RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie I Heidelberg, 23.10.2012

EXERCISE SHEET 2 Smooth maps and submanifolds To hand in by October 30, 14:00 Uhr

Exercise 1.

- (a) Consider the sphere $S_r^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x_i^2 = r^2\}$, and the real projective space $\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$, with C^{∞} structures defined by the atlases in Exercise sheet 1, §3. Prove that the map $\phi : S_r^n \to \mathbb{RP}^n$ defined by $\phi(x_0, \ldots, x_n) = [x_0, \ldots, x_n]$ is a smooth map. Is it locally invertible? Is it a diffeomorphism?
- (b) Let M, N be differentiable manifolds with atlases $\{(\phi_i, U_i) \mid i \in I\}, \{(\psi_j, V_j) \mid j \in J\}$ respectively. Describe an atlas for the product $M \times N$ such that the two projections $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are smooth maps.
- (c) Prove that the map $\phi : \mathbb{R}^2 \to (\mathbb{R}_{>0})^2$ defined by $\phi(x, y) = (e^x, e^y)$ is a diffeomorphism.

Exercise 2.

- (a) Prove that the identity map $i: S_r^n \to \mathbb{R}^{n+1}$ is an embedding of S_r^n into a submanifold of \mathbb{R}^{n+1} .
- (b) Recall that for every point $p \in \mathbb{R}^{n+1}$, the tangent space $T_p \mathbb{R}^{n+1}$ can be identified with \mathbb{R}^{n+1} by the identity chart. For every point $q \in S_r^n$, show that the image of the differential of i at the point q (i.e. the subspace $di_q(T_q S_r^n)$) is equal to the orthogonal vector subspace to i(q), with reference to the standard scalar product, $i(q)^{\perp} = \{v \in \mathbb{R}^{n+1} \mid \langle i(q), v \rangle = 0\}$.

Exercise 3.

- (a) Let N be a differentiable manifold and $M \subset N$ a submanifold. Show that $f: M \to \mathbb{R}$ is a smooth function if and only if the following hold: for every point $p \in M$ there is an open neighborhood U of p in N and a smooth function $\phi: U \to \mathbb{R}$ such that $\phi|_{U \cap M} = f|_{U \cap M}$.
- (b) Let M and N be smooth manifolds and $h: M \to N$ be a submersion. Show that a function $f: N \to \mathbb{R}$ is smooth if and only if $f \circ h$ is smooth. Show also that for every point $p \in M$, we have $\operatorname{rank}_{h(p)} f = \operatorname{rank}_p (f \circ h)$.

Exercise 4.

- (a) Prove that a connected topological manifold is path-connected. (Hint: Fix a point p and consider the set of all points that can be joined to p with a continuous curve. Prove that this set is open and closed.)
- (b) Let M be a differentiable manifold. If $[a, b] \subset \mathbb{R}$ is a closed interval, a map $\gamma : [a, b] \to M$ is called smooth if there exists $\varepsilon > 0$ and a smooth map $\gamma' : (a \varepsilon, b + \varepsilon) \to M$ such that the restriction of γ' to [a, b] coincides with γ . A map $\gamma : [a, b] \to M$ is called piece-wise smooth if there exists a finite number of points $x_0 = a < x_1 < \cdots < x_{n-1} < x_n = b$ such that the restriction of γ to every interval $[x_i, x_{i+1}]$ is smooth. Prove that in a connected differentiable manifold, for every two points there is a piece-wise smooth curve joining them.