

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie I Heidelberg, 20.11.2012

Exercise sheet 6 Connections To hand in by November 27, 14:00

Exercise 1. Let M be a manifold, and ∇, ∇' be connections on M.

(a) Prove that the difference $\nabla - \nabla'$, defined by

$$V(M) \times V(M) \ni (X, Y) \to \nabla_X(Y) - \nabla'_X(Y) \in V(M)$$

is a (2,1) tensor.

- (b) Conversely, given a (2, 1) tensor S, prove that $\nabla + S$ is a connection.
- (c) A (2,1) tensor S is symmetric if S(X,Y) = S(Y,X). Prove that if S is symmetric, ∇ and $\nabla + S$ have the same torsion.

Exercise 2. On \mathbb{R}^2 , with cartesian coordinates (x_1, x_2) , consider the two vector fields

$$V_1(x_1, x_2) = (\cos x_1) \frac{\partial}{\partial x_1} + (\sin x_1) \frac{\partial}{\partial x_2}$$
$$V_2(x_1, x_2) = (-\sin x_1) \frac{\partial}{\partial x_1} + (\cos x_1) \frac{\partial}{\partial x_2}$$

- (a) Prove that V_1, V_2 form a parallelization of \mathbb{R}^2 , and compute $[V_1, V_2]$.
- (b) Let ∇ be the connection associated to the parallelization given by V_1 and V_2 . Compute the Christoffel symbols of ∇ with reference to the identity chart.
- (c) Is ∇ torsionfree?

Exercise 3. Let M, N be manifolds, $f : N \to M$ a smooth map, and ∇ a connection on M. Show that for $X, Y \in V(N)$:

$$\nabla_X(f_*Y) - \nabla_Y(f_*X) - f_*[X,Y] = T(f_*X, f_*Y)$$

where $\nabla_X(f_*Y)$ is the covariant derivative of vector fields along f.

Exercise 4. Let M be a manifold and E a vector bundle (as in Exercise sheet 5, §4), with projection $\pi : E \to M$. A section of E is a smooth map $s : M \to E$ such that for every $x \in M$, $\pi(s(x)) = x$. We denote the space of sections of E by $\Gamma(E)$. $\Gamma(E)$ is an \mathbb{R} -vector space and an $\mathcal{F}(M)$ -module. For example vector fields are sections of the tangent bundle: $V(M) = \Gamma(TM)$. A connection on E is an \mathbb{R} -bilinear map $\nabla : V(M) \times \Gamma(E) \to \Gamma(E)$ satisfying the following:

$$\forall f \in \mathcal{F}(M), \nabla_{fX}(s) = f \nabla_X(s) \text{ and } \nabla_X(fs) = X(f)s + f \nabla_X(s)$$

- (a) Given $p \in M$ and a neighborhood U of p, prove that $\forall X, Y \in V(M)$ and $\forall s, t \in \Gamma(E)$, if X(p) = Y(p) and $s|_U = t|_U$, then $\nabla_X(s)(p) = \nabla_Y(t)(p)$.
- (b) Prove that for every point $p \in M$ there exists a neighborhood U of p such that $\pi^{-1}(U) \to U$ is a vector bundle, and there exist sections $s_1, \ldots s_n \in \Gamma(\pi^{-1}(U))$ such that for every point $q \in U, s_1(q), \ldots s_n(q)$ are a basis of $\pi^{-1}(q)$.
- (c) For every point p, use a chart around p and sections as above to define the analog of Christoffel symbols, and find a local expression for the connection.