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Motivation

• Quiver representations are a natural generalization of more
classical contents of representation theory.

• For example, any representation of a finite group G is
particularly a representation of a quiver QG associated
with G.

• The moduli space M of certain quiver representations
forms a non-singular complex variety which has many
interesting geometric applications.

• For example, M is closely related to flag manifolds and
anti-self-dual connections on four dimensional manifolds.
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Quivers

Definition
A quiver Q is a finite and directed multigraph, that means

Q = (V,E, s, t)

consisting of finite sets V and E and maps s, t : E → V .

• Elements of V are called vertices.
• Elements of E are called edges.
• For any edge α ∈ E, the vertex s (α) is called the source of
α and t (α) is called the target of α.
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Examples of Quivers

• The loop quiver is given by V = {1} and E = {α} (note
that s and t are uniquely determined).

1

α

• The Kronecker quiver is given by V = {1, 2}, E = {α},
s (α) = 1, and t (α) = 2.

1 2
α

• Given a finite group G = {g1, . . . , gn}, we associate the
n-loop quiver QG given by V = {1} and E = G (note that
s and t are uniquely determined).
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Quiver Representations

Throughout the talk, fix an algebraically closed field k.

Definition
Let Q be a quiver. A representation M of Q is a collection of
k-vector spaces {

Mi | i ∈ V
}

and a collection of k-linear maps{
fα : Ms(α) →Mt(α)

∣∣∣α ∈ E}
.

For example, a representation M of the loop quiver is given by
a k-vector space X and a k-linear endomorphism φ : X → X.
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Quiver Representations vs. Group Representations

Let G be a finite group and let QG =
(
{1} , G, s, t

)
be its

associated quiver.

• A representation of G is given by a k-vector space X and a
group homomorphism G→ Autk (X).

• A quiver representation M of QG is given by a k-vector
space X and k-linear maps φg : X → X for all g ∈ G.
Equivalently, one could give a map

G→ Endk (X) , g 7→ φg.

Thus, any representation of G is particularly a representation of
QG.
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Category of Representations

For the remainder of the talk, fix a quiver Q = (V,E, s, t).
There is a natural notion of morphism M → N between two
representations M and N of Q. This yields the category

Rep (Q) .

Theorem
Rep (Q) is an abelian category.
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Quiver Algebra

Definition
The quiver algebra kQ is the unital and associative k-algebra
with generator set

{
ei | i ∈ V

}
∪ E satisfying the relations

e2i = ei, eiej = 0, et(α)α = α = αes(α)

for all i ∈ V , j ∈ V \ {i}, and α ∈ E.

• One should think of ei as a path of length 0 and of α as a
path of length 1. Then, all paths in Q define an element in
kQ.

• The unit in kQ is given by 1 =
∑

i∈V ei.
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Example: Quiver Algebra of Loop Quiver

Let L denote the loop quiver.

1

α

Since s (α) = t (α), we obtain pairwise distinct elements
αn ∈ kL for all n ∈ N. With α0 = e1 = 1, one easily sees that

kL = k [α] .
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Modules over Quiver Algebra vs. Quiver Representations

Let kQ-Mod denote the category of left kQ-modules.

Theorem
There is an equivalence of categories

Rep (Q) ∼= kQ-Mod .

This means that we can use the structure theory of kQ-modules
to understand representations of Q.
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Terminology

Fix a kQ-module M .

Definition

• M is called simple if M 6= 0 and the only kQ-submodules
of M are 0 and M .

• M is called semisimple if M 6= 0 and M can be written as
a direct sum of simple kQ-modules.

• M is called indecomposable if M 6= 0 and for any direct sum
decomposition M = N1 ⊕N2 there holds N1 = 0 or N2 = 0.

• M is called projective if there exists another kQ-module N
such that M ⊕N is a free A-module.
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Krull-Schmidt Decomposition

Assume that M 6= 0 and that dimk (M) <∞.
Theorem (Krull-Schmidt)
There exist pairwise non-isomorphic indecomposable
kQ-modules M1, . . . ,Mr and positive integers m1, . . . ,mr such
that M ∼=

⊕r
i=1M

mi
i . This decomposition is unique up to

isomorphism of the modules Mi and permutation of the index
i.

Let M =
⊕r

i=1M
mi
i denote the Krull-Schmidt decomposition of

M . Then, there is an isomorphism

EndkQ (M) ∼= I ⊕
r∏

i=1

Matmi (k)

of k-vector spaces for some two-sided nilpotent ideal
I ⊆ EndkQ (M).
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Decompositions of the Quiver Algebra

• For all vertices i ∈ V , we define the left ideal P (i) = kQei

of kQ. The Krull-Schmidt decomposition of kQ is given by

kQ =
⊕
i∈V

P (i) ∈ kQ-Mod .

In particular, all P (i) are projective and indecomposable.
• Define kQ≥1 ⊆ kQ as the ideal generated by E. Then, we

obtain

kQ ∼= EndkQ (kQ) ∼= kQ≥1 ⊕
∏
i∈V

k ∈ k-Mod .
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Simple and Projective Indecomposable Representations

Theorem
All projective and indecomposable kQ-modules are isomorphic
to P (i) for some vertex i ∈ V .

Assume now that Q does not contain any cycles (equivalently,
dimk (kQ) <∞), and let S (i) = P (i) /kQ≥1P (i).

Theorem
S (i) is a simple kQ-module and all simple kQ-modules are
isomorphic to S (i) for some vertex i ∈ V .

Moral: We can classify simple representations of Q as well as
projective indecomposable representations of Q.
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The Corresponding Representations (Part 1)

Fix a vertex i ∈ V . Then, the representation

P (i) =

({
P (i)j

}
, {fα}

)
,

corresponding to the module P (i), is given by

P (i)j =

k, if there exists a path i→ j in Q

0, else

and

fα =

idk, if P (i)s(α) = P (i)t(α) = k

0, else.
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The Corresponding Representations (Part 2)

By construction, it follows that the representation

S (i) =

({
S (i)j

}
, {gα}

)
,

corresponding to the module S (i), is given by

S (i)j =

k, if i = j

0, else

and

gα = 0.
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Example 1: The Kronecker Quiver

Consider the Kronecker quiver.

1 2
α

There holds P (2) = S (2), since there are no paths with source
P (2) which have length ≥ 1. Thus, we obtain the
representations

S (1) : k → 0,

S (2) = P (2) : 0→ k,

P (1) : k
id−−→ k.

One can show that in this case these are the only
indecomposable representations.
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Example 2

Consider the following quiver.

1 2 3
α β

Then, the representations P (i) and S (i) are given by

S (1) : k → 0← 0, S (2) = P (2) : 0→ k ← 0,

S (3) : 0→ 0← k, P (1) : k
id−−→ k ← 0,

P (3) : 0→ k
id←−− k.

In this case, there is another indecomposable representation,
which is not isomorphic to any P (i) or S (i), given by

k
id−−→ k

id←−− k.

17



The Dimension Vector

For the remainder, let r = card (V ) be the number of vertices.
Definition
Let M =

(
{Mi} , {fα}

)
be a representation of Q.

• M is called finite dimensional if dimk (Mi) <∞ holds for
all vertices i.

• If M is finite dimensional, we call

dimk (M) =
(
dimk (Mi)

)
i∈V ∈ Nr

0

the dimension vector of M .
• We say that Q is of finite orbit type if for all given n ∈ Nr

0,
there are only finitely many isomorphism classes of
representations M ∈ Rep (Q) with dimk (M) = n.
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Underlying Undirected Multigraph

• By |Q| = (V,E), we denote the underlying undirected
multigraph of Q.

• For example, let Q denote the Kronecker graph. Then, |Q|
is given by the following graph.

1 2
|α|

Goal: We want to classify quivers of finite orbit type by means
of their underlying undirected multigraphs.
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Simply Laced Dynkin Diagrams (Part 1)

The following graphs are called simply laced Dynkin diagrams.

• Ar for some positive integer r:

1 2 . . . r

• Dr for some integer r ≥ 4:

1 2 . . . r − 2 r − 1

r
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Simply Laced Dynkin Diagrams (Part 2)

• E6:
1 2 3 4 5

6

• E7:
1 2 3 4 5 6

7

• E8:
1 2 3 4 5 6 7

8
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Gabriel’s Theorem

Theorem (Gabriel)
The quiver Q is of finite orbit type if and only if |Q| is a
simply laced Dynkin diagram.
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Euler form

Definition
The R-bilinear form 〈·, ·〉Q : Rr ×Rr → R, given by

〈m,n〉Q =
∑
i∈V

mini −
∑
α∈E

ms(α)nt(α)

for all m = (mi)i∈V ,n = (ni)i∈V ∈ Rr, is called Euler form of
Q.

• The Euler form depends on the direction of the edges
α ∈ E.

• In particular, the Euler form is non-symmetric.
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Tits Form

Definition
The quadratic form qQ : Rr → R associated to the Euler form,
that means

qQ (n) = 〈n,n〉Q =
∑
i∈V

n2i −
∑
α∈E

ns(α)nt(α)

for all n = (ni)i∈V ∈ Rr, is called Tits form of Q.

• The Tits form only depends on |Q|.
• |Q| is a simply laced Dynkin diagram if and only if qQ is

positive definite.
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Outlook (Part 1)

• Fix k = C.
• For a given multigraph G, consider the double quiver
Q = (V,E, s, t).

• For example

1 2 ⇝ 1 2

• For families M =
{
Mi | i ∈ V

}
and N =

{
Ni | i ∈ V

}
of

hermitian vector spaces, we consider

R (Q,M,N) =
⊕
α∈E

Hom
(
Ms(α),Mt(α)

)
⊕
⊕
i∈V

Hom(Mi, Ni)⊕
⊕
i∈V

Hom(Ni,Mi)
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Outlook (Part 2)

• Elements of R (Q,M,N) look as follows.

M1 M2

N1 N2

x

y

φ1ψ1 φ2ψ2

• There is a natural action GL (M) ↷ R (Q,M,N), where
GL (M) =

∏
iGL (Mi).

• There are two different ways to build quotients along this
action. These quotients are called quiver varieties.

• (Twisted) GIT quotient yields that quiver varieties are
non-singular complex symplectic varieties.

• Hyperkähler quotient yields that quiver varieties are
hyperkähler manifolds. 26


