RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie I Heidelberg, 8.1.2013

Exercise sheet 11

Jacobi Fields

To hand in by January 15, 14:00

Exercise 1. Let (M_1, g_1) , (M_2, g_2) be Riemannian manifolds. Let $M_1 \times M_2$ denote the Cartesian product of M_1 and M_2 , with the standard structure of smooth manifold (as in Exercise sheet 2, §1). For $y \in M_2$, we will denote by $i_1^y : M_1 \to M_1 \times M_2$ the map $x \to (x, y)$. Similar definition for i_2^x , with $x \in M_1$.

- (a) Prove that for $(x, y) \in M_1 \times M_2$, the tangent space $T_{(x,y)}M_1 \times M_2$ is the direct sum of the images of the differentials di_1^y in the point x and di_2^x in the point y. Conclude that there is a natural way to identify $T_{(x,y)}M_1 \times M_2$ with $T_xM_1 + T_yM_2$.
- (b) For every vector $v \in T_{(x,y)}M_1 \times M_2$, we denote by v_1, v_2 the components in the subspaces T_xM_1, T_yM_2 . Show that the formula $g(v, w) = g_1(v_1, w_1) + g_2(v_2, w_2)$ defines a Riemannian metric on $M_1 \times M_2$, called the product Riemannian metric.
- (c) Find the first and second fundamental forms of the immersions i_1^y, i_2^x .
- (d) Compute the Riemann tensor of g.
- (e) Consider the case when $M_1 = M_2 = S_1^n$, with the standard metric induced by the immersion in \mathbb{R}^{n+1} . For $n \geq 1$, is the product Riemannian metric on $S_1^n \times S_1^n$ a metric with constant sectional curvature?

Exercise 2. Let (M, g) be an *n*-dimensional Riemannian manifold with non positive sectional curvature. Let J be a Jacobi field along a geodesic for (M, g).

- (a) Show that $g(J, \nabla_{\frac{d}{dt}} \nabla_{\frac{d}{dt}} J)$ is a non-negative function.
- (b) Show that the second derivative of g(J, J) is non-negative.
- (c) Show that, if J is not identically zero, it has at most one zero.

Exercise 3. Let (S,g) be a 2-dimensional Riemannian manifold, and $\gamma: I \to S$ a geodesic parametrized by arc-length. Let Y be a vector field along γ , with $g(Y(t), \dot{\gamma}(t)) = 0$ and g(Y(t), Y(t)) = 1 for all $t \in I$.

- (a) Show that Y is parallel along γ .
- (b) Let $f: I \to \mathbb{R}$ a smooth function. Show that $f \cdot Y$ is a Jacobi field along γ if and only if f satisfies $K \cdot f + f'' = 0$, where K is the sectional curvature of (S, g).