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Magnetism in Classical Mechanics
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Standard Cotangent Bundle

» Configuration space: M smooth manifold

v

Phase space: T*M cotangent bundle

v

Canonic 1-form: a(, p) = podm(y p) € T&p)(-,-* M)

» Canonic symplectic structure: da € Q?(T*M)

v

Hamiltons equations: 4 = Xy; tx, (da) =dH
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Standard Tangent Bundle

For a Riemannian manifold (M, g) there is also a canonic
symplectic structure on the tangent bundle TM:

wo = g da
Proposition

Take the kinetic Hamiltonian E(x,v) = %gx(v, v), then the
Hamiltonian flow is the geodesic flow.
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Magnetic Systems

Take p € QQ(M) closed, then
Wy =W — T

is a symplectic form on TM and the triple (M, g, u) is called
magnetic system.

We can define a bundle map F: TM - TM via

8x(Fx(v),*) = px(v,-).

It is called Lorentz force.

6/ 13



Magnetic Flow

The flow of the Hamiltonian vector field Xg determined by
dE = w,(Xg,-) is called magnetic flow.

Proposition

The Hamiltonian vector field for a magnetic system is given by

(XE)(X7V) = L’(}-)[(7v)(v) + ‘C](jx7v)(FX(v))'

= A Hamiltonian trajectory v(t) = (x(t), v(t)) satisfies

x=v and D:v=F(v).
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Magnetic vs. Geodesic Flow

» Denote Sy, := {(x,v)|E(x,v) = m}, it is invariant under

magnetic (and geodesic) flow.
> dp;t (X2)|s =a(X2)|s = dynamics are the same up to

reparametrization

- et (0B) g, = (X¢ ) s,

= dynamics change with scaling
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Magnetic Systems on Surfaces

» ¥ oriented smooth surface,
» g: Riemannian metric of constant curvature x,
» o: Riemannian area form induced by metric and orientation.

For any 11 € Q?(X) there exists a unique function f : £ - R such
that p = f - 0. We consider f to be constantly s € R.

= Fy(v) = sixv

= x(t) is a curve with constant geodesic curvature ‘V—SO|
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Magnetic Flow on Hyperbolic Surfaces

» PSL(2,R)5SH; A~ (A(i),dA;(i;))
_(1/2 0 0 1)2 1,0
> XE:( 0 _1/2)+S(_1/2 0 ) = det(XE)—Z(S 1)
» s> 1 conjugate to rotating the fibers, s =1 conjugate to
horocycle flow, s <1 conjugate to geodesic flow
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Hofer-Zehnder Capacity

» w symplectic = w" is a volume form = volume is a
symplectic invariant

Gromov’s Non-Sqeezing Theorem

@“‘L
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Symplectic capacities are symplectic invariants that measure the
'size’ of a symplectic manifold.

The Hofer-Zehnder capacity does this in terms of the possible
Hamiltonian dynamics on the symplectic manifold.
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Hermitian Symmetric Spaces

» (M, J, ;) a Kahler manifold, study (TM,ws,)
= Fy(v) =s)(v)
= (XE) () = Lz (V) + LYy (V)
» Suppose @ ¢ M complex totally geodesic submanifold and
(x,v) c TQ
= (XE)(X,V cT(TQ)c T(TM)

= magpnetic flow preserves TQ

Theorem (Polydisc/ Polysphere Theorem)

Every element in the compact/ noncompact Hermitian symmetric
space M = (H/K) is in the K-orbit of a point in the polysphere/
polydisc.
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Further Directions

v

Hofer—Zehnder capacity for magnetic systems
» Magnetic and sub-Riemannian billiards

» Magnetic curvature

v

Systolic inequalities for magnetic geodesics
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