

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie I Heidelberg, 18.10.2012

Exercise sheet 1

Manifolds and differentiable structures

To hand in by October 23, 14:00 Uhr

Exercise 1. Which ones of the following topological subspaces of \mathbb{R}^n are topological manifolds?

- (a) $\{(x,y) \in \mathbb{R}^2 \mid x^3 + x^2 y^2 = 0\}.$
- (b) $\{(x,y) \in \mathbb{R}^2 \mid x^3 y^2 = 0\}.$
- (c) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = 0\}.$
- (d) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = 0 \text{ and } z \ge 0\}.$
- (e) $\{(x, y, z) \in \mathbb{R}^3 \mid z = 0 \text{ or } y = 0\}.$
- (f) $\{(x, y, z) \in \mathbb{R}^3 \mid \max(|x|, |y|, |z|) = 1\}.$

Exercise 2.

- (a) Find a C^{∞} -atlas, for the real line \mathbb{R} , that gives a different smooth structure than the usual atlas $\mathcal{A} = \{(\mathrm{Id}, \mathbb{R})\}.$
- (b) Find a C^{∞} -atlas for the torus

$$\left\{ (x, y, z) \in \mathbb{R}^3 \mid \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}$$

Exercise 3.

(a) The sphere of radius r is the set $S_r^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x_i^2 = r^2\}$. Denote $N = (1, 0, \ldots, 0), S = (-1, 0, \ldots, 0)$. Consider the atlas $\{(p_N, \mathcal{U}_N), (p_S, \mathcal{U}_S)\}$, where $\mathcal{U}_N = S_r^n \setminus N$, $\mathcal{U}_S = S_r^n \setminus S$, the function $p_N : \mathcal{U}_N \to \mathbb{R}^n$ is defined by

$$p_N(x_0, \dots, x_n) = \frac{r}{r - x_0}(x_1, \dots, x_n),$$

and the function $p_S: \mathcal{U}_S \to \mathbb{R}^n$ is defined by

$$p_S(x_0,\ldots,x_n) = \frac{r}{r+x_0}(x_1,\ldots,x_n).$$

Prove that $\{(p_N, \mathcal{U}_N), (p_S, \mathcal{U}_S)\}$ is a C^{∞} -atlas for S_r^n .

(b) Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Two points $x, y \in \mathbb{K}^{n+1} \setminus \{0\}$ are projectively equivalent $(x \sim y)$ if they lie in the same 1-dimensional vector subspace. The projective space \mathbb{KP}^n is the quotient space $(\mathbb{K}^{n+1} \setminus \{0\}) / \sim$, with the quotient topology. The image of the point (x_0, \ldots, x_n) will be denoted by $[x_0, \ldots, x_n]$ (homogeneous coordinates). Consider the atlas $\{(b_i, \mathcal{U}_i) \mid i \in \{0, \ldots, n\}\}$, where $\mathcal{U}_i = \{[x_0, \ldots, x_n] \in \mathbb{KP}^n \mid x_i \neq 0\}$, and the function $b_i : \mathcal{U}_i \to \mathbb{K}^n$ is defined by

$$b_i([x_0,\ldots,x_n]) = \frac{1}{x_i}(x_0,\ldots,\widehat{x_i},\ldots,x_n)$$

Prove that $\{(b_i, \mathcal{U}_i)\}$ is a C^{∞} -atlas for \mathbb{KP}^n .