RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Mathematisches Institut

Vorlesung Differentialgeometrie I
Heidelberg, 30.10.2012

Exercise sheet 3
 Vector fields

To hand in by November 6, 14:00

Let M be a manifold and $X, Y \in V(M)$ be vector fields.
Exercise 1. Recall that for every point $p \in M, X_{p}$ is value of the field X at the point p, and for every function $\varphi \in \mathcal{F}(M), X \varphi=X(\varphi)$ is the function in $\mathcal{F}(M)$ that to every point $p \in M$ associate the value $X_{p}(\varphi)$.
(a) For every point $p \in M$, consider the application $D_{p}: \mathcal{F}(M) \rightarrow \mathbb{R}$ that to every function $\varphi \in \mathcal{F}(M)$ associate the number $X_{p}(Y \varphi)$. Is the application D_{p} a tangent vector at the point p ? Does the formula $p \rightarrow D_{p}$ define a vector field on M ?
(b) Let (x, U) be a coordinate patch for M, and assume that in this coordinate patch, the vector fields X, Y can be expressed by $X=\sum_{i=1}^{n} \xi_{i} \frac{\partial}{\partial x_{i}}, Y=\sum_{i=1}^{n} \eta_{i} \frac{\partial}{\partial x_{i}}$, with $\xi_{i}, \eta_{i}: U \rightarrow \mathbb{R}$ smooth functions. Prove that the vector field $Z=[X, Y]$ can be expressed by $Z=\sum_{i=1}^{n} \zeta_{i} \frac{\partial}{\partial x_{i}}$, where

$$
\zeta_{i}=\sum_{j=1}^{n} \xi_{j} \frac{\partial \eta_{i}}{\partial x_{j}}-\eta_{j} \frac{\partial \xi_{i}}{\partial x_{j}}
$$

Exercise 2. Let p be a point such that $X_{p} \neq 0$.
(a) Prove that there is a neighborhood V of p such that X never vanishes in V.
(b) Prove that there is a coordinate patch (x, U) around the point p such that $x(p)=0$ and X_{p} is equal to the vector $\frac{\partial}{\partial x_{1}}$ in the point 0 .
(c) Consider the subset $H=\left\{x \in \mathbb{R}^{n} \mid x_{1}=0\right\}=\left\{\left(0, x_{2}, \ldots, x_{n}\right)\right\}$. Prove that the inverse image $x^{-1}(H)$ is a sub-manifold of U.
(d) Recall that there exists an $\varepsilon>0$ and a neighborhood U^{\prime} of p contained in U such that the flow f^{t} of the field X is well defined in $(-\varepsilon, \varepsilon) \times U^{\prime}$. Consider the application $\Phi:(-\varepsilon, \varepsilon) \times\left(x\left(U^{\prime}\right) \cap H\right) \rightarrow M$ defined by $\Phi(t, h)=f^{t}\left(x^{-1}(h)\right)$. Prove that there exists an $\varepsilon^{\prime}<\varepsilon$ and a neighborhood $U^{\prime \prime}$ of 0 in $\left(x\left(U^{\prime}\right) \cap H\right)$ such that Φ restricted to $\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right) \times U^{\prime \prime}$ is a diffeomorphism.
(e) Prove that there is a coordinate patch (x, U) around the point p such that X is equal to the vector field $\frac{\partial}{\partial x_{1}}$ in every point of U.

Exercise 3. Let f^{t} be the flow of X, g^{t} be the flow of Y, and $\mathcal{D}_{X}, \mathcal{D}_{Y}$ the domains of definition of the two flows. Assume that $\mathcal{L}_{X}(Y)=[X, Y]=0$ in M.
(a) Prove that for all $(t, x) \in \mathcal{D}_{X}$, we have $\left.d f^{t}\right|_{x}(Y(x))=Y\left(f^{t}(x)\right)$.
(b) Let $c:(-\varepsilon, \varepsilon) \rightarrow M$ be an integral curve for Y such that $c(0)=x$. Prove that, if $(t, x) \in \mathcal{D}_{X}, f^{t} \circ c$ is an integral curve for Y such that $c(0)=f^{t}(x)$.
(c) Prove that for all $x \in M$, and for all $s, t \in \mathbb{R}$ small enough, $f^{-t} \circ g^{-s} \circ f^{t} \circ g^{s}(x)=x$. (Hint: follow the integral curves for Y, and move them with f^{t}, f^{-t}.)

