Exercise sheet 5
Riemannian metrics
To hand in by November 20, 14:00

Exercise 1.

(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be an immersion, and let g be the pull-back of the standard Euclidean metric of \mathbb{R}^{3} by the map $f: g(p)(v, w)=\left\langle d f_{p}(v), d f_{p}(w)\right\rangle$. Compute the fundamental matrix $g_{i j}$ in function of f.
(b) The catenoid is the image of the immersion $f_{1}: \mathbb{R}^{2} \ni(s, t) \rightarrow(\cosh s \cos t, \cosh s \sin t, s) \in$ \mathbb{R}^{3}. The helicoid is the image of the immersion $f_{2}: \mathbb{R}^{2} \ni(s, t) \rightarrow(s \cos t, s \sin t, t) \in \mathbb{R}^{3}$. Let g_{i} be the pull-back of the standard Euclidean metric of \mathbb{R}^{3} by the map f_{i}. Compute explicitely the metrics g_{1} and g_{2}.

Exercise 2. Let g, h be Riemannian metrics on the manifolds M, N respectively. Let $f: M \rightarrow$ N be a local diffeomorphism. Prove that f is a local isometry if and only if for every chart (x, U) of M and (y, V) of N such that $f(U) \subset V$, the application $F: x(U) \rightarrow y(V)$ given by $F=y \circ f \circ x^{-1}$ satisfies:

$$
g_{i j}=\sum_{k, l} h_{k l} \frac{\partial F^{k}}{\partial x_{i}} \frac{\partial F^{l}}{\partial x_{j}}
$$

where $g_{i j}, h_{k l}$ are the expressions for the metrics in the choosen charts.
Exercise 3. Recall that if X, Y are two vector fields in \mathbb{R}^{n}, we denote by $Z=d Y \cdot X$ the directional derivative of Y in the direction X. In coordinates, if $X=\left(X_{1}, \ldots, X_{n}\right), Y=$ $\left(Y_{1}, \ldots, Y_{n}\right), Z=\left(Z_{1}, \ldots, Z_{n}\right)$ we have $Z_{i}=\sum_{j=1}^{n} \frac{\partial Y_{i}}{\partial x_{j}} X_{j}$.
Let $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a bi-linear application. Consider the function $\nabla: V\left(\mathbb{R}^{n}\right) \times V\left(\mathbb{R}^{n}\right) \rightarrow$ $V\left(\mathbb{R}^{n}\right)$ defined by

$$
\nabla_{X} Y=d Y \cdot X+B(X, Y)
$$

(a) Prove that ∇ is a connection on \mathbb{R}^{n}.
(b) Compute the torsion $T(X, Y)$ and the curvature $R(X, Y) Z$ of ∇.

Exercise 4. Let M be a manifold, $\left\{U_{\alpha} \mid \alpha \in A\right\}$ an open covering of M and V a finite dimensional real vector space. For every pair $(\alpha, \beta) \in A \times A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, is given a smooth application $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(V)$, with the following properties: for every $\alpha \in A$ and for every $p \in U_{\alpha}, g_{\alpha \alpha}(p)=\operatorname{Id}_{V}$, and that for all $\alpha, \beta, \gamma \in A,\left.\left(g_{\alpha \beta} \cdot g_{\beta \gamma}\right)\right|_{U_{\alpha} \cap U_{\beta} \cap U_{\gamma}}=\left.g_{\alpha \gamma}\right|_{U_{\alpha} \cap U_{\beta} \cap U_{\gamma}}$. For $\alpha \in A$, let $Y_{\alpha}=U_{\alpha} \times V$. On the disjoint union $\bigsqcup_{\alpha \in A} Y_{\alpha}$, we put the following equivalence relation $\sim:(p, v) \in Y_{\alpha}$ is equivalent to $(q, w) \in Y_{\beta}$ if and only if $p=q$ and $w=g_{\beta \alpha}(p) \cdot v$.
(a) Prove that the quotient space $E=\bigsqcup_{\alpha \in A} Y_{\alpha}$ has a structure of smooth manifold such that the application $\pi: E \rightarrow M$ defined by $\pi([(p, v)])=p$ is a smooth map.
(b) For every $p \in M$ the inverse image $\pi^{-1}(p)$ can be identified with V using any open set U_{α} with $p \in U_{\alpha}$. Prove that the structure of vector space on $\pi^{-1}(p)$ does not depend on the choice of U_{α}.
(c) A space E that can be obtained with an open covering $\left\{U_{\alpha} \mid \alpha \in A\right\}$ and applications $g_{\alpha \beta}$ as above is called a vector bundle. For every manifold M, construct a structure of vector bundle on the tangent and on the cotangent bundles.

