Asymptotic geometry of the Higgs moduli space

Hannes Schwab Master Seminar Mathematics Supervisor: PD Dr. Jan Swoboda

University of Heidelberg, 27.07.2020

Table of contents

- Motivation
- Differential geometry of bundles
- Higgs bundles
- Asymptotic decoupling
- Proving Mochizuki's theorem

Motivation

Why solutions of

$$\mathbf{F}_{\mathcal{A}}^{\perp} + [\Phi, \Phi^{\dagger}] = 0 = \overline{\partial}_{\mathcal{A}} \Phi?$$
(1)

For mathematicians:

Moduli spaces of Higgs bundles have an interesting geometry

Results can be translated into topology, Riemann surfaces, and harmonic analysis

For physicists:

Yang-Mills theory $d_A \star \mathbf{F}_A^{\perp} = 0$

Magnetic monopoles $D_A \star \mathbf{F}_A^{\perp} + [\Phi, D_A \Phi^{\dagger}] = 0 = D_A \star D_A \Phi$

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \rightarrow e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \rightarrow h' = ThT^*$

We have the Kähler (1, 1)-form $\omega = h_{\alpha \overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \rightarrow e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \rightarrow h' = ThT^*$

We have the Kähler (1,1)-form $\omega = h_{\alpha\overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \to e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \to h' = ThT^*$

We have the Kähler (1, 1)-form $\omega = h_{\alpha \overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \rightarrow e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \rightarrow h' = ThT^*$

We have the Kähler $(1,1)\text{-}\mathsf{form}\ \omega=\textit{h}_{\alpha\overline{\beta}}\textit{d}z^{\alpha}\wedge\textit{d}\overline{z}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \rightarrow e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \rightarrow h' = ThT^*$

We have the Kähler $(1,1)\text{-}\mathsf{form}\ \omega=\textit{h}_{\alpha\overline{\beta}}\textit{d}\textbf{z}^{\alpha}\wedge\textit{d}\overline{\textbf{z}}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry I

Consider holomorphic, hermitian bundle $\mathbb{C}^r \to E \to M$.

Problem: Metric $h_{\alpha\overline{\beta}}$ on $E_x \neq$ metric $g_{m\overline{n}}$ on T_xM .

Define local frame $\{e_{\alpha}\}_{\alpha=1}^{r}$ of sections: $e_{\alpha} = e_{\alpha}(x)$.

Under transition maps $e_{\alpha} \rightarrow e'_{\alpha} = (T_x)^{\alpha}_{\gamma} e_{\alpha}$, the fibre metric transforms as $h \rightarrow h' = ThT^*$

We have the Kähler $(1,1)\text{-}\mathsf{form}\ \omega=\textit{h}_{\alpha\overline{\beta}}\textit{d}\textit{z}^{\alpha}\wedge\textit{d}\overline{\textit{z}}^{\beta}$

For E, there is a unique bundle Dolbeault operator $\overline{\partial}^{E}$ with $\overline{\partial}^{E}(\eta s) = \eta \overline{\partial}^{E} s + (\overline{\partial} \eta) s$ for complex differential forms η on M and sections s of E. Locally, $\overline{\partial}^{E} s = \overline{\partial} s$.

Bundle geometry II

Consider $M = \Sigma$ Riemann surface. We want to compute the Chern classes of the bundle, hence find curvature \mathbf{F}_{∇} of Chern connection

 \rightarrow It is $\mathbf{F}_{
abla} = \overline{\partial}(h^{-1}\partial h)$ by Cartan formalism.

Then the Chern classes of the bundle are given by

$$\det\left(\frac{\mathrm{i}t\mathbf{F}}{2\pi}+1\right) =: \sum_{k=0}^{r_{\mathrm{E}}} c_k(E) t^k.$$
(2)

Two important invariants for vector bundle:

Rank $r_E = \dim E_x$,

Degree
$$d_E = \int_M c_1(E) = \frac{i}{2\pi} \int_M \operatorname{tr} \mathbf{F}_{\nabla}$$

We also define the **slope** $\mu_E = \frac{d_E}{r_F}$

Bundle geometry II

Consider $M = \Sigma$ Riemann surface. We want to compute the Chern classes of the bundle, hence find curvature \mathbf{F}_{∇} of Chern connection

 \to It is $\mathbf{F}_{
abla} = \overline{\partial}(h^{-1}\partial h)$ by Cartan formalism.

Then the Chern classes of the bundle are given by

$$\det\left(\frac{\mathrm{i}t\mathbf{F}}{2\pi}+1\right) =: \sum_{k=0}^{r_{\mathcal{E}}} c_k(E) t^k.$$
(2)

Two important invariants for vector bundle:

Rank $r_E = \dim E_x$,

Degree
$$d_E = \int_M c_1(E) = \frac{i}{2\pi} \int_M \operatorname{tr} \mathbf{F}_{\nabla}$$

We also define the **slope** $\mu_E = \frac{d_E}{r_F}$

Bundle geometry II

Consider $M = \Sigma$ Riemann surface. We want to compute the Chern classes of the bundle, hence find curvature \mathbf{F}_{∇} of Chern connection

 \rightarrow It is $\mathbf{F}_{
abla} = \overline{\partial}(h^{-1}\partial h)$ by Cartan formalism.

Then the Chern classes of the bundle are given by

$$\det\left(\frac{\mathrm{i}t\mathbf{F}}{2\pi}+\mathbf{1}\right) =: \sum_{k=0}^{r_E} c_k(E) t^k.$$
(2)

Two important invariants for vector bundle:

Rank $r_E = \dim E_x$,

Degree
$$d_E = \int_M c_1(E) = \frac{i}{2\pi} \int_M \operatorname{tr} \mathbf{F}_{\nabla}$$

We also define the **slope** $\mu_E = \frac{d_E}{r_F}$

Bundle geometry II

Consider $M = \Sigma$ Riemann surface. We want to compute the Chern classes of the bundle, hence find curvature \mathbf{F}_{∇} of Chern connection

 \rightarrow It is $\mathbf{F}_{
abla} = \overline{\partial}(h^{-1}\partial h)$ by Cartan formalism.

Then the Chern classes of the bundle are given by

$$\det\left(\frac{\mathrm{i}t\mathbf{F}}{2\pi}+\mathbf{1}\right) =: \sum_{k=0}^{r_{E}} c_{k}(E) t^{k}.$$
(2)

Two important invariants for vector bundle:

Rank $r_E = \dim E_x$,

Degree
$$d_E = \int_M c_1(E) = \frac{i}{2\pi} \int_M \operatorname{tr} \mathbf{F}_{\nabla}$$

We also define the **slope** $\mu_E = \frac{d_E}{r_E}$

Bundle geometry II

Consider $M = \Sigma$ Riemann surface. We want to compute the Chern classes of the bundle, hence find curvature \mathbf{F}_{∇} of Chern connection

 \rightarrow It is $\mathbf{F}_{
abla} = \overline{\partial}(h^{-1}\partial h)$ by Cartan formalism.

Then the Chern classes of the bundle are given by

$$\det\left(\frac{\mathrm{i}t\mathbf{F}}{2\pi}+\mathbf{1}\right) =: \sum_{k=0}^{r_{E}} c_{k}(E)t^{k}.$$
(2)

Two important invariants for vector bundle:

Rank $r_E = \dim E_x$,

Degree
$$d_E = \int_M c_1(E) = \frac{i}{2\pi} \int_M \operatorname{tr} \mathbf{F}_{\nabla}$$

We also define the **slope** $\mu_E = \frac{d_E}{r_E}$

Definition

A **Higgs bundle** is a tupel $(\overline{\partial}^{E}, \Phi)$ where $(E, h) \to \Sigma$ is a hermitian vector bundle over a Riemann surface Σ with metric h and holomorphic structure $\overline{\partial}^{E}$, and $\Phi = \Phi^{\alpha}_{\beta m} dz^{m}$ is a (1, 0)-form with $\overline{\partial}^{E} \Phi = 0$. A Φ -invariant sub-bundle F < E is such that $\Phi(F) < F \approx K_{2}$.

Definition

Definition

A **Higgs bundle** is a tupel $(\overline{\partial}^{E}, \Phi)$ where $(E, h) \to \Sigma$ is a hermitian vector bundle over a Riemann surface Σ with metric h and holomorphic structure $\overline{\partial}^{E}$, and $\Phi = \Phi^{\alpha}_{\beta m} dz^{m}$ is a (1, 0)-form with $\overline{\partial}^{E} \Phi = 0$. A Φ -invariant sub-bundle F < E is such that $\Phi(F) < F \otimes K_{\Sigma}$.

Definition

Definition

A **Higgs bundle** is a tupel $(\overline{\partial}^{E}, \Phi)$ where $(E, h) \to \Sigma$ is a hermitian vector bundle over a Riemann surface Σ with metric h and holomorphic structure $\overline{\partial}^{E}$, and $\Phi = \Phi^{\alpha}_{\beta m} dz^{m}$ is a (1, 0)-form with $\overline{\partial}^{E} \Phi = 0$. A Φ -invariant sub-bundle F < E is such that $\Phi(F) < F \otimes K_{\Sigma}$.

Definition

Definition

A **Higgs bundle** is a tupel $(\overline{\partial}^{E}, \Phi)$ where $(E, h) \to \Sigma$ is a hermitian vector bundle over a Riemann surface Σ with metric h and holomorphic structure $\overline{\partial}^{E}$, and $\Phi = \Phi^{\alpha}_{\beta m} dz^{m}$ is a (1, 0)-form with $\overline{\partial}^{E} \Phi = 0$. A Φ -invariant sub-bundle F < E is such that $\Phi(F) < F \otimes K_{\Sigma}$.

Definition

The moduli space of polystable Higgs bundles by a gauge action $\operatorname{GL}(E)$ is a noncompact smooth complex manifold $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E)$. Its dimension depends on the genus g of Σ : dim_{\mathbb{C}} $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E) = 2 + r^2(2g - 2)$ (Hitchin 1987).

Example (Higgs bundles)

 $(\overline{\partial}^{E}, 0)$ is a stable Higgs bundle if *E* is stable as a vector bundle.

Nontrivial: Let $E = K_{\Sigma}^{1/2} \oplus K_{\Sigma}^{-1/2}$, and let $q = q(z)dz \otimes dz$ be a holomorphic quadratic differential on Σ . A Higgs field is given by

$$\Phi = \begin{pmatrix} 0 & 1 \\ q & 0 \end{pmatrix} \tag{3}$$

The moduli space of polystable Higgs bundles by a gauge action $\operatorname{GL}(E)$ is a noncompact smooth complex manifold $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E)$. Its dimension depends on the genus g of Σ : dim_{\mathbb{C}} $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E) = 2 + r^2(2g - 2)$ (Hitchin 1987).

Example (Higgs bundles)

 $(\overline{\partial}^{E}, 0)$ is a stable Higgs bundle if *E* is stable as a vector bundle.

Nontrivial: Let $E = K_{\Sigma}^{1/2} \oplus K_{\Sigma}^{-1/2}$, and let $q = q(z)dz \otimes dz$ be a holomorphic quadratic differential on Σ . A Higgs field is given by

$$\Phi = \begin{pmatrix} 0 & 1 \\ q & 0 \end{pmatrix} \tag{3}$$

The moduli space of polystable Higgs bundles by a gauge action $\operatorname{GL}(E)$ is a noncompact smooth complex manifold $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E)$. Its dimension depends on the genus g of Σ : dim_{\mathbb{C}} $\mathcal{M}^D_{\operatorname{GL}}(r_E, d_E) = 2 + r^2(2g - 2)$ (Hitchin 1987).

Example (Higgs bundles)

 $(\overline{\partial}^{E}, 0)$ is a stable Higgs bundle if *E* is stable as a vector bundle.

Nontrivial: Let $E = K_{\Sigma}^{1/2} \oplus K_{\Sigma}^{-1/2}$, and let $q = q(z)dz \otimes dz$ be a holomorphic quadratic differential on Σ . A Higgs field is given by

$$\Phi = \begin{pmatrix} 0 & 1 \\ q & 0 \end{pmatrix} \tag{3}$$

Higgs bundles

Kobayashi-Hitchin correspondence

Definition

A **Hitchin pair** (A, Φ) of a connection $D_A = d + A$ and an End(*E*)-valued (1, 0)-form Φ fulfills

$$\overline{\partial}_{A}\Phi = 0 \tag{4}$$

(5)

$$\mathbf{F}_{\mathcal{A}} + [\Phi, \Phi^{\dagger}] = -2\pi \mathrm{i}\mu_{\mathcal{E}} \mathbf{1}_{\mathcal{E}} \omega.$$

Ve may write
$$\mathbf{F}_{\mathbf{A}}^{\perp} := \mathbf{F}_{\mathbf{A}} + 2\pi i \mu_{\mathbf{F}} \mathbf{1}_{\mathbf{F}} \omega$$
 and thus $\mathbf{F}_{\mathbf{A}}^{\perp} + [\Phi, \Phi^{\dagger}] = 0$.

Theorem (Kobayashi-Hitchin, proven by Uhlenbeck-Yau 1986)

There exists an isomorphism between the moduli spaces of irreducible Hitchin pairs and of polystable Higgs bundles, given by $(A, \Phi) \mapsto (\overline{\partial}_A, \Phi)$. Also, $\mathbb{D} = \overline{\partial}_A + \partial_A^h + \Phi + \Phi^\dagger$ gives a projectively flat connection.

Higgs bundles

Kobayashi-Hitchin correspondence

Definition

A **Hitchin pair** (A, Φ) of a connection $D_A = d + A$ and an End(*E*)-valued (1, 0)-form Φ fulfills

$$\overline{\partial}_{A}\Phi = 0 \tag{4}$$

(5)

$$\mathbf{F}_{\mathcal{A}} + [\Phi, \Phi^{\dagger}] = -2\pi \mathrm{i}\mu_{\mathcal{E}} \mathbf{1}_{\mathcal{E}} \omega.$$

We may write
$$\mathbf{F}_{A}^{\perp} := \mathbf{F}_{A} + 2\pi \mathrm{i} \mu_{E} \mathbf{1}_{E} \omega$$
 and thus $\mathbf{F}_{A}^{\perp} + [\Phi, \Phi^{\dagger}] = 0$.

Theorem (Kobayashi-Hitchin, proven by Uhlenbeck-Yau 1986)

There exists an isomorphism between the moduli spaces of irreducible Hitchin pairs and of polystable Higgs bundles, given by $(A, \Phi) \mapsto (\overline{\partial}_A, \Phi)$. Also, $\mathbb{D} = \overline{\partial}_A + \partial_A^h + \Phi + \Phi^\dagger$ gives a projectively flat connection.

Higgs bundles

Kobayashi-Hitchin correspondence

Definition

A **Hitchin pair** (A, Φ) of a connection $D_A = d + A$ and an End(*E*)-valued (1, 0)-form Φ fulfills

$$\overline{\partial}_{A}\Phi = 0 \tag{4}$$

(5)

$$\mathbf{F}_{\mathcal{A}} + [\Phi, \Phi^{\dagger}] = -2\pi \mathrm{i}\mu_{\mathcal{E}} \mathbf{1}_{\mathcal{E}} \omega.$$

We may write $\mathbf{F}_{A}^{\perp} := \mathbf{F}_{A} + 2\pi i \mu_{E} \mathbf{1}_{E} \omega$ and thus $\mathbf{F}_{A}^{\perp} + [\Phi, \Phi^{\dagger}] = 0$.

Theorem (Kobayashi-Hitchin, proven by Uhlenbeck-Yau 1986)

There exists an isomorphism between the moduli spaces of irreducible Hitchin pairs and of polystable Higgs bundles, given by $(A, \Phi) \mapsto (\overline{\partial}_A, \Phi)$. Also, $\mathbb{D} = \overline{\partial}_A + \partial_A^h + \Phi + \Phi^{\dagger}$ gives a projectively flat connection.

The decoupling problem

If (A, Φ) solves the equation $\overline{\partial}_A \Phi = 0 = \mathbf{F}_A^{\perp} + t^2 [\Phi, \Phi^{\dagger}]$, then $(A, t \cdot \Phi)$ is a Hitchin pair.

For $t \to \infty$ we (heuristically) get the **decoupled selfduality equations**:

$$\mathbf{F}_{A}^{\perp} = 0 = [\Phi, \Phi^{\dagger}]. \tag{6}$$

Problem: Solutions (A_j, Φ_j) may not converge to solutions of the decoupled equations!

However, we can at least get local decoupling of solutions under certain conditions for Φ and E

The decoupling problem

If (A, Φ) solves the equation $\overline{\partial}_A \Phi = 0 = \mathbf{F}_A^{\perp} + t^2 [\Phi, \Phi^{\dagger}]$, then $(A, t \cdot \Phi)$ is a Hitchin pair.

For $t \to \infty$ we (heuristically) get the **decoupled selfduality equations**:

$$\mathbf{F}_{\mathbf{A}}^{\perp} = 0 = [\Phi, \Phi^{\dagger}]. \tag{6}$$

Problem: Solutions (A_j, Φ_j) may not converge to solutions of the decoupled equations!

However, we can at least get local decoupling of solutions under certain conditions for Φ and E

The decoupling problem

If (A, Φ) solves the equation $\overline{\partial}_A \Phi = 0 = \mathbf{F}_A^{\perp} + t^2 [\Phi, \Phi^{\dagger}]$, then $(A, t \cdot \Phi)$ is a Hitchin pair.

For $t \to \infty$ we (heuristically) get the **decoupled selfduality equations**:

$$\mathbf{F}_{\mathbf{A}}^{\perp} = 0 = [\Phi, \Phi^{\dagger}]. \tag{6}$$

Problem: Solutions (A_j, Φ_j) may not converge to solutions of the decoupled equations!

However, we can at least get local decoupling of solutions under certain conditions for Φ and E

The decoupling problem

If (A, Φ) solves the equation $\overline{\partial}_A \Phi = 0 = \mathbf{F}_A^{\perp} + t^2 [\Phi, \Phi^{\dagger}]$, then $(A, t \cdot \Phi)$ is a Hitchin pair.

For $t \to \infty$ we (heuristically) get the **decoupled selfduality equations**:

$$\mathbf{F}_{A}^{\perp} = 0 = [\Phi, \Phi^{\dagger}]. \tag{6}$$

Problem: Solutions (A_j, Φ_j) may not converge to solutions of the decoupled equations!

However, we can at least get local decoupling of solutions under certain conditions for Φ and E.

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{x} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills d \geq 1,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$.

 $(r_{E_{\alpha}} = 1 \text{ and } d_{E} = 0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_A^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{x} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$.

 $(r_{E_{\alpha}} = 1 \text{ and } d_{E} = 0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_A^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{x} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$.

 $(r_{E_{\alpha}} = 1 \text{ and } d_E = 0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_A^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{χ} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$,

 $(r_{E_{\alpha}} = 1 \text{ and } d_E = 0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_A^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{χ} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$,

 $(r_{E_{\alpha}} = 1 \text{ and } d_{E} = 0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_A^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{χ} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$,

 $(r_{E_{\alpha}}=1 \text{ and } d_{E}=0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_{A}^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$
(7)

Mochizuki's theorem

Theorem (Asymptotic decoupling on discs, Mochizuki 2016)

Let $\{U_{\alpha}\}_{\alpha \in S}$ be a finite covering of Σ and $\Delta(R)$ an open disc of radius R, such that $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$ for all $P \in \Delta(R)$ is a decomposition of E_{χ} into eigenspaces of Φ , where $\Phi_{\alpha} = f_{\alpha}dz$. If:

d minimum distance of points in S fulfills $d \ge 1$,

 λ eigenvalues of f_{α} have distance $\leq \frac{d}{100}$ from α ,

We have M, C > 0 st. $|\lambda| < M$ and $Cd \ge M$ on $\Delta(R)$,

 $(r_{E_{\alpha}}=1 \text{ and } d_{E}=0),$

then we find constants K and ϵ such that on a smaller disc $\Delta(R_2)$

$$|\mathbf{F}_{A}^{\perp}|_{g,h} = |[\Phi, \Phi^{\dagger}]|_{g,h} \le K e^{-\epsilon d}.$$
(7)

Proof of Mochizuki's theorem I

For the decomposition $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$, we obtain two projections onto the E_{α}

 π_{α} induced by the eigendecomposition of $\Phi=\mathit{fdz}$ at P , and

 $\pi'_{\alpha} = (\pi'_{\alpha})^{\dagger}$ obtained by orthogonalisation.

We define $\rho_{\alpha} = \pi_{\alpha} - \pi'_{\alpha}$ to be the **skewedness** of the decomposition in direction α .

_emma

If $|f_P|_h \leq G_1 d + G_2$, then $d \cdot \delta \cdot |\rho_\alpha|_h \leq |[f_{h,P}^{\dagger}, \pi_\alpha]|_h$ for $\delta = \delta(G_i, r_E)$.

Also, $|\rho_{\alpha}|_{h} \leq |\pi_{\alpha}|_{h} \leq B$ for some constant $B(G_{i}, r_{E})$.

Proof of Mochizuki's theorem I

For the decomposition $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$, we obtain two projections onto the E_{α}

 π_{α} induced by the eigendecomposition of $\Phi=\mathit{fdz}$ at P , and

 $\pi'_{\alpha} = (\pi'_{\alpha})^{\dagger}$ obtained by orthogonalisation.

We define $\rho_{\alpha} = \pi_{\alpha} - \pi'_{\alpha}$ to be the **skewedness** of the decomposition in direction α .

Lemma

If $|f_P|_h \leq G_1 d + G_2$, then $d \cdot \delta \cdot |\rho_\alpha|_h \leq |[f_{h,P}^{\dagger}, \pi_\alpha]|_h$ for $\delta = \delta(G_i, r_E)$.

Also, $|\rho_{\alpha}|_{h} \leq |\pi_{\alpha}|_{h} \leq B$ for some constant $B(G_{i}, r_{E})$.

Proof of Mochizuki's theorem I

For the decomposition $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$, we obtain two projections onto the E_{α}

 π_{α} induced by the eigendecomposition of $\Phi=\mathit{fdz}$ at P , and

 $\pi'_{\alpha} = (\pi'_{\alpha})^{\dagger}$ obtained by orthogonalisation.

We define $\rho_{\alpha} = \pi_{\alpha} - \pi'_{\alpha}$ to be the **skewedness** of the decomposition in direction α .

Lemma

If $|f_P|_h \leq G_1 d + G_2$, then $d \cdot \delta \cdot |\rho_\alpha|_h \leq |[f_{h,P}^{\dagger}, \pi_\alpha]|_h$ for $\delta = \delta(G_i, r_E)$.

Also, $|\rho_{\alpha}|_{h} \leq |\pi_{\alpha}|_{h} \leq B$ for some constant $B(G_{i}, r_{E})$.

Proof of Mochizuki's theorem I

For the decomposition $(E, \Phi)|_{U_{\alpha}} = \bigoplus_{\alpha} (E_{\alpha}, \Phi_{\alpha})$, we obtain two projections onto the E_{α}

 π_{α} induced by the eigendecomposition of $\Phi=\mathit{fdz}$ at P , and

 $\pi'_{\alpha} = (\pi'_{\alpha})^{\dagger}$ obtained by orthogonalisation.

We define $\rho_{\alpha} = \pi_{\alpha} - \pi'_{\alpha}$ to be the **skewedness** of the decomposition in direction α .

Lemma

If $|f_P|_h \leq G_1 d + G_2$, then $d \cdot \delta \cdot |\rho_\alpha|_h \leq |[f_{h,P}^{\dagger}, \pi_\alpha]|_h$ for $\delta = \delta(G_i, r_E)$.

Also, $|\rho_{\alpha}|_{h} \leq |\pi_{\alpha}|_{h} \leq B$ for some constant $B(G_{i}, r_{E})$.

Proof of Mochizuki's theorem II

Lemma

Let now s be a section of End(E) with $\overline{\partial}s = 0 = [\Phi, s]$. Then,

$$-\partial\overline{\partial}\ln|\pmb{s}|^2_{\pmb{h}}\leq -rac{|[\pmb{f_h}^\dagger,\pmb{s}]|^2_{\pmb{h}}}{|\pmb{s}|^2_{\pmb{h}}}.$$

(8)

Idea:

$$\begin{aligned} -|s|_{h}^{2}\partial\overline{\partial}\ln|s|_{h}^{2} &\leq -|h(s,\overline{\partial}\partial s - \partial\overline{\partial}s)| = -|h(s,R(\overline{\partial},\partial)s)| \\ &= -|h(s,[\Phi,\Phi^{\dagger}](\overline{\partial},\partial)s)| \leq -|h([f_{h}^{\dagger},s],[f_{h}^{\dagger},s])| \end{aligned}$$

Proof of Mochizuki's theorem II

Lemma

Let now s be a section of End(E) with $\overline{\partial}s = 0 = [\Phi, s]$. Then,

$$-\partial\overline{\partial}\ln|s|_{h}^{2}\leq-rac{|[f_{h}^{\dagger},s]|_{h}^{2}}{|s|_{h}^{2}}.$$

(8)

Idea:

$$\begin{aligned} -|s|_{h}^{2}\partial\overline{\partial}\ln|s|_{h}^{2} &\leq -|h(s,\overline{\partial}\partial s - \partial\overline{\partial}s)| = -|h(s,R(\overline{\partial},\partial)s)| \\ &= -|h(s,[\Phi,\Phi^{\dagger}](\overline{\partial},\partial)s)| \leq -|h([f_{h}^{\dagger},s],[f_{h}^{\dagger},s])| \end{aligned}$$

Proof of Mochizuki's theorem III

Lemma

For any $R_1 \in (0, R)$ and $R_2 \in (0, R_1)$ there are constants C_1, C_2, C_{11} dependent on R, R_1, r_E : $|f_P|_h \leq C_1 M + C_2$ on $\Delta(R_1)$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$ on $\Delta(R_2)$.

Proofs are very similar: First use (8) to find a differential inequality:

$$-\partial\overline{\partial}\ln|f_{\mathcal{P}}|_{h}^{2} \leq -\frac{\mathcal{C}_{3}^{2}}{4}|f_{\mathcal{P}}|_{h}^{2}, \quad -\partial\overline{\partial}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right) \leq -\epsilon_{1}d^{2}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right)$$

Then find solutions to equal case:

$$|f_P|_h^2 = \frac{B}{(R^2 - z\overline{z})^2}, \qquad \qquad \ln\left(\frac{|\pi_\alpha|_h^2}{r_\alpha}\right) = e^{-\epsilon_2 z\overline{z}d}$$

$$\left\{ P \Big| |f_P|_h^2 > B(R^2 - |P|^2)^{-2} \right\}, \quad \left\{ P \Big| \ln \left(|\pi_\alpha|_h^2 r_\alpha^{-1} \right) > C e^{(|P|^2 - R_1^2)\epsilon d} \right\}$$

Proof of Mochizuki's theorem III

Lemma

For any $R_1 \in (0, R)$ and $R_2 \in (0, R_1)$ there are constants C_1, C_2, C_{11} dependent on R, R_1, r_E : $|f_P|_h \leq C_1 M + C_2$ on $\Delta(R_1)$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$ on $\Delta(R_2)$.

Proofs are very similar: First use (8) to find a differential inequality:

$$-\partial\overline{\partial}\ln|f_{\mathcal{P}}|_{h}^{2} \leq -\frac{C_{3}^{2}}{4}|f_{\mathcal{P}}|_{h}^{2}, \quad -\partial\overline{\partial}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right) \leq -\epsilon_{1}d^{2}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right)$$

Then find solutions to equal case:

$$|f_P|_h^2 = \frac{B}{(R^2 - z\overline{z})^2}, \qquad \qquad \ln\left(\frac{|\pi_\alpha|_h^2}{r_\alpha}\right) = e^{-\epsilon_2 z\overline{z}d}$$

$$\left\{ P \Big| |f_P|_h^2 > B(R^2 - |P|^2)^{-2} \right\}, \quad \left\{ P \Big| \ln \left(|\pi_\alpha|_h^2 r_\alpha^{-1} \right) > C e^{(|P|^2 - R_1^2)\epsilon d} \right\}$$

Proof of Mochizuki's theorem III

Lemma

For any $R_1 \in (0, R)$ and $R_2 \in (0, R_1)$ there are constants C_1, C_2, C_{11} dependent on R, R_1, r_E : $|f_P|_h \leq C_1 M + C_2$ on $\Delta(R_1)$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$ on $\Delta(R_2)$.

Proofs are very similar: First use (8) to find a differential inequality:

$$-\partial\overline{\partial}\ln|f_{\mathcal{P}}|_{h}^{2} \leq -\frac{\mathcal{C}_{3}^{2}}{4}|f_{\mathcal{P}}|_{h}^{2}, \quad -\partial\overline{\partial}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right) \leq -\epsilon_{1}d^{2}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right)$$

Then find solutions to equal case:

$$|f_P|_h^2 = \frac{B}{(R^2 - z\overline{z})^2}, \qquad \qquad \ln\left(\frac{|\pi_\alpha|_h^2}{r_\alpha}\right) = e^{-\epsilon_2 z\overline{z}d}$$

$$\left\{ P \Big| |f_P|_h^2 > B(R^2 - |P|^2)^{-2} \right\}, \quad \left\{ P \Big| \ln(|\pi_\alpha|_h^2 r_\alpha^{-1}) > C e^{(|P|^2 - R_1^2)\epsilon d} \right\}$$

Proof of Mochizuki's theorem III

Lemma

For any $R_1 \in (0, R)$ and $R_2 \in (0, R_1)$ there are constants C_1, C_2, C_{11} dependent on R, R_1, r_E : $|f_P|_h \leq C_1 M + C_2$ on $\Delta(R_1)$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$ on $\Delta(R_2)$.

Proofs are very similar: First use (8) to find a differential inequality:

$$-\partial\overline{\partial}\ln|f_{\mathcal{P}}|_{h}^{2} \leq -\frac{\mathcal{C}_{3}^{2}}{4}|f_{\mathcal{P}}|_{h}^{2}, \quad -\partial\overline{\partial}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right) \leq -\epsilon_{1}d^{2}\ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right)$$

Then find solutions to equal case:

$$|f_{\mathcal{P}}|_{h}^{2} = \frac{B}{(R^{2} - z\bar{z})^{2}}, \qquad \qquad \ln\left(\frac{|\pi_{\alpha}|_{h}^{2}}{r_{\alpha}}\right) = e^{-\epsilon_{2}z\bar{z}d}$$

$$\left\{ P \Big| |f_P|_h^2 > B(R^2 - |P|^2)^{-2} \right\}, \quad \left\{ P \Big| \ln \left(|\pi_\alpha|_h^2 r_\alpha^{-1} \right) > C e^{(|P|^2 - R_1^2)\epsilon d} \right\}$$

Proof of Mochizuki's theorem IV

By $|f_{|\mathcal{P}}|_{h} \leq C_{1}M + C_{2}$ and $| ho_{lpha}|_{h} \leq C_{11}e^{-\epsilon_{0}d}$, we arrive at

$$[[f, \pi_{\alpha}^{\dagger}]]_{h} = |[f^{\dagger}, \pi_{\alpha}]|_{h} \le C_{20} e^{-\epsilon_{20} d} \text{ on } \Delta(R_{2}).$$
(9)

Because $\mathbf{F}_{A}^{\perp} = [\Phi, \Phi^{\dagger}]$, it is now enough that $[\Phi, \Phi^{\dagger}]$ decays exponentially with *d*. This is indeed the case.

Remark

Thus follows asymptotic decoupling because for rescaling Φ to $t \cdot \Phi$, |K| in the theorem scales to $t^n |K|$ for some *n*, but *d* scales $t \cdot d$. Therefore $|[t \cdot \Phi, t \cdot \Phi^{\dagger}]|_{g,h} \leq t^n K e^{-\epsilon t d}$ goes to zero for $t \to \infty$.

Proof of Mochizuki's theorem IV

By $|f_{|P}|_h \leq C_1 M + C_2$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$, we arrive at

$$|[f, \pi_{\alpha}^{\dagger}]|_{h} = |[f^{\dagger}, \pi_{\alpha}]|_{h} \le C_{20} e^{-\epsilon_{20} d} \text{ on } \Delta(R_{2}).$$
(9)

Because $\mathbf{F}_{\mathcal{A}}^{\perp} = [\Phi, \Phi^{\dagger}]$, it is now enough that $[\Phi, \Phi^{\dagger}]$ decays exponentially with *d*. This is indeed the case.

Remark

Thus follows asymptotic decoupling because for rescaling Φ to $t \cdot \Phi$, |K| in the theorem scales to $t^n |K|$ for some *n*, but *d* scales $t \cdot d$. Therefore $|[t \cdot \Phi, t \cdot \Phi^{\dagger}]|_{g,h} \leq t^n K e^{-\epsilon t d}$ goes to zero for $t \to \infty$.

Proof of Mochizuki's theorem IV

By $|f_{|P}|_h \leq C_1 M + C_2$ and $|\rho_{\alpha}|_h \leq C_{11} e^{-\epsilon_0 d}$, we arrive at

$$|[f, \pi_{\alpha}^{\dagger}]|_{h} = |[f^{\dagger}, \pi_{\alpha}]|_{h} \le C_{20} e^{-\epsilon_{20} d} \text{ on } \Delta(R_{2}).$$
(9)

Because $\mathbf{F}_{\mathcal{A}}^{\perp} = [\Phi, \Phi^{\dagger}]$, it is now enough that $[\Phi, \Phi^{\dagger}]$ decays exponentially with *d*. This is indeed the case.

Remark

Thus follows asymptotic decoupling because for rescaling Φ to $t \cdot \Phi$, |K| in the theorem scales to $t^n|K|$ for some *n*, but *d* scales $t \cdot d$. Therefore $|[t \cdot \Phi, t \cdot \Phi^{\dagger}]|_{g,h} \leq t^n K e^{-\epsilon t d}$ goes to zero for $t \to \infty$.

Thanks for your attention!

Questions ?

Uhlenbeck, Yau 1986: On the existence of Hermitian Yang-Mills connections in stable vector bundles

Hitchin 1987: The self-duality equations on a Riemann surface

Mazzeo, Swoboda, Weiß, Witt 2015: Ends of the moduli space of Higgs bundles

Mochizuki 2016: Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces

Appendix Fibre and vector bundles I

Definition

Let *E*, *M* and *F* topological spaces, and $p : E \rightarrow M$ a continuous surjection with $p^{-1}(x)$ homeomorphic to *F* for all $x \in M$. Each point shall possess a trivialisation, that is a neighbourhood *U* with a homeomorphism $t : E_x = p^{-1}(U) \rightarrow F \times U$ The tupel (F, E, p, M) is then called a **fibre bundle**. Suggestively write: $F \rightarrow E \stackrel{p}{\rightarrow} M$

Definition

A section of a fibre bundle is an inclusion $s: M \to E$, with $p \circ s = id_M$.

Definition

A fibre bundle (F, E, M, p) is called **vector bundle** if F is a vector space.

Appendix Fibre and vector bundles II

Definition

A Fibre bundle morphism between (F, E, p, M) and (F', E', p', M') is a pair (ψ, f) of continuous maps $\psi : E \to E'$ and $f : M \to M'$ such that $p' \circ \psi = f \circ p$. A vector bundle morphism is a fibre bundle morphism between two vector bundles, for which $\psi|: E_x \to E'_{f(x)}$ is linear everywhere on M.

Definition

Between two trivialisations (U_i, t_i) and (U_j, t_j) there is a map $T_{ij}: (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F, (x, v) \to t_j \circ t_i^{-1}(x, v) = (x', v')$. This map can be viewed as a diffeomorphism $T_x: F \to F, v \to v'$. For vector bundles, T_x is always a matrix from $\operatorname{GL}_r(\mathbb{K})$. We call $T_x = T(x)$ the transition map.

Appendix Fibre and vector bundles III

Examples of vector bundles:

- Trivial bundles: $\mathbb{K}^r \to \mathbb{K}^r \times M \to M$.
- Möbius bundle: $\mathbb{R} \to \mathrm{Mb} \to S^1$.
- Tangential and cotangential bundles: E = TM, $E = T^*M$.
- Canonical bundle with fibre $(K_M)_x = \det(T_x^*M) = \bigwedge_{i=1}^r T_x^*M$

Examples of other fibre bundles:

- Transition maps of vector bundles are **principal bundles** $\operatorname{GL}(F) \to P \to M$.
- \bullet The associated principal bundle of the Möbius bundle is $\mathbb{Z}_2 \to {\it P} \to S^1.$
- The frame bundle of a manifold $\operatorname{GL}_r(\mathbb{K}) \to \operatorname{GL} M \to M$ is associated to the tangential bundle.

Appendix Complex differential forms

We want to extend the concepts of real exterior calculus to complex manifolds:

- Instead of *n*-forms $\omega = \omega_I dx^I$: (p, q)-forms $\omega = \omega_{IJ} dz^I \wedge d\overline{z}^J$
- Decompose $d = \partial + \overline{\partial}$ with $\partial f = \partial_i f dz^i$ and $\overline{\partial} f = \overline{\partial}_i f d\overline{z}^i$
- We get $\partial: \mathcal{A}^{p,q} \to \mathcal{A}^{p+1,q}$ and $\overline{\partial}: \mathcal{A}^{p,q} \to \mathcal{A}^{p,q+1}$
- Cauchy-Riemann equations: ω holomorphic iff $\overline{\partial}\omega=0$
- Rules for computation: $\overline{\omega \wedge \eta} = \overline{\omega} \wedge \overline{\eta}$, $\overline{d\omega} = d\overline{\omega}$, $\overline{f^*\omega} = \overline{f}^*\overline{\omega}$
- ∂ and $\overline{\partial}$ obey product rules, $\overline{\partial \omega} = \overline{\partial} \overline{\omega}$, $\partial \overline{\partial} = -\overline{\partial} \partial$
- Cohomology group $H^{p,q} = \ker \overline{\partial}^{p,q} / \mathrm{im} \overline{\partial}^{p,q-1}$