Heidelberg, 6.11.2012

ExERCISE SHEET 4

Flows and semi-Riemannian metrics

To hand in by November 13, 14:00

Exercise 1. Let M be a manifold and $X, Y \in V(M)$ be vector fields. Fix a point $p \in M$, an open neighborhood $U \subset M$ and $\varepsilon>0$ such that the flow f^{t} of the field X is defined on $(-\varepsilon, \varepsilon) \times U$. Recall that $\mathcal{L}_{X}(Y)_{p}$ is defined as $\left.\frac{d}{d t}\right|_{t=0}\left(\left.d f^{-t}\right|_{f^{t}(p)}\left(Y_{f^{t}(p)}\right)\right) \in T_{p} M$. Recall also that for every $\phi \in \mathcal{F}(M),[X, Y]_{p}(\phi)$ is defined as $X_{p}(Y \phi)-Y_{p}(X \phi)$.
(a) For every $\phi \in \mathcal{F}(M)$, consider the function $G:(-\varepsilon, \varepsilon) \times U \rightarrow \mathbb{R}$ defined by $G_{t}(x)=$ $\frac{1}{t}\left(\phi\left(f^{-t}(x)\right)-\phi(x)\right)$, if $t \neq 0$, and by $G_{0}(x)=-X(\phi)$ when $t=0$. Prove that G is smooth. (Hint: define $F(t, x)=\phi\left(f^{-t}(x)\right)-\phi(x), F^{\prime}(t, x)=\frac{\partial F}{\partial t}(t, x)$, and consider $\left.\int_{0}^{1} F^{\prime}(t s, x) \mathrm{d} s\right)$.
(b) Prove that $\left.d f^{-t}\right|_{f^{t}(p)}\left(Y_{f^{t}(p)}\right)(\phi)=Y_{f^{t}(p)}\left(\phi \circ f^{-t}\right)=Y_{f^{t}(p)}(\phi)+t Y_{f(t)}\left(G_{t}\right)$.
(c) Prove that $\mathcal{L}_{X}(Y)=[X, Y]$. (Hint: Compute the derivative $\left.\frac{d}{d t}\right|_{t=0}$ of the term in point (b). Remember that $c(t)=f^{t}(p)$ is an integral curve for $\left.X\right)$.

Exercise 2. Let M be a manifold, $V(M)$ be the vector space of all vector fields on M, and $[\cdot, \cdot]: V(M) \times V(M) \rightarrow V(M)$ be the Lie bracket.
(a) Prove that $(V(M),[\cdot, \cdot])$ is a Lie algebra. Namely, show that
(i) $[\cdot, \cdot]: V(M) \times V(M) \rightarrow V(M)$ is \mathbb{R}-bilinear.
(ii) For all $X \in V(M),[X, X]=0$.
(iii) For all $X, Y \in V(M),[X, Y]=-[Y, X]$.
(iv) For all $X, Y, Z \in V(M),[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (the Jacobi identity).
(b) Recall that if $f \in \mathcal{F}(M)$ and $X \in V(M), f X$ is the vector field that in the point $p \in M$ takes the value $f(p) X_{p}$, while $X f=X(f)$ is the function that in the point $p \in M$ takes the value $X_{p}(f)$. Prove that for all $X, Y \in V(M)$ and for all $f, g \in \mathcal{F}(M)$,

$$
[f X, g Y]=f X(g) Y-g Y(f) X+f g[X, Y]
$$

Exercise 3. Let M be a manifold and $p \in M$. Let $c:(-1,1) \rightarrow \mathbb{M}$ be a smooth curve such that $c(0)=p$ and $\dot{c}(0)=[c]=0$. Choose a chart containing p, and define $\ddot{c}(0) \in T_{p} M$ in such a way that in this chart it corresponds to the usual second derivative of a curve in \mathbb{R}^{n}. Prove that your definition does not depend on the choosen chart.

Exercise 4. Consider the bilinear form on \mathbb{R}^{n+1} defined by $\langle x, y\rangle=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n} y_{n}$. Consider the subsets $H^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\langle x, x\rangle=-1, x_{0}>0\right\}$ and $d S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\langle x, x\rangle=1\right\}$. Prove that these subsets are submanifolds, and prove that for every point $x \in H^{n}$ (or $x \in d S^{n}$), the image of the tangent space $T_{x} H^{n}$ (or $T_{x} d S^{n}$) by the differential of the identity map is the orthogonal vector space to x, i.e. $x^{\perp}=\left\{v \in \mathbb{R}^{n+1} \mid\langle x, v\rangle=0\right\}$. Prove that the restriction of the bilinear form $\langle x, y\rangle$ to the tangent space at every point x gives a smooth Riemannian metric in the case of H^{n}, and a smooth semi-Riemannian metric of index 1 in the case of $d S^{n}$.

