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History and formulation of the Blaschke conjecture

Setting: (M, g) connected, complete Riemannian manifold.

Definition

We define the unit tangent bundle to be the subset SM ⊂ TM given by:

SM = {(p, v) ∈ TM | gp(v , v) = 1}.

Definition

Let v ∈ SM. We define con(v) ∈ (0,∞] to be the first positive time t
such that γv (0) is conjugate to γv (t) along γv . If no such time exists we
set con(v) =∞. For p ∈ M we define the first conjugate locus of p

Con(p) := {γv (con(v)) | v ∈ SpM}.
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Definition

(M, g) is called wiedersehen manifold if for all p ∈ M, Con(p) consists
of one single point. (M, g) is called wiedersehen surface if in addition
dimM = 2.

Example

Figure: The red lines are the geodesics starting at the north pole N and meeting
at the south pole S.
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Why the name ”wiedersehen”?
What does happen: There exists a time a > 0 such that any two unit
speed geodesics starting at a common point p will meet again after time a
at the conjugate point of p.

What doesn’t happen:
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Blaschke conjecture

1921: Blaschke conjectures that up to isometry the only wiedersehen
surface in R3 is the round sphere.
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Example

Figure: RP2 with the canonical metric. The red and blue lines are geodesics
starting at the north pole N. After time π they meet there again.
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Theorem

(L. W. Green, 1963) Every wiedersehen surface has constant positive
Gaussian cuvature.

Remark

Every wiedersehen surface is thus isometric to the sphere or RP2 with (a
positive multiple of) the canonical Riemannian metrics.
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Splitting of the double tangent bundle
The double tangent bundle TTM → TM. There are horizontal and
vertical subbundles H and V of TTM → TM with:

1 TTM = H
⊕
V.

2 For each v ∈ TM, Hv
∼= Tπ(v)M,Vv ∼= Tπ(v)M.

Hence TvTM ∼= Tπ(v)M
⊕

Tπ(v)M.
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Sasaki metric

Splitting of TTM leads to natural metric gS on TM.

Pullback under SM → TM gives Sasaki metric on SM.

Theorem

Geodesic flow of M is volume preserving, both considered as a map
Φt : TM → TM and Φt : SM → SM.
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Proof of the Blaschke conjecture

Theorem

Let (M, g) be a simply connected wiedersehen manifold. Then:

1 M is diffeomorphic to Sm.

2 injM = diamM = a.

3 For all p ∈ M and v ∈ SpM we have γv (a) = Con(p).

4 All unit speed geodesics in M are periodic with (least) period 2a.

5 Con is an involutive isometry with d(p,Con(p))=a.
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Theorem

Let (M, g) be a closed Riemannian surface and let there be a time a > 0
such that along all unit speed geodesics no conjugate point appears before
time a. Then

vol(M) ≥ 2a2

π
χ(M)

and equality holds iff the Gaussian curvature is constant K = π2

a2
.
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Goal: Compute vol(M) for simply connected wiedersehen surface M.
Easier: Compute vol(SM).
Idea: Take closed geodesic H ⊂ M, set SMH = {(p, v) ∈ SM | p ∈ H}
and consider

F : [0, a)× SMH → SM, F (t, v) := Φt(v).

Christian Alber (Universität Heidelberg) Blaschke conjecture and Hopf rigidity June 15, 2020 13 / 23



Theorem

(Santalo’s formula)Let H be a hypersurface in (M, g). With F defined as
above:

|F |∗(t, v) = sin(θ(v)),

where θ(v) ∈ [0, π/2] is the angle between Tπ(v)H and v.
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Proof.

(Blaschke conjecture)

vol(SM) =

∫
[0,a)×SMH

sinθ(v)volR×SMH

=

∫
[0,a)

volR

∫
SMH

sinθ(v)volSMH

= a

∫
H

∫
SpM

sinθ(v)volSpM(v)volH(p)

= a

∫ 2π

0
|sinθ|dθ

∫
H
volH = a · 4 · 2a = 8 · a2.

Hence vol(M) = vol(SM)
2π = 4a2

π .
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Generalisation of Blaschke’s conjecture

How about higher dimensions?
Problem: Dimension 2 in Green’s proof is crucial in applying

Characterisation for constant sectional curvature

Santalo’s formula

Theorem

Let g be a Riemannian metric on Sm with inj(Sm, g) = diam(Sm, g).
Then (Sm, g) has constant positive sectional curvature.

Corollary

Every wiedersehen manifold has constant positive sectional curvature.

Further Generalisation: Classify Riemannian manifolds (M, g) with
inj(M, g) = diam(M, g).
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Closed surfaces without conjugate points

Theorem

Let (M, g) be a closed Riemannian surface. If on M no conjugate points
exist, then ∫

M
KµM ≤ 0

and equality holds if and only if the Gaussian curvature K is identically
zero.

Corollary

Let g be a Riemannian metric without conjugate points on the
two-dimensional torus T . Then (T , g) is flat.
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Proof.

Idea: Use nonconjugacy to construct an integrable function u : SM → R
such that u(Φt(v)) solves the Ricatti equation, i.e.

d

dt
u(Φt(v)) + u2(Φt(v)) + K (π ◦ Φt(v)) = 0.

Integrate with respect to t and over SM

−
∫
SM

∫ 1

0
u2(Φt(v))dt =

∫
SM

u(Φ1(v))− u(v)︸ ︷︷ ︸
=0

+

∫
SM

∫ 1

0
K (π ◦ Φt(v))dt

=

∫ 1

0

∫
SM

K (π ◦ Φt(v))dt =

∫ 1

0

∫
SM

K (π(v))dt

= 2π

∫
M
K .
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Summary

Wiedersehen manifolds
I Definition: Con(p) is a singleton for all p ∈ M.
I Why ”wiedersehen”?

Blaschke conjecture
I Statement: wiedersehen surfaces have constant Gaussian curvature.
I Green’s proof: Volume inequality characterising constant curvature.

Christian Alber (Universität Heidelberg) Blaschke conjecture and Hopf rigidity June 15, 2020 19 / 23



Left to do: show theorem that gives characterisation for constant sectional
curvature. This follows from

Theorem

Let (M, g) be a closed Riemannian manifold and a > 0 such that for every
v ∈ SM, con(v) ≥ a. Then

a2

π2

∫
M
scalµg ≤ m(m − 1)volg (M)

where equality holds if and only if M has constant sectional curvature π2

a2
.

Here scal : M → R denotes the scalar curvature.
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Proof.

γv : [0, a]→ M unit-speed geodesic, E parallel normal vector field along
γv , V (t) = sin(πta )E (t).

0 ≤
∫ a

0
g(V̇ , V̇ )− R(V , γ̇v , γ̇v ,V )dt.

Summation of inequality for orthonormal frame along γv :∫ a

0
sin2(

πt

a
)Ric(γ̇v )dt ≤ (m − 1)

π2

2a
.
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Splitting of the double tangent bundle

π : TM → M tangent bundle, V : (−ε, ε)→ TM. There are two natural
maps C , π∗ : TTM → TM:

1 π∗V̇ (0) = d
dt |t=0

π ◦ V (t), and

2 C (V̇ (0)) = π◦V∇∂tV (0).

Then H := kerC ,V := kerπ∗ are subbundles of TTM → TM with

1 TTM = H
⊕
V.

2 For each v ∈ TM, π∗ : Hv → Tπ(v)M and C : Vv → Tπ(v)M are
isomorphims.
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Sasaki metric

gS
v (Z1,Z2) = gπ(v)(π∗Z1, π∗Z2) + gπ(v)(CZ1,CZ2),

where Z1,Z2 ∈ TvTM.
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