RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie I Heidelberg, 04.11.2012

EXERCISE SHEET 8 Geodesics II To hand in by December 11, 14:00

Exercise 1. Let (M, g) be a pseudo-Riemannian manifold with its Levi-Civita connection ∇ .

- (a) Given a function $\phi \in \mathcal{F}(M)$, the gradient of ϕ , denoted by grad ϕ , is defined as the vector field corresponding to the 1-form $d\phi$, or, in other words, as the vector field such that for every $X \in V(M)$, $g(X, \text{grad } \phi) = X(\phi)$. Prove that, in local coordinates, grad $\phi = \sum_i \eta^i \frac{\partial}{\partial x_i}$, where $\eta^j = \sum_i g^{ij} \frac{\partial \phi}{\partial x_i}$ and (g^{ij}) is the inverse of the matrix (g_{ij}) .
- (b) Given $X \in V(M)$, consider the application $(\nabla X)_p : T_pM \ni Y \to \nabla_Y X \in T_pM$, for every $p \in M$. The function $M \ni p \to \operatorname{tr}(\nabla X)_p \in \mathbb{R}$ is called the divergence of X, denoted by $\operatorname{div}(X)$. Prove that, in local coordinates, if $X = \sum \xi^i \frac{\partial}{\partial x_i}$, then $\operatorname{div}(X) = \sum_i \frac{\partial \xi^i}{\partial x_i} + \sum_{i,j} \xi^j \Gamma^i_{ij}$.
- (c) Given a function $\phi \in \mathcal{F}(M)$, the Laplacian of ϕ , is defined by $\Delta \phi = \operatorname{div}(\operatorname{grad} \phi)$. Prove that, in local coordinates, $\Delta \phi = \sum_{i,j} g^{ij} \frac{\partial^2 \phi}{\partial x_i \partial x_j} + \sum_{ij} \frac{\partial g^{ij}}{\partial x_j} \frac{\partial \phi}{\partial x_i} + \frac{1}{2} \sum_{ijkl} g^{kl} g^{ij} \frac{\partial g_{ij}}{\partial x_l} \frac{\partial \phi}{\partial x_k}$

Exercise 2. Let (M, g), (N, h) be two pseudo-Riemannian manifolds, and $f : M \to N$ be a local isometry. Prove that $\gamma : (-1, 1) \to M$ is a geodesic if and only if $f \circ \gamma : (-1, 1) \to N$ is a geodesic.

Exercise 3. Let M, N be smooth manifolds, and $f : N \to M$ be an immersion. Let g be a pseudo-Riemannian metric for M, with Levi-Civita connection ∇ . Recall that if $X, Y \in V(N)$, $f_*(X) \in V_f(M)$, and $\nabla_Y(f_*(X)) \in V_f(M)$ is the covariant derivative of vector fields along f.

- (a) For every $p \in N$, let π_p be the orthogonal projection $\pi_p : T_{f(p)}M \to df_p(T_pN)$. For $Z \in V_f(M)$, let $\pi(Z) \in V(N)$ be the vector field that associates to the point $p \in N$ the vector $df_p^{-1}(\pi_p(Z(p)))$. Verify that $\pi(Z)$ is a well defined vector field.
- (b) Given vector fields $X, Y \in V(N)$, define $\nabla_Y^f(X) = \pi(\nabla_Y(f_*(X)))$. Prove that $\nabla_Y^f(X)$ is a connection on N.
- (c) Let f^*g be the pull-back of the metric g by the map $f: f^*g(p)(v,w) = \langle df_p(v), df_p(w) \rangle$. Prove that $\nabla^f_Y(X)$ is the Levi-Civita connection of the metric f^*g .

Exercise 4.

- (a) Let $a \in (0, \infty)$ be a parameter, and K_a be the cone $\{(x, y, z) \in \mathbb{R}^3 \mid z = a\sqrt{x^2 + y^2}, z \neq 0\}$ and m_a be the line $(0, t, at) \mid t > 0$. K_a is a submenifold, and it inherits a Riemannian metric g from the ambient space \mathbb{R}^3 . Prove that $K_a \setminus m_a$ is isometric to a subset of the plane \mathbb{R}^2 .
- (b) Let γ be a curve on K_a with constant z coordinate and constant speed (i.e. $g(\dot{\gamma}(t), \dot{\gamma}(t))$ is constant.) Let U be a parallel vector field along γ . Recall that the angle between two vectors v, w is defined as $\frac{g(v,w)}{\sqrt{g(v,v)g(w,w)}}$. Prove that the angle between U(t) and $\dot{\gamma}(t)$ changes with constant speed.
- (c) Compute the total variation of the angle between U(t) and $\dot{\gamma}(t)$, when $\gamma(t)$ makes a complete tour around the cone.
- (d) Let S_1^2 be the sphere in \mathbb{R}^3 . Let γ be a curve on S_1^2 with constant z coordinate and constant speed. Let U be a parallel vector field along γ . Compute the total variation of the angle between U(t) and $\dot{\gamma}(t)$, when $\gamma(t)$ makes a complete tour around the sphere. (Hint: find a cone that is tangent to S_1^2 around γ , i.e. the cone and the sphere have the same tangent space at every point of γ . Use exercise 3 to prove that a vector field along γ is parallel for the cone if and only if it is parallel for the sphere.)