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Magnetism in Classical Mechanics

Newtons law: ẋ = v and v̇ = v ×B =
⎛
⎜
⎝

0 −B3 B2

B3 0 −B1

−B2 B1 0

⎞
⎟
⎠
⋅ v

⇔ d (12 ∣v ∣
2) = (ẋ , v̇)(µ −1

1 0
)

⇔ dE = ιγ̇ωµ; ωµ = dv ∧ dx + π∗µ
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Standard Cotangent Bundle

▸ Configuration space: M smooth manifold

▸ Phase space: T ∗M cotangent bundle

▸ Canonic 1-form: α(x ,p) ∶= p ○ dπ(x ,p) ∈ T ∗
(x ,p)(T

∗M)

▸ Canonic symplectic structure: dα ∈ Ω2(T ∗M)

▸ Hamiltons equations: γ̇ = XH ; ιXH
(dα) = dH
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Standard Tangent Bundle

For a Riemannian manifold (M,g) there is also a canonic
symplectic structure on the tangent bundle TM:

ω0 = g∗dα

Proposition

Take the kinetic Hamiltonian E(x , v) = 1
2gx(v , v), then the

Hamiltonian flow is the geodesic flow.
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Magnetic Systems

Take µ ∈ Ω2(M) closed, then

ωµ ∶= ω0 − π∗µ

is a symplectic form on TM and the triple (M,g , µ) is called
magnetic system.

We can define a bundle map F ∶ TM → TM via

gx(Fx(v), ⋅) = µx(v , ⋅).

It is called Lorentz force.
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Magnetic Flow

The flow of the Hamiltonian vector field XE determined by
dE = ωµ(XE , ⋅) is called magnetic flow.

Proposition

The Hamiltonian vector field for a magnetic system is given by

(XE)(x ,v) = LH(x ,v)(v) + L
V
(x ,v)(Fx(v)).

⇒ A Hamiltonian trajectory γ(t) = (x(t), v(t)) satisfies

ẋ = v and Dtv = Fx(v).
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Magnetic vs. Geodesic Flow

▸ Denote Sm ∶= {(x , v)∣E(x , v) = m}, it is invariant under
magnetic (and geodesic) flow.

▸ dϕ−1a (X 0
E) ∣Sam = a (X 0

E) ∣Sm ⇒ dynamics are the same up to
reparametrization

▸ dϕ−1a (X
µ
E ) ∣Sam = a (X

µ
a
E ) ∣Sm ⇒ dynamics change with scaling
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Magnetic Systems on Surfaces

▸ Σ: oriented smooth surface,

▸ g : Riemannian metric of constant curvature κ,

▸ σ: Riemannian area form induced by metric and orientation.

For any µ ∈ Ω2(Σ) there exists a unique function f ∶ Σ→ R such
that µ = f ⋅ σ. We consider f to be constantly s ∈ R.

⇒ Fx(v) = sιxv

⇒ x(t) is a curve with constant geodesic curvature s
∣v0∣
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Magnetic Flow on Hyperbolic Surfaces

▸ PSL(2,R)→̃SH; A↦ (A(i),dAi(ii))

▸ XE ≡ (1/2 0
0 −1/2) + s ( 0 1/2

−1/2 0
) ⇒ det(XE) = 1

4(s
2 − 1)

▸ s > 1 conjugate to rotating the fibers, s = 1 conjugate to
horocycle flow, s < 1 conjugate to geodesic flow
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Hofer-Zehnder Capacity
▸ ω symplectic ⇒ ωn is a volume form ⇒ volume is a

symplectic invariant

Gromov’s Non-Sqeezing Theorem

Symplectic capacities are symplectic invariants that measure the
’size’ of a symplectic manifold.

The Hofer-Zehnder capacity does this in terms of the possible
Hamiltonian dynamics on the symplectic manifold.
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Hermitian Symmetric Spaces

▸ (M, J, µ) a Kähler manifold, study (TM, ωsµ)
⇒ Fx(v) = sJx(v)
⇒ (XE)(x ,v) = LH(x ,v)(v) + sLV(x ,v)(Jx(v))
▸ Suppose Q ⊂M complex totally geodesic submanifold and
(x , v) ⊂ TQ

⇒ (XE)(x ,v ⊂ T (TQ) ⊂ T (TM)
⇒ magnetic flow preserves TQ

Theorem (Polydisc/ Polysphere Theorem)

Every element in the compact/ noncompact Hermitian symmetric
space M = (H/K) is in the K-orbit of a point in the polysphere/
polydisc.
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Further Directions

▸ Hofer–Zehnder capacity for magnetic systems

▸ Magnetic and sub-Riemannian billiards

▸ Magnetic curvature

▸ Systolic inequalities for magnetic geodesics
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