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Introduction



Groups and geometry

We want to study finitely generated (f.g.) groups G .

Example: S = {a, b} and F2 = 〈a, b〉. Some elements of F2 are

ab5ba−3bab, a−1ba−1b, . . ..

Studying how a group G acts on a metric space X to get

information about the group through information about the space.

Example(Theorem): If a group G acts freely on a tree, then G is a

free group.
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Hyperbolic geometry



Hyperbolic spaces

Let δ ≥ 0. A geodesic metric space X is δ-hyperbolic if all the triangles

are δ-thin:
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Example/Non-example

Example: Every tree is a 0-hyperbolic space.

Figure 1: The tree of valence two, also known as the Cayley graph of F2 or the

universal cover of S1 ∧ S1.

Non-example: R2.(Can you see why?)
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Hyperbolic Groups



Hyperbolic groups

A f.g. group G is hyperbolic if one of the two equivalent conditions hold:

� If its Cayley graph is hyperbolic. (One vertex for each element of the

group, and one edge between g and g ′if there exists s in the

generating set such that gg−1 = s). 1

� If it admits a properly discontinuous, cocompact action by isometries

on a hyperbolic space.

Properly discontinuous: if for every compact K ⊂ X ( with the metric

topology), the set {g ∈ G | gK ∩ K} is finite.

Cocompact: If the quotient X/G is compact (with the quotient topology).

We call such an action geometric.

1A priori this depends on the choice of the generating set. Nevertheless it can be seen

that it is well defined up to quasi-isometry.
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Example/Non-example

Example: F2 the free group on two generators.

Non-example: Z2.
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Question

Does every quotient of a hyperbolic group is itself hyperbolic?

NO, e.g. Z2 is isomorphic to a quotient of F2.

Goal:
Study quotients of (hyperbolic) groups

6



Question

Does every quotient of a hyperbolic group is itself hyperbolic?

NO, e.g. Z2 is isomorphic to a quotient of F2.

Goal:
Study quotients of (hyperbolic) groups

6



Question

Does every quotient of a hyperbolic group is itself hyperbolic?

NO, e.g. Z2 is isomorphic to a quotient of F2.

Goal:
Study quotients of (hyperbolic) groups

6



Small Cancellation Theory



Classic Small Cancellation

Consider S finite and F (S). Let R ⊂ F (S).

F (S) F (S)/〈〈R〉〉 =: G

Let λ > 0. We say that R satisfies the C ′(λ)-small cancellation condition

if for all r ∈ R, and for every u piece (a common prefix between two

distinct elements of the set of all cyclic conjugates of R ∪ R−1)

|u| ≤ λ|r |

. Theorem: Let λ ∈ (0, 1
6 ). If R satisfies the C ′(λ)-small cancellation

condition, then G is hyperbolic.
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Classic Small Cancellation

|r | = inf
x∈X
{dX (rx , x)} =: [r ],

|u| = diam(Yr ∩ Yr ′),

C ′(λ) : sup
r 6=r ′
{diam(Yr ∩ Yr ′)} ≤ λ inf

r
{[r ]}
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Start with G acting geometrically on a δ hyperbolic space X .

Consider a pair (H,Y ):

� Y ⊂ X 2δ-quasi-convex, geodesics starting and ending on it stay

close to it.

� H E StabG (Y ) acting cocompactly on Y .

Denote Q := {(gHg−1, gY ) | g ∈ G} = {(Hi ,Yi ) | i ∈ I}

G  G = G/K

where K := 〈〈Hi | i ∈ I〉〉.

WANT : Construct a hypebrolic space X on which G acts geometrically.
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Constructing X : The Cones

Let ρ > 0, for every i ∈ I, the cone over Yi of radius ρ is defined as

follows

Z (Yi ) := Yi × [0, ρ]/(y , 0) ∼ (y ′, 0)

it is endowed with a metric dZ(Yi ) such that for x = (y , t) and

x ′ = (y ′, t ′) points in Z (Yi ) the following holds:

1. If t, t ′ > 0 and dYi (y , y
′) < π sinh(ρ), then there is a bijection

between the set of geodesic segments joining y to y ′ in Yi and the

set of geodesic segments joining x to x ′ in Z (Yi ).

2. In all other cases we have dZ(Yi )(x , x
′) = r + r ′. Moreover, there is a

unique geodesic connecting x and x ′ passing through the apex

v := (y , 0).
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Constructing X : The Cone-Off

The cone-off over X relative to the family Q

Ẋρ(Q) := X t

(∐
i∈I

Z (Yi )

)
/ ∼

where ∼ is the equivalence relation that identifies for each i ∈ I the

subspace Yi and its image on Z (Yi ) under the map ι : Yi → Z (Yi ), such

that y 7→ (y , ρ).

Defining a metric dẊ :

1. A metric on the disjoint union.

2. A pseudo-metric on the quotient induced by the previous one.

Warning:

� The attaching maps are not isometries.

� We want it to be positive definite,
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1. A metric on the disjoint union.

2. A pseudo-metric on the quotient induced by the previous one.

Warning:

� The attaching maps are not isometries.

� We want it to be positive definite, i.e. a metric.
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Constructing X : The Cone-Off

Proposition
(Ẋ , dẊ ) is a metric space.

What happens when a point is in a cone?

If the points are in X nothing is altered.
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Constructing X : Hyperbolicity of the Cone-Off

∆(Q) := sup
{
diam(Y +5δ

1 ∩ Y +5δ
2 ) | (H1,Y1) 6= (H2,Y2) ∈ Q

}
,

T (Q) := inf {[h] | h ∈ H \ {1},H ∈ Q(H)} ,

where where [h] = min{dX (hy , y) | y ∈ Y } is the translation length of h.

Theorem
There exist universal positive numbers ρ > 1020δH2 , δ0, and ∆0 which do

not depend on X , G , nor Q, with the following property: If

δ ≤ δ0 and ∆(Q) ≤ ∆0,

then the spaces Ẋ is δ̇-hyperbolic.

Remark
δ̇ only depends on δH2 , moreover δ̇ >> δH2 .
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Constructing X : The action

G y X extends to G y Ẋ :

(H,Y ) ∈ Q. For every x = (y , r) ∈ Z (Y ), and every g ∈ G , we have

(g , x) 7→ gx = (gy , r) ∈ Z (gY ).

For the points in Ẋ \ tZ (Y ) the action remains unaltered. By definition

it is also by isometries.

Some feature about the action:

Lemma
Let x be a point in Ẋ that is in the α-neighbourhood of X . Then the set

of elements g ∈ G such that dẊ (gx , x) < 2(ρ− α) is finite.
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Finally constructing X

We define

X ρ(Q) := Ẋ/K ,

and construct the pseudo-metric dX which is induced by the metric on

the cone-off.
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Hyperbolicity of X

Proposition
If T (Q) ≥ π sinh(ρ), then (X , dX ) is a metric space.

Theorem
There exist universal positive numbers ρ > 1020δH2 , δ0, and ∆0 which do

not depend on X , G , nor Q, with the following property: If

δ ≤ δ0 and ∆(Q) ≤ ∆0,

then the space X is δ-hyperbolic.

Remark
δ only depends on δH2 , moreover δ̇ >> δH2
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The action of G

By definition of the metric, G y X by isometries as well.

Proposition
The action is geometric.

It suffices to see that {g ∈ G | gB(x , δ) ∩ B(x , δ)} is finite.

� Points close to the image of the apices dX (v , x) < ρ− δ
� Points that are δ-close to the image of Ẋ on X .

For cocompactnes we compare X/G with X/G , and the cones Z (Y /H)

with Z (Y )/H.
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The theorem

Theorem (Small Cancellation Theorem)
There exist positive constants ρ0, δ0, and ∆0 with the following property:

Let G be a group acting geometrically on a δ-hyperbolic space X , let be

Q a family of pairs {(Hi ,Yi ) | i ∈ I}, where Y is quasi-convex, and H a

subgroup of G stabilizing Y , and acting cocompactly on it. If

ρ ≥ ρ0, δ ≤ δ0,

∆(Q) ≤ ∆0, and T (Q) ≥ π sinh(ρ).

Then, the group G is hyperbolic.
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Thank you!
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More on hyperbolicity

Theorem (Cartan-Hadamard theorem)
Let δ′ ≥ 0 and σ > 107δ′. Let X ′ be a length spaces. If every ball of

radius σ of X ′ is δ′ hyperbolic and X is 10−5σ-simply-connected, i.e its

fundamental group is normally generated by free homotopies of loops

whose diameter less than 10−5σ, then X ′ is 300δ′-hyperbolic.



Hyperbolicity of Ẋ

Let ρ > 1020δH2 .

Lemma
Every ball of radius σ > 108δH2 is 3δH2 -hyperbolic

Lemma
Ẋ is 40δ-simply connected

If δ ≤ δH2 , then we can apply Cartan-Hadamard. It is by assumptions on

the theorem (δ0).

Proposition
Ẋ is 900δH2 hyperbolic.



Hyperbolicity of X

Here it is crucial that T (Q) ≥ π sinh(ρ).

Let σ = 2ρ, so it also depends only on δH2 .

Lemma
Every ball of radius ρ

20 on X is 2δ̇-hyperbolic.

Lemma
X is 40δ̇-simply-connected.

Proposition
X is 600δ̇-hyperbolic, i.e. it is 54× 104δH2 -hyperbolic.
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