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Motivation

Why solutions of

F⊥
A + [Φ,Φ†] = 0 = ∂AΦ? (1)

For mathematicians:

Moduli spaces of Higgs bundles have an interesting geometry
Results can be translated into topology, Riemann surfaces, and
harmonic analysis

For physicists:

Yang-Mills theory dA ⋆ F⊥
A = 0

Magnetic monopoles DA ⋆ F⊥
A + [Φ,DAΦ†] = 0 = DA ⋆ DAΦ



Differential geometry on bundles
Bundle geometry I

Consider holomorphic, hermitian bundle Cr → E → M.

Problem: Metric hαβ on Ex 6= metric gmn on TxM.
Define local frame {eα}r

α=1 of sections: eα = eα(x).
Under transition maps eα → e′α = (Tx)αγ eα, the fibre metric
transforms as h → h′ = ThT∗

We have the Kähler (1, 1)-form ω = hαβdzα ∧ dzβ

For E, there is a unique bundle Dolbeault operator ∂E with
∂

E
(ηs) = η∂

Es + (∂η)s for complex differential forms η on M and
sections s of E. Locally, ∂Es = ∂s.

Get unique connection ∇h = ∇+ ∂
E with

dh(s, t) = h(∇hs, t) + h(s,∇ht), the Chern connection
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Differential geometry on bundles
Bundle geometry II

Consider M = Σ Riemann surface. We want to compute the Chern
classes of the bundle, hence find curvature F∇ of Chern connection

→ It is F∇ = ∂(h−1∂h) by Cartan formalism.

Then the Chern classes of the bundle are given by

det
(

itF
2π

+ 1
)

=:

rE∑
k=0

ck(E)tk. (2)

Two important invariants for vector bundle:
Rank rE = dim Ex,
Degree dE =

´
M c1(E) = i

2π

´
M tr F∇

We also define the slope µE = dE
rE
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Higgs bundles
Stability of Higgs bundles

Definition
A Higgs bundle is a tupel (∂E

,Φ) where (E, h) → Σ is a hermitian
vector bundle over a Riemann surface Σ with metric h and holomorphic
structure ∂E, and Φ = Φα

βmdzm is a (1, 0)-form with ∂E
Φ = 0.

A Φ-invariant sub-bundle F < E is such that Φ(F) < F ⊗ KΣ.

Definition
A vector bundle is stable, if for any subbundle F < E, µF < µE.
A Higgs bundle is stable, if for all Φ-invariant subbundle F < E holds
µF < µE. Direct sums of stable Higgs bundles of the same degree are
polystable.
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Higgs bundles
Remarks and examples

The moduli space of polystable Higgs bundles by a gauge action GL(E)
is a noncompact smooth complex manifold MD

GL(rE, dE). Its dimension
depends on the genus g of Σ: dimC MD

GL(rE, dE) = 2 + r2(2g − 2)
(Hitchin 1987).

Example (Higgs bundles)

(∂
E
, 0) is a stable Higgs bundle if E is stable as a vector bundle.

Nontrivial: Let E = K1/2
Σ ⊕ K−1/2

Σ , and let q = q(z)dz ⊗ dz be a
holomorphic quadratic differential on Σ. A Higgs field is given by

Φ =

(
0 1
q 0

)
(3)
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Higgs bundles
Kobayashi-Hitchin correspondence

Definition
A Hitchin pair (A,Φ) of a connection DA = d + A and an
End(E)-valued (1, 0)-form Φ fulfills

∂AΦ = 0 (4)
FA + [Φ,Φ†] = −2πiµE1Eω. (5)

We may write F⊥
A := FA + 2πiµE1Eω and thus F⊥

A + [Φ,Φ†] = 0.

Theorem (Kobayashi-Hitchin, proven by Uhlenbeck-Yau 1986)
There exists an isomorphism between the moduli spaces of irreducible
Hitchin pairs and of polystable Higgs bundles, given by (A,Φ) 7→ (∂A,Φ).
Also, D = ∂A + ∂h

A +Φ+Φ† gives a projectively flat connection.
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Asymptotic decoupling
The decoupling problem

If (A,Φ) solves the equation ∂AΦ = 0 = F⊥
A + t2[Φ,Φ†], then (A, t ·Φ) is

a Hitchin pair.

For t → ∞ we (heuristically) get the decoupled selfduality equations:

F⊥
A = 0 = [Φ,Φ†]. (6)

Problem: Solutions (Aj,Φj) may not converge to solutions of the
decoupled equations!

However, we can at least get local decoupling of solutions under certain
conditions for Φ and E.
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Asymptotic decoupling
Mochizuki’s theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)
Let {Uα}α∈S be a finite covering of Σ and ∆(R) an open disc of radius
R, such that (E,Φ)|Uα

=
⊕

α(Eα,Φα) for all P ∈ ∆(R) is a
decomposition of Ex into eigenspaces of Φ, where Φα = fαdz. If:

d minimum distance of points in S fulfills d ≥ 1,
λ eigenvalues of fα have distance ≤ d

100 from α,
We have M,C > 0 st. |λ| < M and Cd ≥ M on ∆(R),
(rEα

= 1 and dE = 0),
then we find constants K and ϵ such that on a smaller disc ∆(R2)

|F⊥
A |g,h = |[Φ,Φ†]|g,h ≤ Ke−ϵd. (7)

Case rE = 2 quantitatively by Swoboda, Mazzeo, Weiß and Witt in 2015
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Asymptotic decoupling
Proof of Mochizuki’s theorem I

For the decomposition (E,Φ)|Uα
=

⊕
α(Eα,Φα), we obtain two

projections onto the Eα

πα induced by the eigendecomposition of Φ = fdz at P, and
π′
α = (π′

α)
† obtained by orthogonalisation.

We define ρα = πα − π′
α to be the skewedness of the decomposition in

direction α.

Lemma
If |fP|h ≤ G1d + G2, then d · δ · |ρα|h ≤ |[fh,P†, πα]|h for δ = δ(Gi, rE).

Also, |ρα|h ≤ |πα|h ≤ B for some constant B(Gi, rE).
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Also, |ρα|h ≤ |πα|h ≤ B for some constant B(Gi, rE).
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Proof of Mochizuki’s theorem II

Lemma
Let now s be a section of End(E) with ∂s = 0 = [Φ, s]. Then,

− ∂∂ ln |s|2h ≤ −|[fh†, s]|2h
|s|2h

. (8)

Idea:

−|s|2h∂∂ ln |s|2h ≤ −|h(s, ∂∂s − ∂∂s)| = −|h(s,R(∂, ∂)s)|
= −|h(s, [Φ,Φ†](∂, ∂)s)| ≤ −|h([fh†, s], [fh†, s])|
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Asymptotic decoupling
Proof of Mochizuki’s theorem III

Lemma
For any R1 ∈ (0,R) and R2 ∈ (0,R1) there are constants C1,C2,C11

dependent on R,R1, rE:
|fP|h ≤ C1M + C2 on ∆(R1) and |ρα|h ≤ C11e−ϵ0d on ∆(R2).

Proofs are very similar:
First use (8) to find a differential inequality:

−∂∂ ln |fP|2h ≤ −C2
3

4
|fP|2h, −∂∂ ln

(
|πα|2h

rα

)
≤ −ϵ1d2 ln

(
|πα|2h

rα

)
Then find solutions to equal case:

|fP|2h =
B

(R2 − zz)2 , ln
(
|πα|2h

rα

)
= e−ϵ2zzd

The following subsets of ∆(R1) have minima higher than the boundary:{
P
∣∣∣|fP|2h > B(R2 − |P|2)−2

}
,

{
P
∣∣∣ ln

(
|πα|2hr−1

α

)
> Ce(|P|2−R2

1)ϵd
}
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Proof of Mochizuki’s theorem IV

By |f|P|h ≤ C1M + C2 and |ρα|h ≤ C11e−ϵ0d, we arrive at

|[f, π†
α]|h = |[f†, πα]|h ≤ C20e−ϵ20d on ∆(R2). (9)

Because F⊥
A = [Φ,Φ†], it is now enough that [Φ,Φ†] decays exponentially

with d. This is indeed the case.

Remark
Thus follows asymptotic decoupling because for rescaling Φ to t · Φ, |K|
in the theorem scales to tn|K| for some n, but d scales t · d. Therefore
|[t · Φ, t · Φ†]|g,h ≤ tnKe−ϵtd goes to zero for t → ∞.
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Thanks for your attention!

Questions ?
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Mazzeo, Swoboda, Weiß, Witt 2015: Ends of the moduli space of
Higgs bundles
Mochizuki 2016: Asymptotic behaviour of certain families of
harmonic bundles on Riemann surfaces



Appendix
Fibre and vector bundles I

Definition
Let E, M and F topological spaces, and p : E ↠ M a continuous
surjection with p−1(x) homeomorphic to F for all x ∈ M.
Each point shall possess a trivialisation, that is a neighbourhood U with a
homeomorphism t : Ex = p−1(U) → F × U
The tupel (F,E, p,M) is then called a fibre bundle.
Suggestively write: F → E p→ M

Definition
A section of a fibre bundle is an inclusion s : M → E, with p ◦ s = idM.

Definition
A fibre bundle (F,E,M, p) is called vector bundle if F is a vector space.



Appendix
Fibre and vector bundles II

Definition
A Fibre bundle morphism between (F,E, p,M) and (F′,E′, p′,M′) is a
pair (ψ, f) of continuous maps ψ : E → E′ and f : M → M′ such that
p′ ◦ ψ = f ◦ p.
A vector bundle morphism is a fibre bundle morphism between two
vector bundles, for which ψ| : Ex → E′

f(x) is linear everywhere on M.

Definition
Between two trivialisations (Ui, ti) and (Uj, tj) there is a map
Tij : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F, (x, v) → tj ◦ t−1

i (x, v) = (x′, v′). This
map can be viewed as a diffeomorphism Tx : F → F, v → v′. For vector
bundles, Tx is always a matrix from GLr(K). We call Tx = T(x) the
transition map.



Appendix
Fibre and vector bundles III

Examples of vector bundles:

• Trivial bundles: Kr → Kr × M → M.
• Möbius bundle: R → Mb → S1.
• Tangential and cotangential bundles: E = TM, E = T∗M.
• Canonical bundle with fibre (KM)x = det (T∗

xM) =
∧r

i=1 T∗
xM

Examples of other fibre bundles:

• Transition maps of vector bundles are principal bundles
GL(F) → P → M.
• The associated principal bundle of the Möbius bundle is
Z2 → P → S1.
• The frame bundle of a manifold GLr(K) → GLM → M is
associated to the tangential bundle.



Appendix
Complex differential forms

We want to extend the concepts of real exterior calculus to complex
manifolds:

• Instead of n-forms ω = ωIdxI: (p, q)-forms ω = ωIJdzI ∧ dzJ

• Decompose d = ∂ + ∂ with ∂f = ∂ifdzi and ∂f = ∂ ifdzi

• We get ∂ : Ap,q → Ap+1,q and ∂ : Ap,q → Ap,q+1

• Cauchy-Riemann equations: ω holomorphic iff ∂ω = 0

• Rules for computation: ω ∧ η = ω ∧ η, dω = dω, f∗ω = f∗ω
• ∂ and ∂ obey product rules, ∂ω = ∂ω, ∂∂ = −∂∂

• Cohomology group Hp,q = ker ∂p,q
/im∂p,q−1


