Blaschke conjecture and Hopf rigidity

Christian Alber

Universität Heidelberg

June 15, 2020

Outline

1) History and formulation of the Blaschke conjecture

Geometry of the tangent bundle

- Splitting of the double tangent bundle
- Sasaki metric

3 Green's proof of Blaschke's conjecture

Generalisation of Blaschke's conjecture

5 Closed surfaces without conjugate points

History and formulation of the Blaschke conjecture

Setting: (M, g) connected, complete Riemannian manifold.

Definition

We define the **unit tangent bundle** to be the subset $SM \subset TM$ given by:

$$SM = \{(p, v) \in TM | g_p(v, v) = 1\}.$$

Definition

Let $v \in SM$. We define $con(v) \in (0, \infty]$ to be the first positive time t such that $\gamma_v(0)$ is conjugate to $\gamma_v(t)$ along γ_v . If no such time exists we set $con(v) = \infty$. For $p \in M$ we define the **first conjugate locus of p**

$$Con(p) := \{\gamma_v(con(v)) \mid v \in S_p M\}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Example

(M,g) is called **wiedersehen manifold** if for all $p \in M$, Con(p) consists of one single point. (M,g) is called **wiedersehen surface** if in addition dimM = 2.

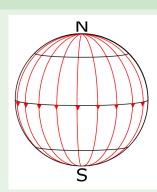
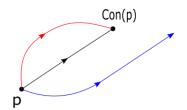


Figure: The red lines are the geodesics starting at the north pole N and meeting at the south pole S.

Why the name "wiedersehen"?

What does happen: There exists a time a > 0 such that any two unit speed geodesics starting at a common point p will meet again after time a at the conjugate point of p.

What doesn't happen:



Blaschke conjecture

1921: Blaschke conjectures that up to isometry the only wiedersehen surface in \mathbb{R}^3 is the round sphere.

Example

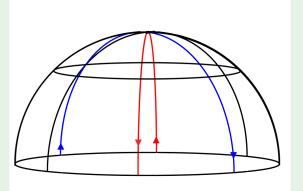


Figure: \mathbb{RP}^2 with the canonical metric. The red and blue lines are geodesics starting at the north pole N. After time π they meet there again.

< □ > < □ > < □ > < □ >

Theorem

(L. W. Green, 1963) Every wiedersehen surface has constant positive Gaussian cuvature.

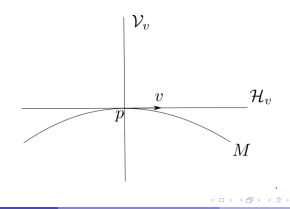
Remark

Every wiedersehen surface is thus isometric to the sphere or \mathbb{RP}^2 with (a positive multiple of) the canonical Riemannian metrics.

Splitting of the double tangent bundle

The double tangent bundle $TTM \rightarrow TM$. There are horizontal and vertical subbundles \mathcal{H} and \mathcal{V} of $TTM \rightarrow TM$ with:

TTM = H \overline V.
For each v \epsilon TM, H_v \approx T_{\pi(v)}M, V_v \approx T_{\pi(v)}M.
Hence T_v TM \approx T_{\pi(v)}M \overline T_{\pi(v)}M.



- Splitting of TTM leads to natural metric g^{S} on TM.
- Pullback under $SM \rightarrow TM$ gives Sasaki metric on SM.

Theorem

Geodesic flow of M is volume preserving, both considered as a map $\Phi^t : TM \to TM$ and $\Phi^t : SM \to SM$.

Proof of the Blaschke conjecture

Theorem

Let (M,g) be a simply connected wiedersehen manifold. Then:

- M is diffeomorphic to S^m .
- 2 injM = diamM = a.
- So For all $p \in M$ and $v \in S_pM$ we have $\gamma_v(a) = Con(p)$.
- Il unit speed geodesics in M are periodic with (least) period 2a.
- Son is an involutive isometry with d(p,Con(p))=a.

Theorem

Let (M, g) be a closed Riemannian surface and let there be a time a > 0such that along all unit speed geodesics no conjugate point appears before time a. Then

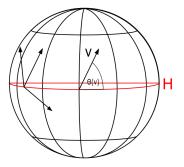
$$\operatorname{vol}(M) \geq rac{2a^2}{\pi}\chi(M)$$

and equality holds iff the Gaussian curvature is constant $K = \frac{\pi^2}{a^2}$.

Goal: Compute vol(M) for simply connected wiedersehen surface M. Easier: Compute vol(SM). Idea: Take closed geodesic $H \subset M$, set $SM_H = \{(p, v) \in SM \mid p \in H\}$

and consider

$$F: [0,a) \times SM_H \to SM, \qquad F(t,v) := \Phi^t(v).$$

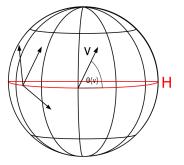


Theorem

(Santalo's formula)Let H be a hypersurface in (M, g). With F defined as above:

$$F|_*(t,v) = sin(\theta(v)),$$

where $\theta(v) \in [0, \pi/2]$ is the angle between $T_{\pi(v)}H$ and v.



▲ 同 ▶ → 三 ▶

Proof.

(Blaschke conjecture)

$$vol(SM) = \int_{[0,a)\times SM_{H}} sin\theta(v) vol_{\mathbb{R}\times SM_{H}}$$
$$= \int_{[0,a)} vol_{\mathbb{R}} \int_{SM_{H}} sin\theta(v) vol_{SM_{H}}$$
$$= a \int_{H} \int_{S_{p}M} sin\theta(v) vol_{S_{p}M}(v) vol_{H}(p)$$
$$= a \int_{0}^{2\pi} |sin\theta| d\theta \int_{H} vol_{H} = a \cdot 4 \cdot 2a = 8 \cdot a^{2}.$$
Hence $vol(M) = \frac{vol(SM)}{2\pi} = \frac{4a^{2}}{\pi}.$

イロト イヨト イヨト イヨト

Generalisation of Blaschke's conjecture

How about higher dimensions?

Problem: Dimension 2 in Green's proof is crucial in applying

- Characterisation for constant sectional curvature
- Santalo's formula

Theorem

Let g be a Riemannian metric on S^m with $inj(S^m, g) = diam(S^m, g)$. Then (S^m, g) has constant positive sectional curvature.

Corollary

Every wiedersehen manifold has constant positive sectional curvature.

Further Generalisation: Classify Riemannian manifolds (M, g) with inj(M, g) = diam(M, g).

Closed surfaces without conjugate points

Theorem

Let (M, g) be a closed Riemannian surface. If on M no conjugate points exist, then

$$\int_{M} K \mu_{M} \leq 0$$

and equality holds if and only if the Gaussian curvature K is identically zero.

Corollary

Let g be a Riemannian metric without conjugate points on the two-dimensional torus T. Then (T,g) is flat.

Proof.

Idea: Use nonconjugacy to construct an integrable function $u: SM \to \mathbb{R}$ such that $u(\Phi^t(v))$ solves the Ricatti equation, i.e.

$$\frac{d}{dt}u(\Phi^t(v))+u^2(\Phi^t(v))+K(\pi\circ\Phi^t(v))=0.$$

Integrate with respect to t and over SM

$$-\int_{SM} \int_{0}^{1} u^{2}(\Phi^{t}(v)) dt = \underbrace{\int_{SM} u(\Phi^{1}(v)) - u(v)}_{=0} + \int_{SM} \int_{0}^{1} K(\pi \circ \Phi^{t}(v)) dt$$
$$= \int_{0}^{1} \int_{SM} K(\pi \circ \Phi^{t}(v)) dt = \int_{0}^{1} \int_{SM} K(\pi(v)) dt$$
$$= 2\pi \int_{M} K.$$

Summary

- Wiedersehen manifolds
 - Definition: Con(p) is a singleton for all $p \in M$.
 - Why "wiedersehen"?
- Blaschke conjecture
 - Statement: wiedersehen surfaces have constant Gaussian curvature.
 - Green's proof: Volume inequality characterising constant curvature.

Left to do: show theorem that gives characterisation for constant sectional curvature. This follows from

Theorem

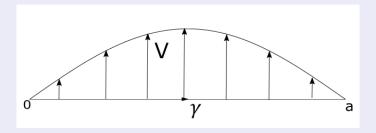
Let (M, g) be a closed Riemannian manifold and a > 0 such that for every $v \in SM$, $con(v) \ge a$. Then

$$rac{a^2}{\pi^2}\int_{\mathcal{M}} extsf{scal} \mu_{ extsf{g}} \leq extsf{m}(extsf{m}-1) extsf{vol}_{ extsf{g}}(extsf{M})$$

where equality holds if and only if M has constant sectional curvature $\frac{\pi^2}{a^2}$. Here scal : $M \to \mathbb{R}$ denotes the scalar curvature.

Proof.

 $\gamma_{v}: [0, a] \rightarrow M$ unit-speed geodesic, E parallel normal vector field along γ_{v} , $V(t) = sin(\frac{\pi t}{a})E(t)$.



$$0 \leq \int_0^a g(\dot{V}, \dot{V}) - R(V, \dot{\gamma}_v, \dot{\gamma}_v, V) dt.$$

Summation of inequality for orthonormal frame along γ_{ν} :

$$\int_0^a sin^2(rac{\pi t}{a}) extsf{Ric}(\dot{\gamma}_{v}) dt \leq (m-1) rac{\pi^2}{2a}.$$

Splitting of the double tangent bundle

 $\pi: TM \to M$ tangent bundle, $V: (-\epsilon, \epsilon) \to TM$. There are two natural maps $C, \pi_*: TTM \to TM$:

- $\pi_* \dot{V}(0) = \frac{d}{dt}_{|t=0} \pi \circ V(t)$, and • $C(\dot{V}(0)) = \pi \circ V \nabla_{\partial_t} V(0)$.
- Then $\mathcal{H} := kerC, \mathcal{V} := ker\pi_*$ are subbundles of $TTM \to TM$ with
 - **1** $TTM = \mathcal{H} \bigoplus \mathcal{V}.$
 - ② For each v ∈ TM, $\pi_* : \mathcal{H}_v \to T_{\pi(v)}M$ and C : $\mathcal{V}_v \to T_{\pi(v)}M$ are isomorphims.

Sasaki metric

$$g_v^S(Z_1,Z_2) = g_{\pi(v)}(\pi_*Z_1,\pi_*Z_2) + g_{\pi(v)}(CZ_1,CZ_2),$$
 where $Z_1,Z_2 \in \mathcal{T}_v\mathcal{TM}.$

イロト イヨト イヨト イヨト