RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Mathematisches Institut

Vorlesung Differentialgeometrie I
Heidelberg, 20.11.2012

ExERCISE SHEET 6
 Connections

To hand in by November 27, 14:00

Exercise 1. Let M be a manifold, and ∇, ∇^{\prime} be connections on M.
(a) Prove that the difference $\nabla-\nabla^{\prime}$, defined by

$$
V(M) \times V(M) \ni(X, Y) \rightarrow \nabla_{X}(Y)-\nabla_{X}^{\prime}(Y) \in V(M)
$$

is a $(2,1)$ tensor.
(b) Conversely, given a $(2,1)$ tensor S, prove that $\nabla+S$ is a connection.
(c) A $(2,1)$ tensor S is symmetric if $S(X, Y)=S(Y, X)$. Prove that if S is symmetric, ∇ and $\nabla+S$ have the same torsion.

Exercise 2. On \mathbb{R}^{2}, with cartesian coordinates (x_{1}, x_{2}), consider the two vector fields

$$
\begin{aligned}
V_{1}\left(x_{1}, x_{2}\right) & =\left(\cos x_{1}\right) \frac{\partial}{\partial x_{1}}+\left(\sin x_{1}\right) \frac{\partial}{\partial x_{2}} \\
V_{2}\left(x_{1}, x_{2}\right) & =\left(-\sin x_{1}\right) \frac{\partial}{\partial x_{1}}+\left(\cos x_{1}\right) \frac{\partial}{\partial x_{2}}
\end{aligned}
$$

(a) Prove that V_{1}, V_{2} form a parallelization of \mathbb{R}^{2}, and compute $\left[V_{1}, V_{2}\right]$.
(b) Let ∇ be the connection associated to the parallelization given by V_{1} and V_{2}. Compute the Christoffel symbols of ∇ with reference to the identity chart.
(c) Is ∇ torsionfree?

Exercise 3. Let M, N be manifolds, $f: N \rightarrow M$ a smooth map, and ∇ a connection on M. Show that for $X, Y \in V(N)$:

$$
\nabla_{X}\left(f_{*} Y\right)-\nabla_{Y}\left(f_{*} X\right)-f_{*}[X, Y]=T\left(f_{*} X, f_{*} Y\right)
$$

where $\nabla_{X}\left(f_{*} Y\right)$ is the covariant derivative of vector fields along f.
Exercise 4. Let M be a manifold and E a vector bundle (as in Exercise sheet 5, $\S 4$), with projection $\pi: E \rightarrow M$. A section of E is a smooth map $s: M \rightarrow E$ such that for every $x \in M$, $\pi(s(x))=x$. We denote the space of sections of E by $\Gamma(E) . \Gamma(E)$ is an \mathbb{R}-vector space and an $\mathcal{F}(M)$-module. For example vector fields are sections of the tangent bundle: $V(M)=\Gamma(T M)$. A connection on E is an \mathbb{R}-bilinear map $\nabla: V(M) \times \Gamma(E) \rightarrow \Gamma(E)$ satisfying the following:

$$
\forall f \in \mathcal{F}(M), \nabla_{f X}(s)=f \nabla_{X}(s) \text { and } \nabla_{X}(f s)=X(f) s+f \nabla_{X}(s)
$$

(a) Given $p \in M$ and a neighborhood U of p, prove that $\forall X, Y \in V(M)$ and $\forall s, t \in \Gamma(E)$, if $X(p)=Y(p)$ and $\left.s\right|_{U}=\left.t\right|_{U}$, then $\nabla_{X}(s)(p)=\nabla_{Y}(t)(p)$.
(b) Prove that for every point $p \in M$ there exists a neighborhood U of p such that $\pi^{-1}(U) \rightarrow U$ is a vector bundle, and there exist sections $s_{1}, \ldots s_{n} \in \Gamma\left(\pi^{-1}(U)\right)$ such that for every point $q \in U, s_{1}(q), \ldots s_{n}(q)$ are a basis of $\pi^{-1}(q)$.
(c) For every point p, use a chart around p and sections as above to define the analog of Christoffel symbols, and find a local expression for the connection.

