

Vorlesung Differentialgeometrie I Heidelberg, 13.11.2012

EXERCISE SHEET 5 Riemannian metrics To hand in by November 20, 14:00

Exercise 1.

- (a) Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be an immersion, and let g be the pull-back of the standard Euclidean metric of \mathbb{R}^3 by the map $f : g(p)(v, w) = \langle df_p(v), df_p(w) \rangle$. Compute the fundamental matrix g_{ij} in function of f.
- (b) The catenoid is the image of the immersion $f_1 : \mathbb{R}^2 \ni (s,t) \to (\cosh s \cos t, \cosh s \sin t, s) \in \mathbb{R}^3$. The helicoid is the image of the immersion $f_2 : \mathbb{R}^2 \ni (s,t) \to (s \cos t, s \sin t, t) \in \mathbb{R}^3$. Let g_i be the pull-back of the standard Euclidean metric of \mathbb{R}^3 by the map f_i . Compute explicitly the metrics g_1 and g_2 .

Exercise 2. Let g, h be Riemannian metrics on the manifolds M, N respectively. Let $f : M \to N$ be a local diffeomorphism. Prove that f is a local isometry if and only if for every chart (x, U) of M and (y, V) of N such that $f(U) \subset V$, the application $F : x(U) \to y(V)$ given by $F = y \circ f \circ x^{-1}$ satisfies:

$$g_{ij} = \sum_{k,l} h_{kl} \frac{\partial F^k}{\partial x_i} \frac{\partial F^l}{\partial x_j}$$

where g_{ij} , h_{kl} are the expressions for the metrics in the choosen charts.

Exercise 3. Recall that if X, Y are two vector fields in \mathbb{R}^n , we denote by $Z = dY \cdot X$ the directional derivative of Y in the direction X. In coordinates, if $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n), Z = (Z_1, \ldots, Z_n)$ we have $Z_i = \sum_{j=1}^n \frac{\partial Y_i}{\partial x_j} X_j$.

Let $B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a bi-linear application. Consider the function $\nabla : V(\mathbb{R}^n) \times V(\mathbb{R}^n) \to V(\mathbb{R}^n)$ defined by

$$\nabla_X Y = dY \cdot X + B(X, Y).$$

- (a) Prove that ∇ is a connection on \mathbb{R}^n .
- (b) Compute the torsion T(X, Y) and the curvature R(X, Y)Z of ∇ .

Exercise 4. Let M be a manifold, $\{U_{\alpha} | \alpha \in A\}$ an open covering of M and V a finite dimensional real vector space. For every pair $(\alpha, \beta) \in A \times A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, is given a smooth application $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to GL(V)$, with the following properties: for every $\alpha \in A$ and for every $p \in U_{\alpha}, g_{\alpha\alpha}(p) = \mathrm{Id}_{V}$, and that for all $\alpha, \beta, \gamma \in A, (g_{\alpha\beta} \cdot g_{\beta\gamma})|_{U_{\alpha} \cap U_{\beta} \cap U_{\gamma}} = g_{\alpha\gamma}|_{U_{\alpha} \cap U_{\beta} \cap U_{\gamma}}$. For $\alpha \in A$, let $Y_{\alpha} = U_{\alpha} \times V$. On the disjoint union $\bigsqcup_{\alpha \in A} Y_{\alpha}$, we put the following equivalence relation $\sim: (p, v) \in Y_{\alpha}$ is equivalent to $(q, w) \in Y_{\beta}$ if and only if p = q and $w = g_{\beta\alpha}(p) \cdot v$.

- (a) Prove that the quotient space $E = \bigsqcup_{\alpha \in A} Y_{\alpha}$ has a structure of smooth manifold such that the application $\pi : E \to M$ defined by $\pi([(p, v)]) = p$ is a smooth map.
- (b) For every $p \in M$ the inverse image $\pi^{-1}(p)$ can be identified with V using any open set U_{α} with $p \in U_{\alpha}$. Prove that the structure of vector space on $\pi^{-1}(p)$ does not depend on the choice of U_{α} .
- (c) A space E that can be obtained with an open covering $\{U_{\alpha} | \alpha \in A\}$ and applications $g_{\alpha\beta}$ as above is called a vector bundle. For every manifold M, construct a structure of vector bundle on the tangent and on the cotangent bundles.