Rational homotopy theory for singular spaces

Dominik Wrazidlo

CP7 Lunch Seminar

November 3, 2021

Forms of Poincaré duality

- Poincaré duality is a cornerstone of modern algebraic topology
- setting: closed oriented n-manifolds Mⁿ
- ▶ Cap product with the **fundamental class** $[M^n] \in H_n(M^n; \mathbb{Z})$:

$$D\colon H^i(M^n;\mathbb{Z})\stackrel{\cong}{\longrightarrow} H_{n-i}(M^n;\mathbb{Z}), \quad D(a)=a\cap [M^n].$$

► Non-degenerate bilinear form (intersection pairing): $\mu_i^{(AB, B)} = \mu_i^{(AB, B)} = 0$

 $H^{i}(M^{n};\mathbb{Q})\otimes H^{n-i}(M^{n};\mathbb{Q})\to \mathbb{Q}, \quad a\otimes b\mapsto \langle a\cup b, [M^{n}]\rangle.$

Symmetry of **Betti numbers** $b_i(M) = \operatorname{rank}_{\mathbb{Z}} H_i(M^n; \mathbb{Z})$:

$$b_i(M) = b_{n-i}(M^n).$$

... les nombres de Betti également distants des extrêmes sont égaux. (H. Poincaré, 1895) Geometric perspectives on the intersection pairing

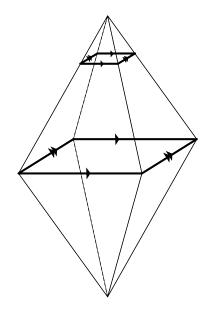
 If Mⁿ is smooth, then, using smooth differential forms Ω*(M), de Rham's theorem provides an ℝ-algebra isomorphism H^{*}_{dR}(M) ≅ H^{*}(M; ℝ), and the intersection pairing reads

$$H^{i}_{dR}(M)\otimes H^{n-i}_{dR}(M)\to \mathbb{R}, \quad [\omega]\otimes [\eta]\mapsto \int_{M}\omega\wedge \eta.$$

- If Mⁿ is not equipped with a smooth structure, then rational homotopy theory provides a similar perspective via Sullivan's piecewise linear polynomial differential forms A_{PL}(M).
- ▶ There is a natural \mathbb{Q} -algebra isomorphism $H^*(A_{PL}(M)) \cong H^*(M; \mathbb{Q})$, and the intersection pairing reads

$$H^{i}(A_{PL}(M))\otimes H^{n-i}(A_{PL}(M))\to \mathbb{Q}, \quad [x]\otimes [y]\mapsto \int_{M}x\cdot y.$$

Beyond manifolds: the suspension of a 2-torus



Poincaré's own example: $X^3 = \text{suspension}(S^1 \times S^1)$

the two cone points have no Euclidean neighborhood in X

$$H_1(X) = \widetilde{H}_0(S^1 \times S^1) = 0$$

$$H_2(X) = H_1(S^1 \times S^1) \cong \mathbb{Z} \oplus \mathbb{Z}$$

$$\Rightarrow \boldsymbol{b_1}(X) \neq \boldsymbol{b_2}(X)$$

the filtration $X^3 \supset X^0 = \{ \text{two cone points} \}$ gives X the structure of a **stratified pseudomanifold**

Formal definition of stratified pseudomanifolds

- idea: collect equisingular points in strata
- A 0-dimensional stratified pseudomanifold is a countable set with the discrete topology.
- For n > 0, an n-dimensional stratified pseudomanifold is a paracompact Hausdorff space X equipped with a filtration

$$X = X_n \supseteq X_{n-1} = X_{n-2} \supseteq X_{n-3} \supseteq \cdots \supseteq X_1 \supseteq X_0 \supseteq X_{-1} = \emptyset$$

by closed subsets such that the "pure strata" $X_j \setminus X_{j-1}$ are *j*-dimensional manifolds, the "top stratum" $X_{reg} = X_n \setminus X_{n-2}$ is dense in X, and **local normal triviality** holds as follows.

- Every x ∈ X_j \ X_{j-1} has an open neighborhood U ⊂ X (stratified by U_k = U ∩ X_k) which is stratification preserving homeomorphic to ℝ^j × C(L), where
 - L is a compact stratified pseudomanifold of dimension n j 1,
 - $C(Z) = Z \times [0,1)/(Z \times \{0\})$ is the open cone on a space Z, and
 - $(\mathbb{R}^j \times C(L))_k = \mathbb{R}^j \times C(L_{k-j-1}).$

Generalized forms of Poincaré duality

The frequent appearance of stratified pseudomanifolds as ...

- simplicial complexes,
- orbit spaces of group actions,
- real or complex algebraic varieties,
- orbifolds and conifolds in physics,
- as well as certain compactifications of noncompact spaces,
 e.g. various moduli spaces in number theory,

... motivated the search for generalized forms of Poincaré duality:

- intersection homology (M. Goresky, R.D. MacPherson, 1980)
- ► *L*² cohomology (J. Cheeger, ~1980)
- ▶ intersection spaces (M. Banagl, 2009)

Intersection homology

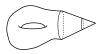
- setting: n-dimensional stratified pseudomanifold Xⁿ
- around 1980, Goresky and MacPherson defined intersection homology groups IH^p_{*}(X) depending on a perversity function p̄: {2,3,4,...} → {0,1,2,...} with certain growth conditions
- ▶ geometric intuition: for PL spaces, IH^p_{*}(X) is the homology of the complex of p̄-allowable chains, i.e., PL chains that deviate from being transverse to the singular strata of X in a way controlled by the parameter p̄

Theorem (Generalized Poincaré duality; Goresky-MacPherson) Let \overline{p} and \overline{q} be complementary perversities, i.e., $\overline{p} + \overline{q} = (0, 1, 2, 3, 4, ...)$. If X^n is compact and oriented, then there is a non-degenerate bilinear form

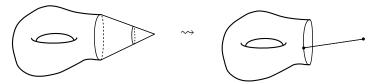
$$IH_{i}^{\overline{p}}(X;\mathbb{Q})\otimes IH_{n-i}^{\overline{q}}(X;\mathbb{Q})\to \mathbb{Q}.$$

Intersection space construction: a toy example

setting: Xⁿ is an n-dimensional stratified pseudomanifold with one isolated singularity obtained by coning off the boundary of a connected compact oriented n-manifold Mⁿ



- ▶ fix a truncation degree k > 0
- ► truncate the homology H_{*}(∂M; Z) in degrees ≥ k by choosing a spatial homology truncation h: (∂M)_{<k} → ∂M
- ► Banagl, 2009: $X^n \rightsquigarrow I^k X = M \cup_{\partial M} \operatorname{cone}(h)$



► Generalized Poincaré duality: $\widetilde{H}_i(I^kX; \mathbb{Q}) \cong \widetilde{H}^{n-i}(I^{n-k}X; \mathbb{Q})$

Conception of intersection spaces

- setting: n-dimensional stratified pseudomanifold Xⁿ
- ► the intersection spaces of X should be a family I^PX of homotopy theoretic desingularizations of X in the sense that for complementary perversities P and q,

 $\textit{HI}^{\overline{p}}_{*}(\textit{X}) := \widetilde{H}_{*}(\textit{I}^{\overline{p}}X;\mathbb{Q}) \text{ and } \textit{HI}^{*}_{\overline{q}}(\textit{X}) := \widetilde{H}^{*}(\textit{I}^{\overline{q}}X;\mathbb{Q})$

satisfy generalized Poincaré duality $HI_i^{\overline{p}}(X) \cong HI_{\overline{q}}^{n-i}(X)$

- ► to form I^pX, we are only allowed to modify the stratified space X near the singular strata: the links of X are replaced iteratively by so-called spatial homology truncations, where the truncation degrees k are controlled by the parameter p
- ▶ direct benefits compared to intersection homology: have perversity internal cup product on H
 ^{*}(I^pX); can immediately apply other generalized homology theories E_{*}(−) to I^pX
- ► HI^p_{*}(X) is in general not isomorphic to intersection homology, but they are related by mirror symmetry on Calabi-Yau 3-folds

Approaches to $HI_{\overline{p}}^{*}(X)$

linear algebra

C. Geske, Algebraic intersection spaces, J. Topol. Anal. (2020)

sheaf theory

M. Banagl, N. Budur, L. Maxim, Intersection Spaces, Perverse Sheaves and Type IIB String Theory, Adv. Theor. Math. Phys. (2014)

PL polynomial differential forms

D.J. Wrazidlo, On the rational homotopy type of intersection spaces, J. of Singularities (2020)

smooth differential forms

M. Banagl, Foliated stratified spaces and a de Rham complex describing intersection space cohomology, J. Differential Geometry (2016)

► L² harmonic forms

M. Banagl, E. Hunsicker, Hodge theory for intersection space cohomology, Geometry & Topology (2019)

Approach by PL polynomial differential forms

- use Sullivan's contravariant functor A_{PL} from the category of topological spaces and continuous maps to the category of commutative cochain algebras and cochain algebra morphisms
- ► recall that the graded algebras H*(Z) and H(A_{PL}(Z)) are naturally isomorphic for any topological space Z

Theorem (for X with isolated singularities: W., 2020) There is a differential ideal $\iota_{\overline{p}}$: $Al_{\overline{p}}(X) \hookrightarrow A_{PL}(X_{reg})$ such that ...

• ... the commutative cochain algebras $Al_{\overline{p}}(X) \oplus \mathbb{Q}$ and $A_{PL}(I^{\overline{p}}X)$ are weakly equivalent, that is, there exists a chain

$$AI_{\overline{p}}(X) \oplus \mathbb{Q} \xleftarrow{\simeq} A_0^* \xrightarrow{\simeq} \dots \xleftarrow{\simeq} A_r^* \xrightarrow{\simeq} A_{PL}(I^{\overline{p}}X)$$

of quasi-isomorphisms between commutative cochain algebras
 ... generalized Poincaré duality is realized by a nondegenerate intersection pairing of the form
 H*(Al_p(X)) × H^{n-*}(Al_q(X)) → Q, ([x], [y]) ↦ ∫_{Xreg} ι_{p̄}(x) · ι_{q̄}(y)

Construction of the differential ideal $AI_{\overline{p}}(X) \hookrightarrow A_{PL}(X_{reg})$

- ▶ 1 isolated singularity: $X^n = M \cup_{\partial M} \operatorname{cone}(\partial M)$, ∂M connected
- fix truncation degree $k = n 1 \overline{p}(n)$ (> 0)
- Choose standard k-cotruncation

$$\vartheta_{\geq k}^{D} \colon \tau_{\geq k}^{D} A_{PL}(\partial M) \to A_{PL}(\partial M),$$

that is, writing $C^* = A_{PL}(\partial M)$, we take $\vartheta_{\geq k}^D$ to be the inclusion $\vartheta_{\geq k}^D \colon \tau_{\geq k}^D C^* \to C^*$ of the *k*-cotruncation subcomplex

$$au_{\geq k}^D C^* : \dots \to 0 \to D \xrightarrow{d|} C^{k+1} \xrightarrow{d} C^{k+2} \xrightarrow{d} \dots$$

of C^* determined by the choice of a direct sum complement $C^k = D \oplus im(d \colon C^{k-1} \to C^k).$

• define $Al_{\overline{p}}(X)$ by fiber product

Beyond the toy example

- setting: n-dimensional stratified pseudomanifold Xⁿ
- assumption: X has link bundles that are compatibly trivializable
- ► Agustín, Fernández de Bobadilla: construction of relative intersection space, that is, a space pair (Y^{p̄}, Z^{p̄}) such that I^{p̄}X = Y^{p̄}/Z^{p̄}
- How can the approach by PL polynomial differential forms be generalized to intersection space pairs?

Thank you for your attention!