Exercise sheet 8

Geodesics II

To hand in by December 11, 14:00

Exercise 1. Let (M, g) be a pseudo-Riemannian manifold with its Levi-Civita connection ∇.
(a) Given a function $\phi \in \mathcal{F}(M)$, the gradient of ϕ, denoted by grad ϕ, is defined as the vector field corresponding to the 1-form $d \phi$, or, in other words, as the vector field such that for every $X \in V(M), g(X, \operatorname{grad} \phi)=X(\phi)$. Prove that, in local coordinates, $\operatorname{grad} \phi=\sum_{i} \eta^{i} \frac{\partial}{\partial x_{i}}$, where $\eta^{j}=\sum_{i} g^{i j} \frac{\partial \phi}{\partial x_{i}}$ and $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right)$.
(b) Given $X \in V(M)$, consider the application $(\nabla X)_{p}: T_{p} M \ni Y \rightarrow \nabla_{Y} X \in T_{p} M$, for every $p \in M$. The function $M \ni p \rightarrow \operatorname{tr}(\nabla X)_{p} \in \mathbb{R}$ is called the divergence of X, denoted by $\operatorname{div}(\mathrm{X})$. Prove that, in local coordinates, if $X=\sum \xi^{i} \frac{\partial}{\partial x_{i}}$, then $\operatorname{div}(X)=\sum_{i} \frac{\partial \xi^{i}}{\partial x_{i}}+\sum_{i, j} \xi^{j} \Gamma_{i j}^{i}$.
(c) Given a function $\phi \in \mathcal{F}(M)$, the Laplacian of ϕ, is defined by $\Delta \phi=\operatorname{div}(\operatorname{grad} \phi)$. Prove that, in local coordinates, $\Delta \phi=\sum_{i, j} g^{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}+\sum_{i j} \frac{\partial g^{i j}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{i}}+\frac{1}{2} \sum_{i j k l} g^{k l} g^{i j} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial \phi}{\partial x_{k}}$

Exercise 2. Let $(M, g),(N, h)$ be two pseudo-Riemannian manifolds, and $f: M \rightarrow N$ be a local isometry. Prove that $\gamma:(-1,1) \rightarrow M$ is a geodesic if and only if $f \circ \gamma:(-1,1) \rightarrow N$ is a geodesic.

Exercise 3. Let M, N be smooth manifolds, and $f: N \rightarrow M$ be an immersion. Let g be a pseudo-Riemannian metric for M, with Levi-Civita connection ∇. Recall that if $X, Y \in V(N)$, $f_{*}(X) \in V_{f}(M)$, and $\nabla_{Y}\left(f_{*}(X)\right) \in V_{f}(M)$ is the covariant derivative of vector fields along f.
(a) For every $p \in N$, let π_{p} be the orthogonal projection $\pi_{p}: T_{f(p)} M \rightarrow d f_{p}\left(T_{p} N\right)$. For $Z \in$ $V_{f}(M)$, let $\pi(Z) \in V(N)$ be the vector field that associates to the point $p \in N$ the vector $d f_{p}^{-1}\left(\pi_{p}(Z(p))\right)$. Verify that $\pi(Z)$ is a well defined vector field.
(b) Given vector fields $X, Y \in V(N)$, define $\nabla_{Y}^{f}(X)=\pi\left(\nabla_{Y}\left(f_{*}(X)\right)\right)$. Prove that $\nabla_{Y}^{f}(X)$ is a connection on N.
(c) Let $f^{*} g$ be the pull-back of the metric g by the map $f: f^{*} g(p)(v, w)=\left\langle d f_{p}(v), d f_{p}(w)\right\rangle$. Prove that $\nabla_{Y}^{f}(X)$ is the Levi-Civita connection of the metric $f^{*} g$.

Exercise 4.

(a) Let $a \in(0, \infty)$ be a parameter, and K_{a} be the cone $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=a \sqrt{x^{2}+y^{2}}, z \neq 0\right\}$ and m_{a} be the line $(0, t, a t) \mid t>0 . K_{a}$ is a submenifold, and it inherits a Riemannian metric g from the ambient space \mathbb{R}^{3}. Prove that $K_{a} \backslash m_{a}$ is isometric to a subset of the plane \mathbb{R}^{2}.
(b) Let γ be a curve on K_{a} with constant z coordinate and constant speed (i.e. $g(\dot{\gamma}(t), \dot{\gamma}(t))$ is constant.) Let U be a parallel vector field along γ. Recall that the angle between two vectors v, w is defined as $\frac{g(v, w)}{\sqrt{g(v, v) g(w, w)}}$. Prove that the angle between $U(t)$ and $\dot{\gamma}(t)$ changes with constant speed.
(c) Compute the total variation of the angle between $U(t)$ and $\dot{\gamma}(t)$, when $\gamma(t)$ makes a complete tour around the cone.
(d) Let S_{1}^{2} be the sphere in \mathbb{R}^{3}. Let γ be a curve on S_{1}^{2} with constant z coordinate and constant speed. Let U be a parallel vector field along γ. Compute the total variation of the angle between $U(t)$ and $\dot{\gamma}(t)$, when $\gamma(t)$ makes a complete tour around the sphere. (Hint: find a cone that is tangent to S_{1}^{2} around γ, i.e. the cone and the sphere have the same tangent space at every point of γ. Use exercise 3 to prove that a vector field along γ is parallel for the cone if and only if it is parallel for the sphere.)

