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Notation

We fix the following notations. Let

• X be a compact Riemann surface of genus g ≥ 2

• E be a holomorphic vector bundle over X

• {Fi} be a filtration of holomorphic subbundles of E

• ∇ be a holomorphic connection on E
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Classical opers as vector bundles

• A GL(n,C)-oper on X is (E , {Fi},∇) if the successive subquotients

Fi+1/Fi are holomorphic line bundles and ∇ satisfies

• (Griffiths transversality)

∇(Fi ) ⊂ Fi+1 ⊗ KX

• (Nondegeneracy)

∇ : Fi/Fi−1
∼−→ Fi+1/Fi ⊗ KX

for KX the canonical bundle of X .

• An SL(n,C)-oper has an additional isomorphism det(E ) ' OX .
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Classical opers as vector bundles

• An Sp(2n,C)-oper is an SL(2n,C)-oper with a horizontal symplectic

form on E , compatible with det(E ) ' OX , such that F⊥i = Fn−i .

• An SO(2n + 1,C)-oper is an SL(2n + 1,C)-oper with a horizontal

nondegenerate symmetric bilinear form on E , compatible with

det(E ) ' OX , such that F⊥i = Fn−i .

Remark

A flat holomorphic bundle can admit at most 1 filtration that satisfies the

conditions of an SL(n,C)-oper.
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Notation for principal bundle

Let

• G be a complex (semi)simple Lie group (simply-connected or

adjoint-type)

• B be a choice of Borel subgroup in G

• ω be a holomorphic connection on some principal G -bundle
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Classical G -opers

Definition

A G -oper on a X is (EG ,EB , ω) where

• EG is a principal G -bundle

• EB is a principal B-bundle and a holomorphic reduction of structure

group of EG

• ω is a holomorphic connection on EG compatible with the reduction

of structure group.

i.e. ω satisfies Griffiths transversality and nondegeneracy.
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A fine set of objects

Theorem (Teleman, Hejhal, Drinfeld–Sokolev...

The set of G -oper structures on a fixed G -bundle forms an affine space

modelled on the Hitchin base

B =
n−1⊕
i=1

H0(X ,K i+1)

(as a vector space)
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Parameterization of opers

We can see this using Lie theoretic data from a principal sl2 embedding:

〈X−,H,X+〉 ↪→ g.

The adjoint action of this principal triple decomposes g into irreducible

representation spaces

g =
n−1⊕
i=1

Vi .

From each Vi , choose a highest weight vector Xi ∈ Vi .

Let u = (φ1, . . . , φn−1) ∈ B, then φi = Pi (z)dz i+1 locally.

When G = SL(n,C) and on some fixed G -bundle we may parameterize

the opers as

∇u = d + ~−1(X− +
n−1∑
i=1

Pi (z)Xi )dz .
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Parameterization of Higgs bundles

The Hitchin component can also be parameterized by B using

{X−,H,X+} and the highest weight vectors X1, . . . ,Xn−1.

As before, let u = (φ1, . . . , φn−1) ∈ B, then φi = Pi (z)dz i+1 locally.

For some fixed underlying G -bundle, there is a section to the Hitchin

map given by the Higgs field

ϕu = (X− +
n−1∑
i=1

Pi (z)Xi )dz .

Remark

The non-abelian Hodge correspondence sends this Higgs field to the flat

connection:

ϕu 7→ Dh + ϕu + ϕ∗hu .
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Two Lagrangian subspaces
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Opers as complex projective structures

Now that we know that opers form an affine space modelled on the

Hitchin base, we can identify opers with some classical objects.

A complex projective structure on X is a maximal atlas of charts valued

in CP1 with transition maps being restrictions of Möbius transformations.

Proposition (Gunning ’66)

Complex projective structures (up to marked isomorphism) form an

affine space on H0(X ,K 2). As a corollary they are PSL(2,C)-opers.

To show this we can apply the Schwarzian derivative to the projective

coordinates and get a holomorphic quadratic differential. The

construction globalizes due to the Möbius invariance of the Schwarzian.
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10



Opers as complex projective structures

Now that we know that opers form an affine space modelled on the

Hitchin base, we can identify opers with some classical objects.

A complex projective structure on X is a maximal atlas of charts valued

in CP1 with transition maps being restrictions of Möbius transformations.
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Opers as differential operators

The Hitchin base can also be related to certain linear differential

equations of order n on X̃ with regular singularities satisfying some

invariance under change of coordinates. Hence opers can also be viewed

as differential operators (see DFK+ ’21, Hejhal ’75).

For example for a fixed K 1/2, there is a correspondence between

∇ = ∂z + ~−1
(

0 q

1 0

)
dz ↔ D = q(z)− ~2∂2z

where ∇ is a flat connection on

0→ K 1/2 → E → K−1/2 → 0

and D is a Schrödinger operator on sections of K−1/2.
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Opers as jet bundles

Another way to identify opers as differential operators is via jet bundles,

which record the Taylor expansion of sections in a coordinate-free way.

Theorem (Biswas ’03)

There is a natural isomorphism between E and the (n − 1)th jet bundle

on the last associated graded bundle

E ' Jn−1(Fn/Fn−1),

and the isomorphism sends {Fi} to a natural filtration of the jet bundle.

12



~-conformal limit

In the study of “conformal limit” of TBA equations, Gaiotto conjectured

that the limit of some family of flat connections arising from Higgs

bundles via the non-abelian Hodge correspondence exists and is an oper.

lim
R→0

Dh(R,u) + ~−1ϕu + ~R2ϕ
∗h(R,u)
u ≡ ∇u!

This is proved for G -Higgs bundles on X , where G is simple,

simply-connected complex Lie group G . (DFK+ ’21)

It provides a new identification between the Hitchin component and the

space of opers as transverse Lagrangians in the space of flat connections.
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Generalizing opers

Definition (Collier-Sanders ’21)

A (G ,P)-oper on X is (EG ,EP , ω) where

• EG is a holomorphic principal G -bundle on X

• EP is a holomorphic reduction to the parabolic subgroup P < G

• ω is a holomorphic connection on EG compatible with the reduction

of structure group.

As before the compatibility criteria are based on Griffiths transversality

and nondegeneracy.
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Parametrization of higher Teichmüller spaces

There is a parameter space shared by (G ,P)-opers and higher

Teichmüller spaces. (Collier–Sanders ’21, BCG+ ’21)

If we replace principal triples with magical sl2-triples in g, we can

parameterize certain (G ,P)-opers and Higgs bundles using highest weight

vectors for some parameter space that generalizes the Hitchin base.

Inside the moduli space of Higgs bundles, we get a generalization of the

Hitchin components called Cayley components. By non-abelian Hodge

correspondence these are higher Teichmüller spaces.
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Future directions

• Identify a conformal limit type of correspondence for (G ,P)-opers

arising from a magical sl2-triple?

• Generalize the Hitchin map for the Cayley components to its

parameter space?

• Generalize the complex projective structure description of

PSL(2,C)-opers to higher rank?

16


