Heidelberg, 27.11.2012

Exercise sheet 7

Geodesics

To hand in by December 4, 14:00

Exercise 1. Consider again the catenoid and helicoid of exercise sheet 5, §1. Recall that the metrics g_{1} and g_{2} are expressed by the matrices $\left(\begin{array}{cc}\cosh ^{2} s & 0 \\ 0 & \cosh ^{2} s\end{array}\right)$, and $\left(\begin{array}{cc}1 & 0 \\ 0 & s^{2}+1\end{array}\right)$.
(a) Compute the Christoffel symbols for the two metrics on \mathbb{R}^{2}, in the identity chart.
(b) Are the two curves $\mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $s \rightarrow(s, 0)$ and $t \rightarrow(0, t)$ geodesics for the two metrics?

Exercise 2. Let Ω be an open subset of \mathbb{R}^{2} with the restriction of the standard metric of \mathbb{R}^{2}.
(a) Find an explicit expression for the exponential map for the points of the domain $\mathcal{D} \subset T \Omega$ where it is well defined.
(b) When $\Omega=\mathbb{R}^{2} \backslash\{0\}$, find explicitely the domain \mathcal{D}.
(c) When $\Omega=\mathbb{R}^{2} \backslash\{0\}$, find two points that are not connected by a geodesic segment.
(d) Prove that $\mathcal{D}=T \Omega$ if and only if $\Omega=\mathbb{R}^{2}$.

Exercise 3. Let $S_{1}^{2} \subset \mathbb{R}^{3}$ be the sphere of radius 1. Fix an angle $\theta \in(0, \pi)$, and consider the three curves $\alpha:[0, \pi / 2] \ni t \rightarrow(-\sin t, 0, \cos t) \in S_{1}^{2}, \beta:[0, \theta] \ni t \rightarrow(-\cos t,-\sin t, 0) \in S_{1}^{2}$, $\gamma:[0, \pi / 2] \ni t \rightarrow(-\cos \theta \sin t,-\sin \theta \sin t, \cos t) \in S_{1}^{2}$. The curve γ^{\prime} that is the concatenation of α and β, and the curve γ are both piece-wise smooth curves from $x=(0,0,1)$ to $y=$ $(-\cos \theta,-\sin \theta, 0)$. Show that the parallel transport linear isometries $P_{\gamma}, P_{\gamma^{\prime}}: T_{x} S_{1}^{2} \rightarrow T_{y} S_{1}^{2}$ differ by rotation by an angle θ. (Hint: you may use, without proving it, that the three curves α, β, γ are geodesic segments).

Exercise 4. Let $\pi: E \rightarrow M$ be a vector bundle over a manifold M, with fiber modeled over a vector space V (for the notation, see exercise sheet $5, \S 4$). The symbol $\bigwedge^{k}\left(V^{*}\right)$ denotes as usual the space of alternating k-linear forms from $V \times \cdots \times V$ to \mathbb{R}. For $p \in M$, denote by E_{p} the inverse image $\pi^{-1}(p)$, with its structure of vector space isomorphic to V. Denote by $\bigwedge^{k}\left(E^{*}\right)$ the disjoint union $\bigsqcup_{p \in M} \bigwedge^{k}\left(E_{p}^{*}\right)$.
(a) Using the charts for E, construct a structure of vector bundle for $\bigwedge^{k}\left(E^{*}\right)$ with a projection $\pi^{k}: \bigwedge^{k}\left(E^{*}\right) \rightarrow M$. (Hint: given the open covering $\left\{U_{\alpha}, \alpha \in A\right\}$ used to define E, replace $U_{\alpha} \times V$ with $U_{\alpha} \times \bigwedge^{k}\left(V^{*}\right)$. You may use the fact that every linear automorphism of V induces in a natural way a linear automorphism of $\bigwedge^{k}\left(V^{*}\right)$).
(b) For the definition of a section, refer to exercise sheet 6 , $\S 4$. Prove that a map $\omega: M \rightarrow$ $\bigwedge^{k}\left(E^{*}\right)$ with $\pi^{k}(\omega(x))=x$ is smooth (hence a section) if and only if for every sections $s_{1}, \ldots s_{k} \in \Gamma(E)$, the function $\omega(x)\left(s_{1}(x), \ldots, s_{k}(x)\right): M \rightarrow \mathbb{R}$ is smooth.
(c) Let ∇ be a connection on E. We define the symbol:

$$
\left(\nabla_{X} \omega\right)\left(s_{1}, \ldots, s_{k}\right)=X\left(\omega\left(s_{1}, \ldots, s_{k}\right)\right)-\omega\left(\nabla_{X} s_{1}, \ldots, s_{k}\right)-\cdots-\omega\left(s_{1}, \ldots, \nabla_{X} s_{k}\right)
$$

for $X \in V(M), s_{1}, \ldots, s_{k} \in \Gamma(E), \omega \in \Gamma\left(\bigwedge^{k}\left(E^{*}\right)\right)$. Show that $\nabla_{X} \omega$ is tensorial in s_{1}, \ldots, s_{n}, hence it can be viewed as an element of $\Gamma\left(\bigwedge^{k}\left(E^{*}\right)\right)$.
(d) Show that $\nabla_{X} \omega$ is a connection on $\wedge^{k}\left(E^{*}\right)$ (for the definition see exercise sheet $6, \S 4$).

