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Motivation

Why solutions of
Fi +[0,07] = 0= 0,07 (1)
For mathematicians:

Moduli spaces of Higgs bundles have an interesting geometry

Results can be translated into topology, Riemann surfaces, and
harmonic analysis

For physicists:
Yang-Mills theory da x Fx =0
Magnetic monopoles Dax F4 + [®, Da®T] = 0 = Da x Da®
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Problem: Metric haﬁ on Ex # metric gz on TM.
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Differential geometry on bundles

Bundle geometry |

Consider holomorphic, hermitian bundle C" — E — M.

Problem: Metric haB on Ex # metric gz on TM.
Define local frame {e, }!,_; of sections: e, = e,(x).

Under transition maps e, — €, = (T.)J e, the fibre metric
transforms as h — h' = ThT*

We have the Kahler (1,1)-form w = h,5dz* A d2°’
For E, there is a unique bundle Dolbeault operator 5E with

5E(ns) = n5E5—|— (On)s for complex differential forms 7 on M and
. =E =
sections s of E. Locally, 0 s= 0s.

Get unique connection V" =V + 3" with
dh(s, t) = h(V"s, t) + h(s, V"t), the Chern connection
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Differential geometry on bundles
Bundle geometry Il

Consider M = 3 Riemann surface. We want to compute the Chern
classes of the bundle, hence find curvature F'y of Chern connection

— It is Fy = 9(h~10h) by Cartan formalism.

Then the Chern classes of the bundle are given by

det (1;1: + 1) =: ch(E)tk.

k=0
Two important invariants for vector bundle:
Rank rg = dim E,,

Degree de = [, c1(E) = 5= [}, trFy

de

We also define the slope g = .



Higgs bundles

Stability of Higgs bundles

Definition

A Higgs bundle is a tupel (5E,<I>) where (E, h) — X is a hermitian
vector bundle over a Riemann surface ¥ with metric h and holomorphic
structure 9, and ® = ®4,,dz™ is a (1,0)-form with 7@ = 0.
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Stability of Higgs bundles

Definition

A Higgs bundle is a tupel (5E,<I>) where (E, h) — X is a hermitian
vector bundle over a Riemann surface ¥ with metric h and holomorphic
structure 9, and ® = ®4,,dz™ is a (1,0)-form with 9@ =0.

A ®-invariant sub-bundle F < E is such that ®(F) < F® Ks.

Definition

A vector bundle is stable, if for any subbundle F < E, ur < pe.

A Higgs bundle is stable, if for all ®-invariant subbundle F < E holds
e < pe. Direct sums of stable Higgs bundles of the same degree are
polystable.
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Remarks and examples

The moduli space of polystable Higgs bundles by a gauge action GL(E)
is a noncompact smooth complex manifold M2, (rg, dg). Its dimension
depends on the genus g of ¥: dimgc M2, (rg, dg) = 2+ r#(2g — 2)
(Hitchin 1987).



Higgs bundles

Remarks and examples

The moduli space of polystable Higgs bundles by a gauge action GL(E)
is a noncompact smooth complex manifold M2, (rg, dg). Its dimension
depends on the genus g of ¥: dimc M2 (rg, dg) = 2+ rP(2g — 2)
(Hitchin 1987).

Example (Higgs bundles)

(EE, 0) is a stable Higgs bundle if E is stable as a vector bundle.



Higgs bundles

Remarks and examples

The moduli space of polystable Higgs bundles by a gauge action GL(E)
is a noncompact smooth complex manifold M2, (rg, dg). Its dimension
depends on the genus g of ¥: dimc M2 (rg, dg) = 2+ rP(2g — 2)
(Hitchin 1987).

Example (Higgs bundles)

(EE, 0) is a stable Higgs bundle if E is stable as a vector bundle.

Nontrivial: Let E = Klg/2 @ KEI/Q, and let ¢ = q(z)dz® dz be a
holomorphic quadratic differential on X. A Higgs field is given by

()



Higgs bundles

Kobayashi-Hitchin correspondence

A Hitchin pair (A, ®) of a connection Dy = d+ A and an
End(E)-valued (1,0)-form @ fulfills

Da® =0 (4)
Fa+ [®, 07 = —27ipel pw. (5)
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Higgs bundles

Kobayashi-Hitchin correspondence

Definition
A Hitchin pair (A, ®) of a connection Dy = d+ A and an
End(E)-valued (1,0)-form @ fulfills
Ia® =0 (4)
Fa+ [®, 07 = —27ipel pw. (5)

We may write F4 := Fa + 27ipgl gw and thus F + [@, 1] = 0.

Theorem (Kobayashi-Hitchin, proven by Uhlenbeck-Yau 1986)

There exists an isomorphism between the moduli spaces of irreducible
Hitchin pairs and of polystable Higgs bundles, given by (A, ®) — (Ja, ®).
Also, D = 0 + 0% + ® + ®T gives a projectively flat connection.
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Asymptotic decoupling
The decoupling problem

If (A, ®) solves the equation 0a® = 0 = F4 + t2[®, ®], then (A, t- @) is
a Hitchin pair.

For t — oo we (heuristically) get the decoupled selfduality equations:
Fz=0=[e2f. (6)

Problem: Solutions (Aj, ®;) may not converge to solutions of the
decoupled equations!

However, we can at least get local decoupling of solutions under certain
conditions for ® and E.
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Asymptotic decoupling

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let {U, }acs be a finite covering of ¥ and A(R) an open disc of radius
R, such that (E,®)|y, = D, (Ea,®s) for all P € A(R) is a
decomposition of E, into eigenspaces of ®, where ®,, = f,dz. If:

d minimum distance of points in S fulfills d > 1,

A\ eigenvalues of f,, have distance < % from «,

We have M, C > 0 st. |[\| < M and Cd > M on A(R),
(re., =1 and de =0),

then we find constants K and € such that on a smaller disc A(Rs)
|Fj|g,h = |[¢7©T]|g,h < Ke ¢, (7)

Case rg = 2 quantitatively by Swoboda, Mazzeo, WeiB and Witt in 2015
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For the decomposition (E, ®)|y, = @, (Ea, Ps), we obtain two
projections onto the E,
7o induced by the eigendecomposition of ® = fdz at P, and

7!, = (m!,)T obtained by orthogonalisation.
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For the decomposition (E, @)
projections onto the E,

v. = D, (Es, ®,), we obtain two

7o induced by the eigendecomposition of ® = fdz at P, and
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Proof of Mochizuki's theorem |

For the decomposition (E, @)
projections onto the E,

v. = D, (Es, ®,), we obtain two

7o induced by the eigendecomposition of ® = fdz at P, and

7!, = (m!,)T obtained by orthogonalisation.

We define p, = 74 — 7/, to be the skewedness of the decomposition in
direction a.

If |foln < Gid+ G, then d- 3 - |paln < |[fap', Talln for & = 6(G;, re).

Also,

Paln < |maln < B for some constant B(G, rg).
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Let now s be a section of End(E) with Os = 0 = [®, s]. Then,

—901In|s|? < —
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Proof of Mochizuki's theorem |l

Let now s be a section of End(E) with Os = 0 = [®, s]. Then,

—901In|s|? < —

(8)

Idea:

—|s|%,851n |s\,2, < —|h(s,00s — 00s)| = —|h(s, R(D,0)s)|
= _|h(5’ [@7Q)T](57 a)s)| < _|h([th75]a [thaS])l
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Proof of Mochizuki's theorem llI

For any Ry € (0, R) and Ry € (0, Ry) there are constants Cy, Cy, C1q
dependent on R, Ry, rg:
Ifpln < GGM 4+ Gy on A(Ry) and |pa|n < Ci1e % on A(Ry).

Proofs are very similar:
First use (8) to find a differential inequality:

2 2
_651n|fp|,21 < _§pr|i2m _851n (|ﬂ-o‘h> < _61d2 In <7Tah)

Then find solutions to equal case:

B ‘71—04‘2 —€22Z
\fP\%:i(Rg_zz)Q, 1n<r h) = g—e272d

The following subsets of A(R;) have minima higher than the boundary:

{P‘|fp|,, > B(R* — |P|*)~ } {p‘ In(|me|2rt) > Ce(\Pp,Rf)ed}
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Proof of Mochizuki's theorem 1V

By |fipln < CiM+ G, and |pa|n < Crie™0% we arrive at
7l = [, malls < G on A(Ry). ©)

Because F; = [®, @], it is now enough that [®, ®T] decays exponentially
with d. This is indeed the case.

Thus follows asymptotic decoupling because for rescaling ® to t- ®, |K|
in the theorem scales to t"|K]| for some n, but d scales t- d. Therefore
[t-®,t- ®T]|zn < t"Ke <t goes to zero for t — oo.




Thanks for your attention!

Questions ?



Appendix

Important sources

Uhlenbeck, Yau 1986: On the existence of Hermitian Yang-Mills
connections in stable vector bundles

Hitchin 1987: The self-duality equations on a Riemann surface

Mazzeo, Swoboda, WeiB, Witt 2015: Ends of the moduli space of
Higgs bundles

Mochizuki 2016: Asymptotic behaviour of certain families of
harmonic bundles on Riemann surfaces



Appendix

Fibre and vector bundles |

Definition

Let E, M and F topological spaces, and p: E— M a continuous
surjection with p~!(x) homeomorphic to F for all x € M.

Each point shall possess a trivialisation, that is a neighbourhood U with a
homeomorphism t: E, = p~1(U) — Fx U

The tupel (F, E, p, M) is then called a fibre bundle.

Suggestively write: F — E -5 M

Definition
A section of a fibre bundle is an inclusion s: M — E, with po s=idy.

A fibre bundle (F, E, M, p) is called vector bundle if Fis a vector space.
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Fibre and vector bundles Il

Definition

A Fibre bundle morphism between (F, E, p, M) and (F,E,p/, M) is a
pair (¢, f) of continuous maps ¢ : E— E and f: M — M’ such that

p o= fop.

A vector bundle morphism is a fibre bundle morphism between two
vector bundles, for which | : E, — E’f(x) is linear everywhere on M.

Definition

Between two trivialisations (U;, t;) and (U;, t;) there is a map

T (UinU) x F— (UinU;) x F,(x,v) = tjo t ' (x,v) = (X, V). This
map can be viewed as a diffeomorphism T, : F— F, v — V. For vector
bundles, T, is always a matrix from GL,(K). We call T, = T(x) the
transition map.
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Fibre and vector bundles Il

Examples of vector bundles:

e Trivial bundles: K" = K" x M — M.

e Mobius bundle: R — Mb — S*.

e Tangential and cotangential bundles: E= TM, E= T*M.

e Canonical bundle with fibre (Ky)x = det (T:M) = A, TiM
Examples of other fibre bundles:

e Transition maps of vector bundles are principal bundles
GL(F) - P— M.

e The associated principal bundle of the Mébius bundle is
Zy— P— S

e The frame bundle of a manifold GL,(K) - GLM — M is
associated to the tangential bundle.



Appendix

Complex differential forms

We want to extend the concepts of real exterior calculus to complex
manifolds:

e Instead of n-forms w = wdx: (p, q)-forms w = w;,dz' A dz’
e Decompose d = 9 + 0 with Of = 9;fdz' and Of = 0;fdZ

o We get 0: AP9 — APT19 and 0 : AP9 — APIT!

o Cauchy-Riemann equations: w holomorphic iff dw = 0

o Rules for computation: w Anp =w AT, dw = dw, Fw = fo
e 0 and O obey product rules, dw = 0w, 90 = —00

e Cohomology group H?9 = kerép’q/ilngp’kl



