Character varieties and Lagrangian submanifolds

Lukas D. Sauer

Master's Seminar, University of Heidelberg May 18, 2020

Representation varieties

Let $\Gamma = \langle \gamma_i | w_\lambda \rangle$ be a finitely generated group. Let *G* be an affine algebraic group over \mathbb{C} . The set of homomorphisms $\rho : \Gamma \to G$ can be embedded into G^N via

 $\operatorname{Hom}(\Gamma, G) \hookrightarrow G^N, \quad \rho \mapsto (\rho(\gamma_i))_i.$

With the affine algebraic structure coming from *G^N*, Hom(**F**, **G**) is called *representation variety*.

Let G be a reductive algebraic group and let $\Gamma = \pi_1(S)$ be the fundamental group of a closed compact connected surface S. Then, the subset of irreducible representations $\operatorname{Hom}^i(\Gamma, G)$ consists of non-singular points only. In particular, it can be equipped with the structure of a complex manifold.

Representation varieties

Let $\Gamma = \langle \gamma_i | w_\lambda \rangle$ be a finitely generated group. Let *G* be an affine algebraic group over \mathbb{C} . The set of homomorphisms $\rho : \Gamma \to G$ can be embedded into G^N via

$$\operatorname{Hom}(\Gamma, G) \hookrightarrow G^N, \quad \rho \mapsto (\rho(\gamma_i))_i.$$

With the affine algebraic structure coming from G^N , $Hom(\Gamma, G)$ is called *representation variety*.

Let G be a reductive algebraic group and let $\Gamma = \pi_1(S)$ be the fundamental group of a closed compact connected surface S. Then, the subset of irreducible representations $\operatorname{Hom}^i(\Gamma, G)$ consists of non-singular points only. In particular, it can be equipped with the structure of a complex manifold.

Representation varieties

Let $\Gamma = \langle \gamma_i | w_\lambda \rangle$ be a finitely generated group. Let *G* be an affine algebraic group over \mathbb{C} . The set of homomorphisms $\rho : \Gamma \to G$ can be embedded into G^N via

$$\operatorname{Hom}(\Gamma, G) \hookrightarrow G^{\mathbb{N}}, \quad \rho \mapsto (\rho(\gamma_i))_i.$$

With the affine algebraic structure coming from G^N , $Hom(\Gamma, G)$ is called *representation variety*.

Let G be a reductive algebraic group and let $\Gamma = \pi_1(S)$ be the fundamental group of a closed compact connected surface S. Then, the subset of irreducible representations $\operatorname{Hom}^i(\Gamma, G)$ consists of non-singular points only. In particular, it can be equipped with the structure of a complex manifold.

Let G be a reductive affine algebraic group. G acts on $Hom(\Gamma, G)$ via conjugation, i.e. $g.\rho(\gamma) = g\rho(\gamma)g^{-1}$. What is a "nice" orbit space?

Problem

In general, the orbit space $Hom(\Gamma, G)/G$ is neither Hausdorff nor does it bear an affine algebraic structure.

Let G be a reductive affine algebraic group. G acts on $Hom(\Gamma, G)$ via conjugation, i.e. $g.\rho(\gamma) = g\rho(\gamma)g^{-1}$. What is a "nice" orbit space?

Problem

In general, the orbit space $Hom(\Gamma, G)/G$ is neither Hausdorff nor does it bear an affine algebraic structure.

Definition

The categorical quotient $X_G(\Gamma) = \text{Hom}(\Gamma, G) // G$ is called the *character variety* of Γ in G. It is an affine algebraic set.

- **I** $X_G(\Gamma)$ represents closed orbits.
- Homⁱ(Γ , G)//G = Homⁱ(Γ , G)/G.
- A good representation ρ is an irreducible representation with stabilizer $G_{\rho} = C(G) \subseteq G$. The good representations ρ have (Zariski) tangent spaces $T_{\rho}X_G(\Gamma) = H^1(\Gamma, g_{Ad\rho})$.
- The good character variety $X_G^g(S) = X_G^g(\pi_1(S))$ is non-singular.

Definition

The categorical quotient $X_G(\Gamma) = \text{Hom}(\Gamma, G) // G$ is called the *character variety* of Γ in G. It is an affine algebraic set.

- $X_G(\Gamma)$ represents closed orbits.
- Hom^{*i*}(Γ , *G*)//*G* = Hom^{*i*}(Γ , *G*)/*G*.
- A good representation ρ is an irreducible representation with stabilizer $G_{\rho} = C(G) \subseteq G$. The good representations ρ have (Zariski) tangent spaces $T_{\rho}X_G(\Gamma) = H^1(\Gamma, g_{Ad\rho})$.
- The good character variety $X_G^g(S) = X_G^g(\pi_1(S))$ is non-singular.

Definition

The categorical quotient $X_G(\Gamma) = \text{Hom}(\Gamma, G) // G$ is called the *character variety* of Γ in G. It is an affine algebraic set.

- $X_G(\Gamma)$ represents closed orbits.
- Hom^{*i*}(Γ , *G*)//*G* = Hom^{*i*}(Γ , *G*)/*G*.
- A good representation ρ is an irreducible representation with stabilizer $G_{\rho} = C(G) \subseteq G$. The good representations ρ have (Zariski) tangent spaces $T_{\rho}X_G(\Gamma) = H^1(\Gamma, g_{Ad\rho})$.
- The good character variety $X_G^g(S) = X_G^g(\pi_1(S))$ is non-singular.

Definition

The categorical quotient $X_G(\Gamma) = \text{Hom}(\Gamma, G) // G$ is called the *character variety* of Γ in G. It is an affine algebraic set.

- $X_G(\Gamma)$ represents closed orbits.
- Hom^{*i*}(Γ , *G*)//*G* = Hom^{*i*}(Γ , *G*)/*G*.
- A *good representation* ρ is an irreducible representation with stabilizer $G_{\rho} = C(G) \subseteq G$. The good representations ρ have (Zariski) tangent spaces $T_{\rho}X_G(\Gamma) = H^1(\Gamma, g_{Ad\rho})$.
- The good character variety $X_G^g(S) = X_G^g(\pi_1(S))$ is non-singular.

Definition

The categorical quotient $X_G(\Gamma) = \text{Hom}(\Gamma, G) // G$ is called the *character variety* of Γ in G. It is an affine algebraic set.

- $X_G(\Gamma)$ represents closed orbits.
- Hom^{*i*}(Γ , *G*)//*G* = Hom^{*i*}(Γ , *G*)/*G*.
- A *good representation* ρ is an irreducible representation with stabilizer $G_{\rho} = C(G) \subseteq G$. The good representations ρ have (Zariski) tangent spaces $T_{\rho}X_G(\Gamma) = H^1(\Gamma, g_{Ad\rho})$.
- The good character variety $X_G^g(S) = X_G^g(\pi_1(S))$ is non-singular.

Goldman's symplectic form

From now on, let S be orientable. Suppose we have a non-degenerate, Ad-invariant, symmetric, \mathbb{C} -bilinear form $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$. It induces a bilinear form:

$$\omega_{\rho}^{B}: H^{1}(\pi_{1}(S), g_{\mathrm{Ad}\rho}) \times H^{1}(\pi_{1}(S), g_{\mathrm{Ad}\rho}) \xrightarrow{\cup} H^{2}(\pi_{1}(S), g_{\mathrm{Ad}\rho} \otimes g_{\mathrm{Ad}\rho})$$
$$\xrightarrow{B} H^{2}(\pi_{1}(S), \mathbb{C}) \cong \mathbb{C}.$$

 ω_{ρ}^{B} is non-degenerate and anti-symmetric. It can be shown that ω^{B} is a symplectic form on the manifold $X_{G}^{g}(S)$. This construction is due to Bill Goldman [Gol84].

Goldman's symplectic form

From now on, let S be orientable. Suppose we have a non-degenerate, Ad-invariant, symmetric, \mathbb{C} -bilinear form $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$. It induces a bilinear form:

$$\begin{split} \omega_{\rho}^{\mathsf{B}} &: H^{1}(\pi_{1}(\mathsf{S}), \mathfrak{g}_{\mathsf{Ad}\rho}) \times H^{1}(\pi_{1}(\mathsf{S}), \mathfrak{g}_{\mathsf{Ad}\rho}) \xrightarrow{\cup} H^{2}(\pi_{1}(\mathsf{S}), \mathfrak{g}_{\mathsf{Ad}\rho} \otimes \mathfrak{g}_{\mathsf{Ad}\rho}) \\ & \xrightarrow{\mathsf{B}} H^{2}(\pi_{1}(\mathsf{S}), \mathbb{C}) \cong \mathbb{C} \,. \end{split}$$

 ω_{ρ}^{B} is non-degenerate and anti-symmetric. It can be shown that ω^{B} is a symplectic form on the manifold $X_{G}^{g}(S)$. This construction is due to Bill Goldman [Gol84].

Goldman's symplectic form

From now on, let S be orientable. Suppose we have a non-degenerate, Ad-invariant, symmetric, \mathbb{C} -bilinear form $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$. It induces a bilinear form:

$$\omega_{\rho}^{B} : H^{1}(\pi_{1}(S), g_{Ad\rho}) \times H^{1}(\pi_{1}(S), g_{Ad\rho}) \xrightarrow{\cup} H^{2}(\pi_{1}(S), g_{Ad\rho} \otimes g_{Ad\rho})$$
$$\xrightarrow{B} H^{2}(\pi_{1}(S), \mathbb{C}) \cong \mathbb{C}.$$

 ω_{ρ}^{B} is non-degenerate and anti-symmetric. It can be shown that ω^{B} is a symplectic form on the manifold $X_{G}^{g}(S)$. This construction is due to Bill Goldman [Gol84].

Let *M* be a compact connected 3-manifold, whose boundary is a compact connected orientable closed surface, i.e. $\partial M = S$. The embedding

 $S \hookrightarrow M$

induces a group homomorphism

 $r:\pi_1(S)\to\pi_1(M),$

which induces a regular map

 $r^*: X_G(M) \to X_G(S), \quad [\rho] \mapsto [\rho \circ r]$

of the character varieties. Idea: The image of r* is a Lagrangian submanifold.

Let *M* be a compact connected 3-manifold, whose boundary is a compact connected orientable closed surface, i.e. $\partial M = S$. The embedding

$$S \hookrightarrow M$$

induces a group homomorphism

 $r:\pi_1(\mathsf{S})\to\pi_1(\mathsf{M}),$

which induces a regular map

 $r^*: X_G(M) \to X_G(S), \quad [\rho] \mapsto [\rho \circ r]$

of the character varieties. Idea: The image of *r** is a Lagrangian submanifold.

Let *M* be a compact connected 3-manifold, whose boundary is a compact connected orientable closed surface, i.e. $\partial M = S$. The embedding

$$S \hookrightarrow M$$

induces a group homomorphism

 $r:\pi_1(\mathsf{S})\to\pi_1(\mathsf{M}),$

which induces a regular map

 $r^*: X_G(M) \to X_G(S), \quad [\rho] \mapsto [\rho \circ r]$

of the character varieties. Idea: The image of r* is a Lagrangian submanifold.

Let *M* be a compact connected 3-manifold, whose boundary is a compact connected orientable closed surface, i.e. $\partial M = S$. The embedding

$$S \hookrightarrow M$$

induces a group homomorphism

 $r:\pi_1(\mathsf{S})\to\pi_1(\mathsf{M}),$

which induces a regular map

$$r^*: X_G(M) \to X_G(S), \quad [\rho] \mapsto [\rho \circ r]$$

of the character varieties. Idea: The image of r^* is a Lagrangian submanifold.

We have $r^* : X_G(M) \rightarrow X_G(S)$. Consider the "non-singular good image"

 $Y_{\mathsf{G}}(\mathsf{M}) = [r^* X_{\mathsf{G}}(\mathsf{M}) \cap X_{\mathsf{G}}^{\mathsf{g}}(\mathsf{S})]^{\mathsf{ns}}.$

Theorem (see [Sik09])

 $Y_G(M) \subseteq X_G^g(S)$ is a disjoint union of isotropic submanifolds, i.e. $\omega^B|_{Y_G(M)} \equiv 0$.

A Lagrangian submanifold is an isotropic submanifold of dimension

 $\frac{1}{2}\dim_{\mathbb{R}} X^{g}_{G}(S).$

It is possible to "characterize" Lagrangian components (components containing reduced representations).

Character varieties and Lagrangian submanifolds

We have $r^* : X_G(M) \rightarrow X_G(S)$. Consider the "non-singular good image"

 $Y_{G}(M) = [r^{*}X_{G}(M) \cap X_{G}^{g}(S)]^{ns}.$

Theorem (see [Sik09])

 $Y_G(M) \subseteq X_G^g(S)$ is a disjoint union of isotropic submanifolds, i.e. $\omega^B|_{Y_G(M)} \equiv 0$.

A Lagrangian submanifold is an isotropic submanifold of dimension

 $\frac{1}{2}\dim_{\mathbb{R}} X^{g}_{G}(S).$

It is possible to "characterize" Lagrangian components (components containing reduced representations).

Character varieties and Lagrangian submanifolds

We have $r^* : X_G(M) \to X_G(S)$. Consider the "non-singular good image"

 $Y_{G}(M) = [r^{*}X_{G}(M) \cap X_{G}^{g}(S)]^{ns}.$

Theorem (see [Sik09])

 $Y_G(M) \subseteq X_G^g(S)$ is a disjoint union of isotropic submanifolds, i.e. $\omega^B|_{Y_G(M)} \equiv 0$.

A Lagrangian submanifold is an isotropic submanifold of dimension

 $\frac{1}{2}\dim_{\mathbb{R}} X^g_G(S).$

It is possible to "characterize" Lagrangian components (components containing *reduced representations*).

Character varieties and Lagrangian submanifolds

Let S be a closed compact connected Riemann surface, and let $f : S \to S$ be an anti-holomorphic involution, i.e. $f^2 = id$ and $z \mapsto f(\overline{z})$ is holomorphic. f induces a homomorphism

 $f_*: \pi_1(S, Z_0) \to \pi_1(S, f(Z_0)), \quad \gamma \mapsto f(\gamma).$

Together with a path δ from z_0 to $f(z_0)$, we obtain an automorphism

$$f_{*,\delta}: \pi_1(S, Z_0) \to \pi_1(S, Z_0), \quad \gamma \mapsto \delta.f(\gamma).\delta^{-1}.$$

$$\hat{f}: X_G(S) \to X_G(S), \quad [\rho] \mapsto [\rho \circ f_{*,\delta}].$$

Let S be a closed compact connected Riemann surface, and let $f : S \to S$ be an anti-holomorphic involution, i.e. $f^2 = id$ and $z \mapsto f(\overline{z})$ is holomorphic. f induces a homomorphism

$$f_*: \pi_1(\mathsf{S},\mathsf{Z}_0) \to \pi_1(\mathsf{S},f(\mathsf{Z}_0)), \quad \gamma \mapsto f(\gamma).$$

Together with a path δ from z_0 to $f(z_0)$, we obtain an automorphism

$$f_{*,\delta}: \pi_1(S, Z_0) \to \pi_1(S, Z_0), \quad \gamma \mapsto \delta.f(\gamma).\delta^{-1}.$$

$$\hat{f}: X_G(S) \to X_G(S), \quad [\rho] \mapsto [\rho \circ f_{*,\delta}].$$

Let S be a closed compact connected Riemann surface, and let $f : S \to S$ be an anti-holomorphic involution, i.e. $f^2 = id$ and $z \mapsto f(\overline{z})$ is holomorphic. f induces a homomorphism

$$f_*: \pi_1(\mathsf{S}, \mathsf{Z}_0) \to \pi_1(\mathsf{S}, f(\mathsf{Z}_0)), \quad \gamma \mapsto f(\gamma).$$

Together with a path δ from z_0 to $f(z_0)$, we obtain an automorphism

$$f_{*,\delta}: \pi_1(S, Z_0) \to \pi_1(S, Z_0), \quad \gamma \mapsto \delta.f(\gamma).\delta^{-1}.$$

$$\hat{f}: X_G(S) \to X_G(S), \quad [\rho] \mapsto [\rho \circ f_{*,\delta}].$$

Let S be a closed compact connected Riemann surface, and let $f : S \to S$ be an anti-holomorphic involution, i.e. $f^2 = id$ and $z \mapsto f(\overline{z})$ is holomorphic. f induces a homomorphism

$$f_*: \pi_1(\mathsf{S}, \mathsf{Z}_0) \to \pi_1(\mathsf{S}, f(\mathsf{Z}_0)), \quad \gamma \mapsto f(\gamma).$$

Together with a path δ from z_0 to $f(z_0)$, we obtain an automorphism

$$f_{*,\delta}: \pi_1(S, Z_0) \to \pi_1(S, Z_0), \quad \gamma \mapsto \delta.f(\gamma).\delta^{-1}.$$

$$\hat{f}: X_G(S) \to X_G(S), \quad [\rho] \mapsto [\rho \circ f_{*,\delta}].$$

 \hat{f} preserves good representations. $\hat{f}: X^g_G(S) \to X^g_G(S)$ is independent of δ and an involution.

Theorem

The fixed point set $\mathcal{L}_G \subseteq X_G^g(S)$ of \hat{f} is called the (A, B, A)-brane. It is a Lagrangian submanifold of $X_G^g(S)$.

 \hat{f} preserves good representations. $\hat{f}: X_G^g(S) \to X_G^g(S)$ is independent of δ and an involution.

Theorem

The fixed point set $\mathcal{L}_G \subseteq X_G^g(S)$ of \hat{f} is called the (A, B, A)-brane. It is a Lagrangian submanifold of $X_G^g(S)$.

We have found two isotropic (and possibly Lagrangian) submanifolds of $X_G^g(S)$, namely $Y_G(M)$ and \mathcal{L}_G . Are they related to each other?

Yes, if we choose the right M.

We have found two isotropic (and possibly Lagrangian) submanifolds of $X_G^g(S)$, namely $Y_G(M)$ and \mathcal{L}_G . Are they related to each other?

Yes, if we choose the right M.

Task

We will construct a 3-manifold M with $\partial M = S$, for which $Y_G(M) \subseteq \mathcal{L}_G$.

Consider the 3-manifold $\Sigma = S \times [-1, 1]$ together with the smooth involution

 $\sigma: \Sigma \to \Sigma, \quad (z,t) \mapsto (f(z), -t).$

Via σ , $\mathbb{Z}/2\mathbb{Z}$ acts on Σ . Denote the orbit space by $M = \Sigma/\sigma$.

Task

We will construct a 3-manifold M with $\partial M = S$, for which $Y_G(M) \subseteq \mathcal{L}_G$.

Consider the 3-manifold $\Sigma = S \times [-1, 1]$ together with the smooth involution

 $\sigma: \Sigma \to \Sigma, \quad (z,t) \mapsto (f(z), -t).$

Via σ , $\mathbb{Z}/2\mathbb{Z}$ acts on Σ . Denote the orbit space by $M = \Sigma/\sigma$.

Task

We will construct a 3-manifold M with $\partial M = S$, for which $Y_G(M) \subseteq \mathcal{L}_G$.

Consider the 3-manifold $\Sigma = S \times [-1, 1]$ together with the smooth involution

 $\sigma: \Sigma \to \Sigma, \quad (z,t) \mapsto (f(z), -t).$

Via σ , $\mathbb{Z}/2\mathbb{Z}$ acts on Σ . Denote the orbit space by $M = \Sigma/\sigma$.

Task

We will construct a 3-manifold M with $\partial M = S$, for which $Y_G(M) \subseteq \mathcal{L}_G$.

Consider the 3-manifold $\Sigma = S \times [-1, 1]$ together with the smooth involution

 $\sigma: \Sigma \to \Sigma, \quad (z,t) \mapsto (f(z), -t).$

Via σ , $\mathbb{Z}/2\mathbb{Z}$ acts on Σ . Denote the orbit space by $M = \Sigma/\sigma$.

Task

We will construct a 3-manifold M with $\partial M = S$, for which $Y_G(M) \subseteq \mathcal{L}_G$.

Consider the 3-manifold $\Sigma = S \times [-1, 1]$ together with the smooth involution

 $\sigma: \Sigma \to \Sigma, \quad (z,t) \mapsto (f(z), -t).$

Via σ , $\mathbb{Z}/2\mathbb{Z}$ acts on Σ . Denote the orbit space by $M = \Sigma/\sigma$.

Construction of a smooth chart around $F \subset M$:

- F consists of disjoint copies of the circle S^1 .
- Every circle $S^1 \subseteq \Sigma$ has a neighborhood $S^1 \subset V \cong S^1 \times B^2_{\varepsilon}(0)$ with

 $\sigma(x,y,t)=(x,-y,-t).$

- In M, we have [x, y, t] = [x, -y, -t]. Define w = y + it ∈ C, we have
 [x, w] = [x, -w] in M.
- Let $\pi : \Sigma \to M$ be the projection. We have a commutative diagram

Construction of a smooth chart around $F \subset M$:

- F consists of disjoint copies of the circle S¹.
- Every circle $S^1 \subseteq \Sigma$ has a neighborhood $S^1 \subset V \cong S^1 \times B^2_{\varepsilon}(0)$ with

 $\sigma(x,y,t)=(x,-y,-t).$

In M, we have [x, y, t] = [x, -y, -t]. Define w = y + it ∈ C, we have
[x, w] = [x, -w] in M.

Let $\pi : \Sigma \to M$ be the projection. We have a commutative diagram

Construction of a smooth chart around $F \subset M$:

- *F* consists of disjoint copies of the circle *S*¹.
- Every circle $S^1 \subseteq \Sigma$ has a neighborhood $S^1 \subset V \cong S^1 \times B^2_{\varepsilon}(0)$ with

 $\sigma(x, y, t) = (x, -y, -t).$

In *M*, we have [x, y, t] = [x, -y, -t]. Define $w = y + it \in \mathbb{C}$, we have [x, w] = [x, -w] in *M*.

Let $\pi : \Sigma \to M$ be the projection. We have a commutative diagram

Construction of a smooth chart around $F \subset M$:

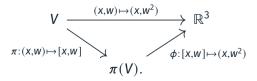
- *F* consists of disjoint copies of the circle *S*¹.
- Every circle $S^1 \subseteq \Sigma$ has a neighborhood $S^1 \subset V \cong S^1 \times B^2_{\varepsilon}(0)$ with

 $\sigma(x, y, t) = (x, -y, -t).$

In *M*, we have [x, y, t] = [x, -y, -t]. Define $w = y + it \in \mathbb{C}$, we have

[x, w] = [x, -w] in *M*.

Let $\pi : \Sigma \to M$ be the projection. We have a commutative diagram



We choose $\phi : \pi(V) \to \mathbb{R}^3$ to be the chart around $S^1 \subset M$. It is compatible with the smooth structure of $M \setminus F$. Hence, M is a smooth manifold.

Theorem (see [BS14])

For M constructed as above, $Y_G(M)$ is contained in \mathcal{L}_G .

We choose $\phi : \pi(V) \to \mathbb{R}^3$ to be the chart around $S^1 \subset M$. It is compatible with the smooth structure of $M \setminus F$. Hence, M is a smooth manifold.

Theorem (see [BS14])

For M constructed as above, $Y_G(M)$ is contained in \mathcal{L}_G .

References (selection)

- David Baraglia and Laura P. Schaposnik. "Higgs bundles and (A,B,A)-branes". In: Commun. Math. Phys. 331 (2014), pp. 1271–1300.
 - William M. Goldman. "The symplectic nature of fundamental groups of surfaces". In: *Advances in Math.* 54.2 (1984), pp. 200–225.
 - Adam S. Sikora. "Character Varieties". In: *arXiv e-prints*, arXiv:0902.2589 (2009).