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Quick Recap: Quiver Representations

• A quiver Q = (V,E, s, t) is a finite and directed graph.
• A representation of Q is a tuple (M,f) consisting of a

family M = (Mk)k∈V of complex vector spaces Mk and a
family f = (fα)α∈E of C-linear maps

fα : Ms(α) →Mt(α).

• A representation (M,f) of Q is called finite dimensional if
there holds

dimC (Mk) <∞

for all k ∈ V .
• For a finite dimensional representation (M,f) of Q, the

vector m =
(
dimC (Mk)

)
k∈V is called the dimension vector

of (M,f).
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The Representation Space

Let Q = (V,E, s, t) be a quiver, and let M = (Mk)k∈V be a
family of complex vector spaces Mk.

Definition
The complex vector space

R (Q,M) =
⊕
α∈E

Hom
(
Ms(α),Mt(α)

)
is called the representation space of Q with respect to M .

Any element z = (zα)α∈E ∈ R (Q,M) induces a representation
(M, z) of Q.
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The Group Action on the Representation Space

Assume now that Mk is finite dimensional for all k ∈ V . We
consider the group

GL (M) =
∏
k∈V

GL (Mk) .

Note that GL (M) is both a complex Lie group and a complex
algebraic group.

Theorem
GL (M) acts on R (Q,M) by conjugation. More precisely, this
action is given by

g · z =
(
gt(α)zαg

−1
s(α)

)
α∈E
∈ R (Q,M)

for all g = (gk)k∈V ∈ GL (M) and all z = (zα)α∈E ∈ R (Q,M).
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The Double Quiver

Let |Q| =
(
|V | ,|E|

)
be a finite graph. Then, we define the double

quiver Q = (V,E, s, t) of |Q| as follows.

• V = |V |,
• E = H t H̄, where H = H̄ = |E|.
• Define the maps s and t on H in a way such that (V,H, s, t)

forms a quiver.

• For any edge α ∈ H, let ᾱ denote the unique edge in H̄ for
which there holds |α| = |ᾱ| ∈|E|. Then, we define s and t on
H̄ by s (ᾱ) = t (α) and t (ᾱ) = s (α).

4



More on the Double Quiver

• Let |Q| denote the Kronecker graph.

1 2

Then, the double quiver Q of |Q| is given as follows.

1 2

• Note that for a double quiver Q, there is a natural direct
sum decomposition

R (Q,M) = R (H,M)⊕R
(
H̄,M

)
,

where

R (H,M) =
⊕
α∈H

Hom
(
Ms(α),Mt(α)

)
,

R
(
H̄,M

)
=
⊕
ᾱ∈H̄

Hom
(
Ms(ᾱ),Mt(ᾱ)

)
.
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Some Notation

• For the remainder of the talk, fix a double quiver
Q = (V,E, s, t) and two families M = (Mk)k∈V and
N = (Nk)k∈V of finite dimensional complex vector spaces.

• Moreover, we write

Hom (M,N) =
⊕
k∈V

Hom (Mk, Nk)

and

Hom (N,M) =
⊕
k∈V

Hom (Nk,Mk) .
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Further Group Actions

• GL (M) acts on Hom (M,N) by

g · ϕ = ϕ ◦ g−1 ∈ Hom (M,N)

for all g ∈ GL (M) and ϕ ∈ Hom (M,N).

• GL (M) acts on Hom (N,M) by

g · ψ = g ◦ ψ ∈ Hom (N,M)

for all g ∈ GL (M) and ψ ∈ Hom (N,M).
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Framed Representation Space

Definition
The complex vector space

R (Q,M,N) = R (Q,M)⊕Hom (M,N)⊕Hom (N,M)

is called the N -framed representation space of Q with respect
to M .

• Since we have defined GL (M)-actions on each of the direct
summands of R (Q,M,N), we naturally obtain a C-linear
action

GL (M) y R (Q,M,N) .

• With respect to the direct sum decomposition of R (Q,M),
we denote elements by (x, y, ϕ, ψ) ∈ R (Q,M,N).
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An Example of a Framed Representation

• Let Q be the double quiver of the Kronecker graph.

1 2

• An N -framed representation (x, y, ϕ, ψ) with respect to M
looks as follows.

M1 M2

N1 N2

x

y

ϕ1ψ1 ϕ2ψ2

• In particular, framed representations are representations of
another double quiver. In this case, the double quiver of
the graph A4.
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Affine GIT Quotients

• Let X be a non-singular affine variety, and let G be a
reductive linear algebraic group which acts algebraically on
X.

• The variety

X �G = maxSpec
(
C [X]G

)
is called the affine GIT quotient of X along G.

Theorem (Mumford, 1965)
Let G act freely on X. Then, X �G and X/G are
homeomorphic, and X �G is a non-singular variety of
dimension dim

(
X �G

)
= dim (X)− dim (G).
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Twisted GIT Quotients

• Let X be a non-singular affine variety, let G be a reductive
linear algebraic group which acts algebraically on X, and
let χ : G→ Gm be a character.

• We consider the semi-invariant

C [X]G,χ =
{
f ∈ C [X] | f (g · x) = χ (g) f (x) for all g, x

}
.

Definition
The variety

X �χ G = Proj

⊕
n∈N0

C [X]G,χ
n


is called the twisted GIT quotient of X along G with respect to
χ.
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Hyperkähler Manifolds

Definition
A tuple (M, g, I, J,K) consisting of a smooth manifold M , a
Riemannian metric g on M , and three complex structures I,
J , and K is called a hyperkähler manifold if the following
assertions hold true:

1. (M, g, I), (M, g, J) and (M, g,K) are Kähler manifolds.

2. I2 = J2 = K2 = IJK = − idTM .

• Hyperkähler manifolds are naturally complex symplectic.

• The dimension of hyperkähler manifolds is divisible by 4.

• Example:
(
Hn, gR4n , I, J,K

)
, where I, J,K are induced by

scalar multiplication with i, j, k ∈ H.
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Hyperkähler Quotients

• Let a compact real Lie group C act smoothly on a
hyperkähler manifold M .

• Assume C yM preserves the Riemannian metric g and all
complex structures I, J , K.

• Assume that the action C y (M,ωS) is Hamiltonian with
moment map µS : M → c∗ for all S ∈ {I, J,K}.

• This induces the hyperkähler moment map µ = (µI , µJ , µK).

• Pick an Ad∗-invariant element ζ ∈ R3⊗c∗ such that the
restricted action C y µ−1 (ζ) is free.

Theorem (Hitchin et al., 1987)

µ−1 (ζ) /C naturally is a hyperkähler manifold of real
dimension dim (M)− 4 dim (C).
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Hyperkähler Quiver Variety (Part 1)

• Pick hermitian metrics on Mk and Nk for all k ∈ V .

• This induces a hermitian metric h on R (Q,M,N).

• g = Re (h) is a Riemannian metric on R (Q,M,N).

• Define I as scalar multiplication with i ∈ C.

• J (x, y, ϕ, ψ) = (−y∗, x∗, ψ∗,−ϕ∗).
• K = IJ .

Theorem(
R (Q,M,N) , g, I, J,K

)
is a hyperkähler vector space.
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Hyperkähler Quiver Variety (Part 2)

• Due to the hermitian metrics in Mk, we can define the
group U (M) ⊆ GL (M).

• U (M) is a real compact Lie group.
• We obtain an action U (M) y R (Q,M,N), which is

Hamiltonian with respect to ωS for all S ∈ {I, J,K}.
• Pick a certain ζ ∈ R3⊗u (M)∗ (suitable choice needed in

order for the restricted action to be free).

Definition
The hyperkähler manifold

Mζ (Q,M,N) = µ−1 (ζ) /U (M)

is called hyperkähler quiver variety.
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GIT Quiver Variety (Part 1)

Suppose you are given the following data:

• A (R) denotes the affine complex variety induced by
R (Q,M,N).

• A skew-symmetric function ε : E → C×, that means that
there holds ε (α) = −ε (ᾱ) for all α ∈ E.

• λ ∈ Ccard(V ).

• θ ∈ Zcard(V ).

Then:

• ε defines a symplectic structure ωε on A (R) for which the
GL (M)-action is Hamiltonian (moment map: µε).

• θ induces a character χθ : GL (M)→ Gm.
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GIT Quiver Variety (Part 2)

Definition
The quasiprojective variety

Mε,λ
θ (Q,M,N) = µ−1

ε (λ) �χθ GL (M)

is called the GIT quiver variety.

• Mε,λ
θ (Q,M,N) is non-singular. Thus, there exists an

associated complex manifold, called the analytification of
Mε,λ

θ (Q,M,N), which we denote by(
Mε,λ

θ (Q,M,N)
)an

.

• Mε,λ
0 (Q,M,N) = µ−1

ε (λ) � GL (M).
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Hyperkähler Quiver Variety vs. GIT Quiver Variety

• Choose the function ε : E → C× as

ε (α) =

1, if α ∈ H,

−1 if α ∈ H̄.
.

• Consider the hyperkähler GIT quiver variety as a complex
manifoldMζ (Q,M,N) with respect to its first complex
structure I.

Theorem (Kempf, Ness, Nakajima)
For suitable choices of ζ, θ and λ, there is an isomorphism

Mζ (Q,M,N) ∼=
(
Mε,λ

θ (Q,M,N)
)an

of complex manifolds.
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An Example (Part 1)

• Consider the graph |Q| = Ar

1 2 . . . r

and the associated double quiver Q = (V,E, s, t)

1 2 . . . r

• Let N =
⊕

k∈V Nk be given by

N1 = N2 = . . . = Nr−1 = 0,

Nr = Cn .

• Let M =
⊕
Mk be some

(
Z /rZ

)
-graded vector space with

dimension vector

m = (m1, . . . ,mr) ∈ Nr0 .
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An Example (Part 2)

• An N -framed representation of Q with respect to M is of
the following form.

M1 M2 . . . Mr Cn
x1

y1

x2

y2

xr−1

yr−1

ϕ

ψ

• Stability theory of quiver representations (King, 1994)
yields that there needs to hold

0 ≤ m1 ≤ m2 ≤ . . . ≤ mr ≤ n

in order for the quiver varietyMζ (Q,M,N) to be
non-empty.
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An Example (Part 3)

• Without loss of generality, we can assume that

0 < m1 < m2 < . . . < mr < n.

Otherwise, we could remove one of the vertices of the
quiver without changing the resulting quiver variety.

• Let F = F (Cn,m1, . . . ,mr, n) be the flag manifold of all
flags in Cn with prescribed signature (m1, . . . ,mr, n), that
means elements of F are sequences of complex vector spaces

0 = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er ⊆ Er+1 = Cn .

• F is a complex manifold. Thus, T ∗F is a complex
symplectic manifold.
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An Example (Part 4)

Theorem (Nakajima, 1994)
For a suitable choice of ζ, the hyperkähler quiver variety
Mζ (Q,M,N) (considered as a complex manifold with respect
to I) is isomorphic to the complex manifold T ∗F .

22


