Quiver Varieties

Jakob Schuhmacher July 6, 2020

Heidelberg University

Quick Recap: Quiver Representations

- A quiver Q = (V, E, s, t) is a finite and directed graph.
- A representation of Q is a tuple (M, f) consisting of a family $M = (M_k)_{k \in V}$ of complex vector spaces M_k and a family $f = (f_{\alpha})_{\alpha \in E}$ of \mathbb{C} -linear maps

$$f_{\alpha} \colon M_{s(\alpha)} \to M_{t(\alpha)}.$$

• A representation (M, f) of Q is called *finite dimensional* if there holds

$$\dim_{\mathbb{C}}\left(M_k\right) < \infty$$

for all $k \in V$.

• For a finite dimensional representation (M, f) of Q, the vector $\mathbf{m} = (\dim_{\mathbb{C}} (M_k))_{k \in V}$ is called the *dimension vector* of (M, f).

Let Q = (V, E, s, t) be a quiver, and let $M = (M_k)_{k \in V}$ be a family of complex vector spaces M_k .

Definition

The complex vector space

$$R(Q, M) = \bigoplus_{\alpha \in E} \operatorname{Hom}\left(M_{s(\alpha)}, M_{t(\alpha)}\right)$$

is called the *representation space* of Q with respect to M.

Any element $z = (z_{\alpha})_{\alpha \in E} \in R(Q, M)$ induces a representation (M, z) of Q.

The Group Action on the Representation Space

Assume now that M_k is finite dimensional for all $k \in V$. We consider the group

$$\operatorname{GL}(M) = \prod_{k \in V} \operatorname{GL}(M_k).$$

Note that GL(M) is both a complex Lie group and a complex algebraic group.

Theorem

 $\operatorname{GL}(M)$ acts on R(Q, M) by conjugation. More precisely, this action is given by

$$g \cdot z = \left(g_{t(\alpha)} z_{\alpha} g_{s(\alpha)}^{-1}\right)_{\alpha \in E} \in R\left(Q, M\right)$$

for all $g = (g_k)_{k \in V} \in \operatorname{GL}(M)$ and all $z = (z_\alpha)_{\alpha \in E} \in R(Q, M)$.

Let |Q| = (|V|, |E|) be a finite graph. Then, we define the *double* quiver Q = (V, E, s, t) of |Q| as follows.

- $\bullet \ V = |V|,$
- $E = H \sqcup \overline{H}$, where $H = \overline{H} = |E|$.
- Define the maps s and t on H in a way such that (V, H, s, t) forms a quiver.
- For any edge α ∈ H, let ā denote the unique edge in H for which there holds |α| = |ā| ∈ |E|. Then, we define s and t on H by s (ā) = t (α) and t (ā) = s (α).

More on the Double Quiver

- Let |Q| denote the Kronecker graph. 1 2 Then, the double quiver Q of |Q| is given as follows.
- Note that for a double quiver Q, there is a natural direct sum decomposition

$$R(Q,M) = R(H,M) \oplus R(\bar{H},M),$$

where

$$R(H, M) = \bigoplus_{\alpha \in H} \operatorname{Hom} \left(M_{s(\alpha)}, M_{t(\alpha)} \right),$$
$$R(\bar{H}, M) = \bigoplus_{\bar{\alpha} \in \bar{H}} \operatorname{Hom} \left(M_{s(\bar{\alpha})}, M_{t(\bar{\alpha})} \right).$$

Some Notation

- For the remainder of the talk, fix a double quiver Q = (V, E, s, t) and two families $M = (M_k)_{k \in V}$ and $N = (N_k)_{k \in V}$ of finite dimensional complex vector spaces.
- Moreover, we write

$$\operatorname{Hom}\left(M,N\right) = \bigoplus_{k \in V} \operatorname{Hom}\left(M_k,N_k\right)$$

and

$$\operatorname{Hom}(N, M) = \bigoplus_{k \in V} \operatorname{Hom}(N_k, M_k).$$

Further Group Actions

• GL(M) acts on Hom(M, N) by

$$g \cdot \varphi = \varphi \circ g^{-1} \in \operatorname{Hom}\left(M, N\right)$$

for all $g \in GL(M)$ and $\varphi \in Hom(M, N)$.

• GL(M) acts on Hom(N, M) by

$$g \cdot \psi = g \circ \psi \in \operatorname{Hom}(N, M)$$

for all $g \in GL(M)$ and $\psi \in Hom(N, M)$.

Framed Representation Space

Definition

The complex vector space

 $R(Q, M, N) = R(Q, M) \oplus \operatorname{Hom}(M, N) \oplus \operatorname{Hom}(N, M)$

is called the *N*-framed representation space of Q with respect to M.

• Since we have defined GL (M)-actions on each of the direct summands of R(Q, M, N), we naturally obtain a \mathbb{C} -linear action

$$\operatorname{GL}(M) \curvearrowright R(Q, M, N).$$

• With respect to the direct sum decomposition of R(Q, M), we denote elements by $(x, y, \varphi, \psi) \in R(Q, M, N)$.

1

An Example of a Framed Representation

• Let Q be the double quiver of the Kronecker graph.

• An N-framed representation (x, y, φ, ψ) with respect to M looks as follows.

$$\begin{array}{c} M_1 \xleftarrow{x} M_2 \\ \psi_1 \\ \downarrow & \psi_1 \\ \downarrow & \psi_2 \\ N_1 & N_2 \end{array}$$

• In particular, framed representations are representations of another double quiver. In this case, the double quiver of the graph A_4 .

Affine GIT Quotients

- Let X be a non-singular affine variety, and let G be a reductive linear algebraic group which acts algebraically on X.
- The variety

$$X \not \| G = \max \operatorname{Spec} \left(\mathbb{C} \left[X \right]^G \right)$$

is called the *affine GIT quotient* of X along G.

Theorem (Mumford, 1965)

Let G act freely on X. Then, $X \not| G$ and X/G are homeomorphic, and $X \not| G$ is a non-singular variety of dimension dim $(X \not| G) = \dim(X) - \dim(G)$.

Twisted GIT Quotients

- Let X be a non-singular affine variety, let G be a reductive linear algebraic group which acts algebraically on X, and let $\chi: G \to \mathbb{G}_m$ be a character.
- We consider the *semi-invariant*

$$\mathbb{C}[X]^{G,\chi} = \left\{ f \in \mathbb{C}[X] \mid f(g \cdot x) = \chi(g) f(x) \text{ for all } g, x \right\}.$$

Definition

The variety

$$X /\!\!/_{\chi} G = \operatorname{Proj}\left(\bigoplus_{n \in \mathbb{N}_0} \mathbb{C} [X]^{G, \chi^n}\right)$$

is called the twisted~GIT~quotient of X along G with respect to $\chi.$

Hyperkähler Manifolds

Definition

A tuple (M, g, I, J, K) consisting of a smooth manifold M, a Riemannian metric g on M, and three complex structures I, J, and K is called a *hyperkähler manifold* if the following assertions hold true:

(M, g, I), (M, g, J) and (M, g, K) are Kähler manifolds.
 I² = J² = K² = IJK = -id_{TM}.

- Hyperkähler manifolds are naturally complex symplectic.
- The dimension of hyperkähler manifolds is divisible by 4.
- Example: $(\mathbb{H}^n, g_{\mathbb{R}^{4n}}, I, J, K)$, where I, J, K are induced by scalar multiplication with $i, j, k \in \mathbb{H}$.

Hyperkähler Quotients

- Let a compact real Lie group C act smoothly on a hyperkähler manifold M.
- Assume $C \curvearrowright M$ preserves the Riemannian metric g and all complex structures I, J, K.
- Assume that the action $C \curvearrowright (M, \omega_S)$ is Hamiltonian with moment map $\mu_S \colon M \to \mathfrak{c}^*$ for all $S \in \{I, J, K\}$.
- This induces the hyperkähler moment map $\mu = (\mu_I, \mu_J, \mu_K)$.
- Pick an Ad^{*}-invariant element $\zeta \in \mathbb{R}^3 \otimes \mathfrak{c}^*$ such that the restricted action $C \curvearrowright \mu^{-1}(\zeta)$ is free.

Theorem (Hitchin et al., 1987)

 $\mu^{-1}(\zeta)/C$ naturally is a hyperkähler manifold of real dimension dim $(M) - 4 \dim (C)$.

- Pick hermitian metrics on M_k and N_k for all $k \in V$.
- This induces a hermitian metric h on R(Q, M, N).
- $g = \operatorname{Re}(h)$ is a Riemannian metric on R(Q, M, N).
- Define I as scalar multiplication with $i \in \mathbb{C}$.
- $J(x, y, \varphi, \psi) = (-y^*, x^*, \psi^*, -\varphi^*).$
- K = IJ.

Theorem

 $\left(R\left(Q,M,N\right),g,I,J,K\right)$ is a hyperkähler vector space.

Hyperkähler Quiver Variety (Part 2)

- Due to the hermitian metrics in M_k , we can define the group $U(M) \subseteq GL(M)$.
- U(M) is a real compact Lie group.
- We obtain an action $U(M) \curvearrowright R(Q, M, N)$, which is Hamiltonian with respect to ω_S for all $S \in \{I, J, K\}$.
- Pick a certain $\zeta \in \mathbb{R}^3 \otimes \mathfrak{u}(M)^*$ (suitable choice needed in order for the restricted action to be free).

Definition

The hyperkähler manifold

$$\mathcal{M}_{\zeta}\left(Q,M,N\right) = \mu^{-1}\left(\zeta\right) / \operatorname{U}\left(M\right)$$

is called hyperkähler quiver variety.

Suppose you are given the following data:

- $\mathbb{A}(R)$ denotes the affine complex variety induced by R(Q, M, N).
- A skew-symmetric function $\varepsilon \colon E \to \mathbb{C}^{\times}$, that means that there holds $\varepsilon(\alpha) = -\varepsilon(\bar{\alpha})$ for all $\alpha \in E$.
- $\lambda \in \mathbb{C}^{\operatorname{card}(V)}$.
- $\theta \in \mathbb{Z}^{\operatorname{card}(V)}$.

Then:

- ε defines a symplectic structure ω_{ε} on $\mathbb{A}(R)$ for which the GL (*M*)-action is Hamiltonian (moment map: μ_{ε}).
- θ induces a character χ_{θ} : GL $(M) \to \mathbb{G}_m$.

GIT Quiver Variety (Part 2)

Definition

The quasiprojective variety

$$\mathcal{M}_{\theta}^{\varepsilon,\lambda}\left(Q,M,N\right) = \mu_{\varepsilon}^{-1}\left(\lambda\right) /\!\!/_{\chi_{\theta}} \operatorname{GL}\left(M\right)$$

is called the *GIT quiver variety*.

M^{ε,λ}_θ (Q, M, N) is non-singular. Thus, there exists an associated complex manifold, called the *analytification* of *M*^{ε,λ}_θ (Q, M, N), which we denote by

$$\left(\mathcal{M}_{\theta}^{\varepsilon,\lambda}\left(Q,M,N\right)\right)^{\mathrm{an}}$$

• $\mathcal{M}_{0}^{\varepsilon,\lambda}\left(Q,M,N\right) = \mu_{\varepsilon}^{-1}\left(\lambda\right) /\!\!/ \operatorname{GL}(M).$

Hyperkähler Quiver Variety vs. GIT Quiver Variety

• Choose the function $\varepsilon \colon E \to \mathbb{C}^{\times}$ as

$$\varepsilon\left(\alpha\right) = \begin{cases} 1, \text{ if } \alpha \in H, \\ -1 \text{ if } \alpha \in \bar{H}. \end{cases}$$

• Consider the hyperkähler GIT quiver variety as a complex manifold $\mathcal{M}_{\zeta}(Q, M, N)$ with respect to its first complex structure I.

Theorem (Kempf, Ness, Nakajima)

For suitable choices of ζ , θ and λ , there is an isomorphism

$$\mathcal{M}_{\zeta}\left(Q,M,N\right)\cong\left(\mathcal{M}_{\theta}^{\varepsilon,\lambda}\left(Q,M,N\right)
ight)^{an}$$

 $of \ complex \ manifolds.$

An Example (Part 1)

and the associated double quiver Q = (V, E, s, t) $1 \xrightarrow{} 2 \xrightarrow{} \cdots \xrightarrow{} r$

• Let $N = \bigoplus_{k \in V} N_k$ be given by

$$N_1 = N_2 = \ldots = N_{r-1} = 0,$$
$$N_r = \mathbb{C}^n.$$

• Let $M = \bigoplus M_k$ be some $(\mathbb{Z}/r\mathbb{Z})$ -graded vector space with dimension vector

$$\mathbf{m}=(m_1,\ldots,m_r)\in\mathbb{N}_0^r.$$

An Example (Part 2)

• An N-framed representation of Q with respect to M is of the following form.

$$M_1 \xleftarrow{x_1}{w_1} M_2 \xleftarrow{x_2}{w_2} \cdots \xleftarrow{x_{r-1}}{w_{r-1}} M_r \xleftarrow{\varphi}{\psi} \mathbb{C}^n$$

• Stability theory of quiver representations (King, 1994) yields that there needs to hold

$$0 \le m_1 \le m_2 \le \ldots \le m_r \le n$$

in order for the quiver variety $\mathcal{M}_{\zeta}(Q, M, N)$ to be non-empty.

An Example (Part 3)

• Without loss of generality, we can assume that

$$0 < m_1 < m_2 < \ldots < m_r < n.$$

Otherwise, we could remove one of the vertices of the quiver without changing the resulting quiver variety.

• Let $\mathcal{F} = \mathcal{F}(\mathbb{C}^n, m_1, \dots, m_r, n)$ be the flag manifold of all flags in \mathbb{C}^n with prescribed signature (m_1, \dots, m_r, n) , that means elements of \mathcal{F} are sequences of complex vector spaces

$$0 = E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots \subseteq E_r \subseteq E_{r+1} = \mathbb{C}^n$$

• \mathcal{F} is a complex manifold. Thus, $T^*\mathcal{F}$ is a complex symplectic manifold.

Theorem (Nakajima, 1994)

For a suitable choice of ζ , the hyperkähler quiver variety $\mathcal{M}_{\zeta}(Q, M, N)$ (considered as a complex manifold with respect to I) is isomorphic to the complex manifold $T^*\mathcal{F}$.