conjecture

Theorem C (Upper bound). Let $W = T \rtimes W_0$ be an affine Coxeter group with spherical Coxeter group W_0 over the same root system Φ . For $w \in W$ with normal form $w = t_{\lambda}u$ the reflection length can be written as

 $\ell_R(w) \le \dim(\lambda) + \min_{v \in V_{\lambda}} \ell_R(vu).$

Lemma (Rewriting reflection factorisations [MP11, Lem. 3.5]). Let $w = r_1 \cdots r_l \in W$ with all r_i reflections. For any $1 \leq i_1 < i_2 < \cdots < i_m \leq l$ exist $\tilde{w} \in W$ of length l-m:

$$w = \tilde{w} \cdot r_{i_1} r_{i_2} \cdots r_{i_m}$$

Thank you for your attention!

References

- [Car70] R. Carter. Conjugacy classes in the Weyl group. In Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), pages 297–318. Springer, Berlin, 1970.
- [LMPS19] Joel Brewster Lewis, Jon McCammond, T. Kyle Petersen, and Petra Schwer. Computing reflection length in an affine Coxeter group. Trans. Amer. Math. Soc., 371(6):4097–4127, 2019.
- [MP11] Jon McCammond and T. Kyle Petersen. Bounding reflection length in an affine Coxeter group. J. Algebraic Combin., 34(4):711–719, 2011.
- [MT11] Gunter Malle and Donna Testerman. Linear algebraic groups and finite groups of Lie type, volume 133 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011.