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Abstract

We introduce the notion of corestricted free products of a family of profinite groups indexed
over an arbitrary profinite space. Using arithmetic results of the second author, this enables us
to prove an analogue of Riemann’s existence theorem for the decomposition groups of certain
infinite sets of primes of a number field.

In 1971, Neukirch [4] introduced the concept of free products of families of
pro-c-groups indexed over a discrete set. Since in number theory projective limits
of free pro-c-products arise in a natural way, it became necessary to generalize this
concept to families varying continuously over a profinite index space. This has
been worked out by several authors by introducing the notion of compact bundles
G of pro-c-groups over a profinite space T , see [1], [2], [3] and [5]. These bundles
are group objects in the category of profinite spaces over T such that every fibre
is a pro-c-group. The generalized free products obtained in this way turned out to
be the key tool to prove number theoretical analogues of the Riemann existence
theorem over large number fields, i.e. inertia groups, indexed by a projective limit
of possibly infinite sets of primes of a tower of number fields, form a free product.
Furthermore, analogous results hold for the decomposition groups lying over a
finite set of primes of a number field, see [5] chap.10 §5.

From the arithmetic point of view, it is interesting whether infinitely many
decomposition groups also form a free product. However the notion of compact
bundles turns out to be too restrictive. Inspired by the abelian case in number
theory, i.e. the idele group of a number field which is a restricted product and
topological not compact, Neukirch introduced the concept of corestricted free pro-
ducts of pro-c-groups over discrete sets. Generalizing this concept to a more
general profinite space T leads to possibly non-compact bundles, which are group
objects in the category of totally disconnected Hausdorff spaces over T .

Of special interest are so-called corestricted bundles G over a profinite space
T which are corestricted by a compact subbundle U of G, i.e. G has the final
topology with respect to the inclusions U ↪→ G and Gt ↪→ G, t ∈ T , where Gt
denotes the fibre of G at t. Alexander Schmidt pointed out that a good way
to think of this object is as a “hedgehog ” having a compact body U which is
surrounded by “spines ” corresponding to the sets Gt\Ut, t ∈ T .
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In the first section we introduce the notion of (not necessarily compact) bun-
dles and their free products. We investigate bundles endowed with an additional
action by a pro-c-group G and their corresponding free products, which are pro-
c-G operator groups. In the second section, we define corestricted bundles and
corestricted free products. One main goal of this paper is to study the properties
of the functor

F : Bundles −→ Pro-c-groups

which associates to a bundle G over a profinite space T the free pro-c-product

∗TG. This functor commutes with projective limits on the subcategory of com-
pact bundles. We prove that this remains true for certain corestricted G-operator
bundles. Furthermore, this also holds for projective limits of corestricted bundles
over the one-point compactifications of discrete sets.

In the third section, we show that corestricted bundles naturally arise from
families of closed subgroups of a pro-c-group. Finally we consider the cohomology
of a corestricted free product over the one-point compactification of a discrete
set. This yields the number theoretic application we have in mind: Under some
conditions there exists a Galois group of a large number field which is a free pro-
p-product of infinity many decomposition groups corestricted by inertia groups.

1 Bundles and free products

Let c be a class of finite groups closed under taking subgroups, homomorphic
images and finite direct products. A pro-c-group is a projective limit of groups in
c. In [5], chap. IV §3, the notion of a bundle of pro-c-groups is introduced. Here
we use the notion bundle in a more general context, but we will follow partly the
presentation of [5]; see also [3].

Definition 1.1 Let T be a profinite space, i.e. a topological projective limit of
finite discrete spaces. A bundle of pro-c-groups

G = (G, pr, T )

over T is a group object in the category of totally disconnected Hausdorff spaces
over T such that the fibre over every point of T is a pro-c-group, i.e. there are
continuous maps

pr : G → T (the structure map),
m : G ×T G → G (the multiplication),
e : T → G a section to pr (the unit),
ι : G → G (the inversion),

such that the fibre Gt = pr−1(t) together with the induced maps mt : Gt×Gt → Gt,
ιt : Gt → Gt and the unit element et = e(t) is a pro-c-group for every point t ∈ T .
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Here G×T G = {(x, y) ∈ G×G|pr(x) = pr(y)} denotes the fibre product of G and
G over T , which is a totally disconnected Hausdorff space and has a structure map
pr : G ×T G→T . Furthermore, the maps m and ι commute with the structure
maps.

Of special interest are bundles which are compact, i.e. G is a profinite space.
These are the bundles which were considered in [5], and which we now call com-
pact bundles.

If G is a pro-c-group and T is a profinite space, then we have the (compact)
constant bundle (G× T, pr, T ), where pr is the projection G× T → T .

A morphism of bundles

φ : (G, prG, T )→ (H, prH, S)

is a pair φG : G → H, φT : T → S of continuous maps such that the diagram

G φG //

prG
��

H
prH
��

T
φT
// S

commutes and for every t ∈ T the associated map φt : Gt → HφT (t) is a group
homomorphism. We say that (G, prG, T ) is a subbundle of (H, prH, S) if T = S,
φT = id and φt is injective for all t ∈ T . We say that φ is fibrewise surjective
if φ is surjective and φt is surjective for all t ∈ T .

A morphism from a bundle (G, pr, T ) to a pro-c-group G is a continuous map
φ : G → G such that the induced maps φt : Gt → G are group homomorphisms
for every t ∈ T .

1.1 Free pro-c-products

Let (G, pr, T ) be a bundle of pro-c-groups.

Definition 1.2 The free pro-c-product of (G, pr, T ) of is a pro-c-group

G = ∗
T
G

together with a morphism ω : G → G, which has the following universal property:
for every morphism f : G → H from G to a pro-c-group H there exists a unique
homomorphism of pro-c-groups φ : G→ H with f = φ ◦ ω.

As in [5](4.3.6) we have the

Proposition 1.3 The free pro-c-product ∗
T
G exists and is unique up to unique

isomorphism.
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Proof: Let D = ∗ dt∈TGt be the abstract free product of the family of groups
(Gt)t∈T and let λ : G → D be the map which is given on every Gt as the natural
inclusion of Gt into D. Then define the free product G = ∗TG as the completion
ofD with respect to the topology which is given by the family of normal subgroups
N ⊆ D of finite index for which
(a) D/N ∈ c,
(b) the composition of λ with the natural projection D → D/N is continuous.

It is easily verified that G has the required universal property. The uniqueness
assertion is clear by the universal property. �

For the free pro-c-product of the bundle (G, pr, T ) we often write

∗
t∈T
Gt = ∗

T
G.

Observe that there are different “free pro-c-products” of a family of pro-c-groups
{Gt}t∈T depending on the topology on G =

⋃.
t∈T Gt.

If φ : (G, prG, T )→ (H, prH, S) is a morphism of bundles, then by the universal

property of the free product the map G φG→H ω→∗SH induces a homomorphism

φ∗ : ∗
T
G → ∗

S
H,

i.e. there is a functor

B−→Pro-c-groups, G 7→ ∗
T
G,

between the category B of bundles of pro-c-groups and the category of pro-c-
groups.

Proposition 1.4 Let (G, pr, T ) be a bundle of pro-c-groups and assume that
T = T1 ∪. · · · ∪. Tk is a finite disjoint decomposition of T into non-empty open
subsets. Then the following assertions hold.

(i) There is a canonical isomorphism

∗
T1
G1 ∗ · · · ∗∗

Tk

Gk ∼= ∗
T
G,

where Gi denotes the bundle pr−1(Ti) over Ti for i = 1, . . . , k.
(ii) The canonical homomorphism φ∗ : ∗TiGi→∗TG, which is induced by the

bundle morphism φ : Gi→G, has a splitting; in particular, φ∗ is injective.

Proof: The first assertion follows from the universal property. For the second
consider the map ϕG : G � Gi which maps Gj, j 6= i, to the unit element of Gt0
for some fixed t0 ∈ Ti and which is the identity on Gi, and the map ϕT : T � Ti
which maps Tj, j 6= i, to t0 and which is the identity on Ti. Then (ϕG, ϕT ) is a
morphism of bundles which induces a splitting of φ∗ �
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Corollary 1.5 Let (G, pr, T ) be a bundle, where T = T0 ∪. {∗} is the one-point
compactification of the discrete set T0 and G∗ = {∗}. If t0 ∈ T , then the canonical
map

ωGt0 : Gt0 −→ ∗
t∈T
Gt

has a splitting. In particular, it is injective.

We do not know whether the map ωGt0 is injective for bundles over arbitrary
profinite spaces (but see remark 5 in section 3).

1.2 Compact bundles

First we prove a criterion for subsets of a compact bundle for being open.

Lemma 1.6 Let G be a compact bundle of pro-c-groups over a profinite space T .
For every t ∈ T let an open subset Wt of Gt be given. Then the following is
equivalent.

(i) For every closed subset Y of G the set {t ∈ T |Yt ⊆ Wt} is open in T .

(ii) W =
⋃
.

t∈T

Wt is open in G.

Proof: Assume that (i) holds. Let

W̄ = G\W =
⋃
.

t∈T

W̄t, W̄t = Gt\Wt.

Let g ∈ Wt0 ⊆ W . Since W̄t0 is closed in Gt0 (and so in G), there are open subsets
R,Q of G such that W̄t0 ⊆ Q, g ∈ R and R ∩ Q = ∅. Since Q̄ = G\Q is closed
in G, the set

S := {t ∈ T |W̄t ⊆ Q} = {t ∈ T |Q̄t ⊆ Wt}
is open in T by assumption and t0 ∈ S. Thus V = pr−1

U (S) ∩ R is an open
neighborhood of g. Furthermore, if t ∈ S, then Vt ⊆ Rt ⊆ Q̄t ⊆ Wt. Thus V is
contained in W . It follows that W is open.

Now assume that (ii) holds. Then

{t ∈ T |Yt ⊆ Wt} = T\pr(Y ∩ W̄ ).

Since (Y ∩ W̄ ) is closed in G, hence compact, pr(Y ∩ W̄ ) is a compact subset of
T , and so T\pr(Y ∩ W̄ ) is open. �

Let G be a pro-c-group and let (Gt)t∈T be a family of closed subgroups of G
indexed by the points of a profinite space T . We say that (Gt)t∈T is a continuous
family, if and only if for every open neighborhood V of the identity of G the set
T (V ) := {t ∈ T |Gt ⊆ V } is open in T .
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The following proposition shows that the concepts of compact bundles and
continuous families coincide.

Proposition 1.7

(i) The set
G = {(g, t) ∈ G× T | g ∈ Gt}

equipped with the induced topology of the constant bundle (G× T, pr, T ) is a
compact bundle over T .

(ii) If H is a compact bundle, then H is the bundle associated to the family
(Ht)t∈T of pro-c-groups given by the fibres of H, where each fibre is considered
as closed subgroup of ∗TH.

Proof: For the first assertion see [5] (4.3.3). In order to prove the second, we
first remark that a fibre Ht is a closed subgroup of the free pro-c-product ∗TH,
see [5] (4.3.12)(i), thus

H = {(h, t) ∈ ∗
T
H× T |h ∈ Ht}.

Now it is easy to see that the family (Ht)t∈T is continuous: Let W be an open
neighborhood of the unit of ∗TH. Then, using lemma (1.6), the set T (W ) =
{t ∈ T |Ht ⊆ W} = {t ∈ T |Ht ⊆ (W ∩H)t} is open in T . �

1.3 Bundles with operators

Definition 1.8 Let G be a pro-c-group. A bundle (G, pr, T ) of pro-c-groups is
called G-bundle if G acts continuously on G, i.e. there is a commutative diagram

G × G //

pr
����

G
pr
����

(σ, x) 7→ σx,

G × T // T (σ, t) 7→ σt,

of continuous maps such that

(i) for all σ ∈ G the map G→G, x 7→ σx, is a morphism of bundles,

(ii) (στ)(x) = σ(τ(x)) and ex = x for all σ, τ ∈ G and all x ∈ G.

Definition 1.9 Let (G, pr, T ) and (H, pr, S) be G-bundles of pro-c-groups and
let φ : G→H be a morphism of bundles. Then φ is called G-invariant, if the
diagrams
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G × G //

φG
��

G
φG
��

G × T //

φT
��

T

φT
��

G × H //H G × S // S

commute. The morphism φ is called G-transitive, if φ is G-invariant and for
t, t′ ∈ φ−1

T (s), s ∈ S, there exists σ ∈ G such that σt = t′.

Let (G, pr, T ) be a G-bundle and let σ ∈ G. Then

σGt = Gσt for t ∈ T .

Furthermore, the homeomorphism σ : G −→∼ G induces an automorphism

σ : ∗
T
G −→∼ ∗

T
G

of pro-c-groups, i.e. ∗TG is a pro-c-G operator group, see [5] (4.3.8). Thus ∗TG
possesses a system of neighborhoods of the identity consisting of open G-invariant
normal subgroups, see [6] theorem 17:

If U is an open subgroup of ∗TG, then Ũ :=
⋂
σ∈G σU is a G-invariant sub-

group of ∗TG. We will show that Ũ is open. Since σe = e ∈ U , there exist open
neighborhoods Vσ and Wσ of e ∈ U and σ ∈ G, respectively, such that WσVσ ⊆ U .
Since

⋃
σWσ = G and G is compact, we find a finite covering {Wσ1 , . . . ,Wσn} of

G. Let V =
⋂n
i=1 Vσi , then σV ⊆ Ũ for every σ ∈ G and consequently for every

x ∈ Ũ we have V x ⊆ Ũ .

Since the map λ : G→∗dTG is G-invariant, where the action of G on ∗dTG is
defined in the obvious way, it follows that

∗
T
G = lim

←−
N

(∗
T

dG)/N,

where N runs through all G-invariant normal subgroups of ∗dTG such that
(∗dTG)/N ∈ c and the map G→∗dTG � (∗dTG)/N is continuous.

1.4 Projective limits of bundles

Let I be a directed set and let {Gi, Ti, φij}I be a projective system of bundles of
pro-c-groups with transition morphisms

φij : Gi → Gj, i ≥ j.

A bundle (G, pr, T ) of pro-c-groups together with morphisms of bundles φi : G →
Gi compatible with φij is called projective limit of {Gi, Ti, φij}I , if it satisfies
the usual universal property. The projective limit exists and is unique up to
isomorphism and we write

(G, pr, T ) = lim
←−
i∈I

(Gi, pri, Ti).
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Indeed, the uniqueness follows from the universal property and for the existence
we consider the Cartesian product G̃ :=

∏
i∈I Gi which, being endowed with the

product topology, is a bundle over T = lim
←−

Ti. Then the subbundle

G := {(gi) ∈ G̃ | φij(gi) = gj}

satisfies the universal property of the projective limit and its fibres are given by

Gt = lim
←−
i∈I

Gi,ti

for t = (ti)i∈I ∈ lim
←−

Ti. Clearly, the transition morphisms φij give rise to ho-

momorphisms ∗
Ti
Gi→∗

Tj
Gj, i ≥ j. It is a natural question whether the induced

homomorphism ∗
T
G −→ lim

←−
i∈I

∗
Ti
Gi

is an isomorphism, i.e. whether free products commute with projective limits.
This holds if the bundles Gi and hence G are compact, see [5](4.3.6). Unfortu-
nately, the argument cannot be carried over to arbitrary bundles. However, under
additional conditions for the maps G → Gi, we can prove the following criterion:

Proposition 1.10 Let G be a pro-c-group and let {Gi, Ti, φij}I be a projective
system of G-bundles of pro-c-groups with G-invariant transition maps φij. Then
the bundle

G = lim
←−
i∈I

Gi

is a G-bundle over T = lim
←−

Ti. Assume further that the following holds:

(i) For all i ∈ I, the canonical map φi : G→Gi is surjective.

(ii) Let W be a closed resp. open subset of G which is invariant under an open
subgroup M of G. Then φi(W ) is closed resp. open in Gi for all i ∈ I.

Then

∗
T
G = lim

←−
i∈I

∗
Ti
Gi.

Proof: The fact that G is a G-bundle over T is obvious. Let D = ∗ dt∈TGt be
the abstract free product of the family of groups Gt and Di = ∗ dti∈TiGi,ti for i ∈ I.
Using (i), we see that the canonical maps

ϕi : D −� Di, i ∈ I,

are surjective. Furthermore the action of G on G induces a G-action on Di and
D, and ϕi is G-invariant. For a fixed i ∈ I, the correspondence N 7→ Ni := ϕi(N)
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induces a bijection between the set of G-invariant normal subgroups N of D such
that N ⊇ kerϕi and D/N ∈ c, and the set of normal subgroups Ni of Di such
that Di/Ni ∈ c. For all such N and Ni, we have the isomorphism

D/N −→∼ Di/Ni

and the commutative diagram

Gi
λi // Di

fi // // Di/Ni

G λ //

φi

OOOO

D

ϕi

OOOO

f // // D/N .

∼
OO

Obviously, if fiλi is continuous, then fλ is continuous. Conversely, assume that
fλ is continuous and let a ∈ Di/Ni. Then W = (fλ)−1(a) is open and closed
in G and invariant under any open subgroup of G acting trivially on the finite
group D/N . Furthermore, since φi is surjective, φi(W ) = (fiλi)

−1(a). Using (ii),
φi(W ) is closed resp. open in Gi . This shows that fiλi is continuous.

Now by the general theory of pro-c-G operator groups presented in the pre-
vious section, we have ∗

T
G = lim

←− N
D/N where N runs through the G-invariant

normal subgroups of D such that D/N ∈ c and fλ is continuous. Analogously,

∗
T
Gi = lim

←− Ni

Di/Ni where Ni runs through the G-invariant normal subgroups of

Di such that Di/Ni ∈ c and fiλi is continuous. Noting that any normal subgroup
N of D of finite index contains kerϕi for some i ∈ I, the above considerations
imply

∗
T
G = lim

←−
N

D/N = lim
←−
i∈I

(
lim
←−

N⊇ker(ϕi)

D/N
)

= lim
←−
i∈I

(
lim
←−
Ni

Di/Ni

)
= lim
←−
i∈I

∗
Ti
Gi.

�

Remark: In section 2 we will work with projective limits which are formed in the
subcategory of corestricted bundles. As a set, the projective limit G = lim

←−
Gi is

given as above by G := {(gi) ∈
∏
Gi | φij(gi) = gj}, however it has to be endowed

with a topology which is finer than the product topology. It is important to
remark that (1.10) remains valid as long as the projections G→Gi are continuous
and condition (ii) holds with respect to this finer topology.

2 Corestricted bundles and their free products

Now we introduce the notion of a corestricted bundle of pro-c-groups with
respect to a compact bundle U of pro-c-groups.
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Definition 2.1 Let (G, prG, T ) be a bundle of pro-c-groups. We say that G is
corestricted with respect to a compact bundle (U , prU , T ) over T if there exists
an injective morphism of bundles φ : U ↪→ G over T , i.e. the diagram

U � � φ //

prU ��

G

prG��
T

commutes, and G is equipped with the final topology with respect to the family of
inclusions {φ : U ↪→ G, Gt ↪→ G, t ∈ T}. We denote the bundle G by (G,U) if it
is corestricted with respect to U .

The corestricted free pro-c-product of the corestricted bundle (G,U) is
the free pro-c-product ∗T (G,U), and we write

∗
t∈T

(Gt,Ut) = ∗
T

(G,U).

Remarks: 1. The topology on Gt induced by the topology of (G,U) is the pro-c
topology of Gt: if V0 is an open subgroup of the pro-c-group Gt0 , then Gt0\V0

is closed in Gt0 and so in G since every fiber of G is closed. It follows that
V =

⋃.
t6=t0 Gt ∪

. V0 is open in G, and V ∩ Gt0 = V0.
2. If T is the one-point compactification of a discrete set T0, then the definition
of the corestricted free pro-c-product of the corestricted bundle (G,U) over the
profinite space T coincides with that given in [4] §2. If T is finite, then (G,U) is
a compact bundle independent of U .
3. We have two extreme cases. If Ut = Gt for all t ∈ T , then (G,U) is the equal
to the compact bundle U . If Ut = {1} for all t ∈ T , i.e. U is the trivial bundle 1 ,
then the topology of (G, 1 ) is given by the sets V ⊆ G such that Vt = V ∩ Gt is
an open subgroup of Gt for all t ∈ T and S = {t ∈ T |1 ∈ Vt} is open in T . The
corestricted free pro-c-product

∗
T

(G, 1 )

of the corestricted bundle (G, 1 ) is sometimes called the unrestricted free pro-c-
product of G.

Definition 2.2 Let T, S be profinite spaces and (G,U), (H,V) be corestricted
bundles of pro-c-groups over T and S, respectively. A morphism of bundles

φ : (G,U)−→(H,V)

is called morphism of corestricted bundles if φ(U) ⊆ V. Furthermore, we
say that φ is strict if φ−1(V) = U .
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As a special case of morphisms of corestricted bundle, we consider morphisms
(G,U ′) → (G,U) where U ′ ⊆ U are compact subbundles. In this situation, we
have the following

Proposition 2.3 Let (G,U) and (G,U ′) be corestricted bundles of pro-c-groups
with respect to compact subbundles U and U ′, respectively, with continuous inclu-
sion U ′ ⊆ U . Then the morphism of corestricted bundles id : (G,U ′) → (G,U)
induces a canonical surjection

∗
T

(G,U ′) −� ∗
T

(G,U)

and there is an isomorphism

lim
←−
N

(∗
T

(G,U ′))/N −→∼ ∗
T

(G,U).

Here N runs through the open normal subgroups of ∗T (G,U ′) such that for every
a ∈ ∗T (G,U ′) the preimage of aN under the map

(G,U)
id−→ (G,U ′) ω−→ ∗

T
(G,U ′)

is open in (G,U), i.e.
(i) ω−1(aN) ∩ U is open in U ,
(ii) ω−1(aN) ∩ Gt is open in Gt for all t ∈ T .

Proof: This follows directly from the universal property of the free prod-
uct. In fact, ∗T (G,U) satisfies the property of the completion of ∗T (G,U ′)
with respect to the family of open normal subgroups N satisfying (i) and (ii).
Hence the homomorphism ∗T (G,U ′) −� ∗T (G,U) induces the isomorphism
lim
←− N

(∗T (G,U ′))/N −→∼ ∗T (G,U). �

In particular, it follows that any corestricted free product can be recovered
from the unrestricted free product ∗T (G, 1 ).

2.1 Quotients of corestricted bundles

Let (G,U) be a corestricted bundle of pro-c-groups and let V be a closed
subbundle of G such that Vt is a normal subgroup of Gt for all t ∈ T . Set
V := V ∩U and let Ũ :=

⋃.
t∈T Ut/V t be endowed with the quotient topology with

respect to the canonical surjection U � Ũ . Then Ũ is a compact bundle over T
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and we define the quotient bundle (G̃, Ũ) := (G/V ,U/V) of (G,U) with respect
to V as the set

(G̃, Ũ) =
⋃
.

t∈T

Gt/Vt

endowed with the final topology with respect to the inclusions Gt/Vt ↪→ (G̃, Ũ),
t ∈ T , and Ũ ↪→ (G̃, Ũ). Thus (G̃, Ũ) is a corestricted bundle of pro-c-groups and
there is a canonical surjective morphism of corestricted bundles

φ : (G,U) −� (G̃, Ũ)

which induces a surjection

∗
T

(G,U) −� ∗
T

(G̃, Ũ).

Indeed, φ is continuous: Let Ṽ be open in (G̃, Ũ), and so Ṽ ∩Ũ is open in Ũ . Then
the equality φ−1(Ṽ )∩U = φ−1(Ṽ ∩ Ũ)∩U = φ−1

|U (Ṽ ∩ Ũ) shows that φ−1(Ṽ )∩U
is open in U . With an analogous argument for the fibres it follows that φ−1(Ṽ )
is open in (G,U).

Remark: Let (G,U) be a corestricted bundle of pro-c-groups such that Ut is a
normal subgroup of Gt for all t ∈ T . Then the topology of the quotient bundle
(G/U , 1 ), where 1 is the compact unit bundle

⋃.
t∈T{1t}, can be described as

follows: A subset V ⊆ (G/U , 1 ) is open if and only if

(i) V ∩ Gt/Ut is open in Gt/Ut for all t ∈ T ,
(ii) T (V ) = {t ∈ T | 1t ∈ V } is open in T where 1t denotes the unit in Gt/Ut.

In fact, a subset V of (G/U , 1 ) is open if and only if π−1(V ) is open in (G,U),
i.e. if and only if π−1(V ) ∩ U is open in U and π−1(V ) ∩ Gt is open in Gt for any
t ∈ T . The last statement is equivalent to (i), and since

π−1(V ) ∩ U =
⋃
.

t∈T (V )

U t

the first statement is equivalent to the assertion that T (V ) is open in T .

Of particular interest are quotient bundles which occur when passing to c̃-
completions, where c̃ is a class of finite groups which is closed under taking
subgroups, homomorphic images and finite direct products and contained in the
class c. If G is a pro-c-group, then G(c̃) denotes its maximal pro-̃c factor group.

Proposition 2.4 Let (G,U) be a corestricted bundle of pro-c-groups over T . As-
sume that either

G = U is a compact bundle or
T = T0 ∪ {∗} is the one-point compactification of a discrete set T0

(and G∗ = U∗ = {∗}). Then, with the notion as above, we have a surjective
morphism of corestricted bundles

12



φ : (G,U) � (G̃, Ũ).

This morphism induces an isomorphism(∗
T

(G,U)
)
(c̃) ∼= ∗̃

T
(G̃, Ũ),

where ∗̃ denotes the free product the category of pro-c̃-groups.

Proof: Denote by Vt the kernel of the homomorphism ρt : Gt→G̃t, t ∈ T . Once
we have shown that V :=

⋃.
t∈T Vt is a closed subbundle of (G,U), we proceed as

follows:

The bundle U ∩ V is closed in (G,U) and therefore (G̃, Ũ) = (G/V ,U/(V ∩ U))
is the quotient bundle of (G,U) with respect to V and the canonical surjection
φ : (G,U) � (G̃, Ũ) is a morphism of corestricted bundles. Furthermore, φ induces
a surjection

φ∗ :
(∗
T

(G,U)
)
(c̃) � ∗̃

T
(G̃, Ũ).

On the other hand, the morphism ϕ : (G,U)
ω→∗T (G,U) �

(∗
T

(G,U)
)
(c̃) induces

a map
ϕ̃ : (G̃, Ũ)→

(∗T (G,U)
)
(c̃).

We will show that ϕ̃ is continuous. Let W be open in
(∗T (G,U)

)
(c̃) and let

Ṽ = ϕ̃−1(W ). Then V := ϕ−1(W ) is open in (G,U), and so V ∩ U is open in
U . Since Ũ has the quotient topology with respect to the surjection U � Ũ , the
equality

V ∩ U = φ−1(Ṽ ∩ Ũ) ∩ U = φ−1
|U (Ṽ ∩ Ũ),

shows that Ṽ ∩ Ũ is open in Ũ . Using an analogous argument for the intersection
of Ṽ with a fibre, it follows that Ṽ is open in (G̃, Ũ).

Thus we get a homomorphism ∗̃T (G̃, Ũ)→
(∗T (G,U)

)
(c̃) which is inverse to

φ∗. Now we will show that under our assumptions V is a closed subbundle.
If G = U is a compact bundle, then G is projective limit of finite bundles

Gλ, see [5] (4.3.10). Since G̃λ is obviously a (compact) bundle of pro-̃c-groups, it
follows that G̃ = lim

←− λ
G̃λ is a compact bundle of pro-̃c-groups and V is a closed

subbundle of G.
If T = T0∪{∗} is the one-point compactification of a discrete set T0, then the

fibres Ut, t ∈ T0, are open in U . Thus the set
⋃.

t∈T0 Ut\Vt is open in U , hence
V =

⋃.
t∈T Vt is closed. �

If a is the class of finite abelian groups, then the free pro-a-product and the
free pro-(c ∩ a)-product of abelian pro-c-groups coincide. Thus we obtain the
following
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Corollary 2.5 Let (G,U) be a corestricted bundle of pro-c-groups over T , where
is the one-point compactification of a discrete set T0 and G∗ = U∗ = {∗}. Then
there is a canonical isomorphism( ∗

t∈T
(Gt,Ut)

)ab ∼= ∗̃
t∈T

(Gabt , Ũt),

where Ũt = Ut[Gt,Gt]/[Gt,Gt] and ∗̃ denotes the free product in the category of
pro-abelian-groups.

2.2 Projective limits of corestricted bundles

If {(Gi,Ui), Ti, φij}I is a projective system of corestricted bundles of pro-c-
groups, i.e. the transition morphisms φij are morphisms of corestricted bundles,
then the projective limit of this system as defined in section 1 need not to be a
corestricted bundle. The reason is that the topology on the limit is too coarse.
Nevertheless, the category of corestricted bundles is closed under projective lim-
its: We endow the Cartesian product G̃ =

∏
i∈I Gi with the final topology with

respect to the inclusions
∏

i∈I Gi,ti ↪→ G̃ for any (ti) ∈
∏
Ti and Ũ ↪→ G̃ where

Ũ :=
∏

i∈I Ui is endowed with the product topology. Then G̃ is a corestricted

bundle with respect to the compact subbundle Ũ . Furthermore,

G := {(gi) ∈ G̃ | φij(gi) = gj}

is a corestricted bundle with respect to the compact subbundle

U := {(ui) ∈ G̃ | φij(ui) = uj}

satisfies the universal property of the projective limit. We write

(G,U) = lim
←−
i∈I

(Gi,Ui).

Theorem 2.6 Let G be a pro-c-group and let {(Gi,Ui), Ti, φij}I be a projective
system of corestricted G-bundles of pro-c-groups with G-invariant transition maps
φij. Then the corestricted bundle

(G,U) = lim
←−
i∈I

(Gi,Ui)

over T = lim
←−

Ti is a G-bundle. Assume that

(i) the action of G on each Ti factors through some finite quotient of G,

(ii) the transition maps φij are surjective strict morphisms and

(iii) the maps φi : (G,U) � (Gi,Ui) are G-transitive.

Then

∗
T

(G,U) = lim
←−
i∈I

∗
Ti

(Gi,Ui).
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Using the following lemma, the above result follows from (1.10). Note that
(1.10) holds with respect to the topology on the corestricted projective limit
bundle (G,U), cf. the remark at the end of section 1.

Lemma 2.7 Let G be a pro-c-group acting on the corestricted bundles (G,U) and
(H,V) of pro-c groups over profinite spaces T and S, respectively. Assume that
the action of G on S factors through a finite factor group G/N . Let

φ : (G,U) −� (H,V)

be a G-transitive, surjective, strict morphism. Then the following holds.

(i) Every fibre Hs, s ∈ S, is a finite union of images φ(Gt) of fibres of G.

(ii) Let W be a closed subset of (G,U) which is invariant under an open subgroup
M of G. Then φ(W ) is closed in (H,V).

Proof: For s ∈ S we have Hs = φ(
⋃
t∈φ−1

T (s) Gt) and φ−1
T (Hs) =

⋃
t∈φ−1

T (s) Gt,
hence

φ(W ) ∩Hs =
⋃

t∈φ−1
T (s)

φ(Gt ∩W ).

If σ ∈ N ∩M and t ∈ φ−1
T (s), then

φ(Gt ∩W ) = σφ(Gt ∩W ) = φ(σGt ∩ σW ) = φ(Gσt ∩W ).

It follows that ⋃
t∈φ−1

T (s)

φ(Gt ∩W ) =
⋃
σ∈R

φ(Gσt0 ∩W ), t0 ∈ φ−1
T (s),

where R is a (finite) system of representatives of G/(N ∩M) in G. In particular,

Hs =
⋃
σ∈R′

φ(Gσt0) ,

R′ a system of representatives of G/N in G, hence we proved (i).
Since for any t ∈ φ−1

T (s) the surjective homomorphism of pro-c-groups Gt −�
Hs is closed, we see that φ(W ) ∩ Hs is closed in Hs. Furthermore, since φ is
strict, we have

φ(W ) ∩ V = φ(U ∩W )

and φ|U : U → V is a surjection. Since U and V are compact, φ|U is closed. It
follows that φ(W ) ∩ V is closed in V . Thus φ(W ) is a closed subset of (H,V).

�
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2.3 Corestricted bundles over a one-point compactifica-
tion of a discrete set

Let T = T0 ∪. {∗} be the one-point compactification of a discrete set T0. Let
(Gt)t∈T0 be a family of pro-c-groups indexed by the elements of the discrete set
T0. Consider the set

G :=
⋃
.

t∈T0

Gt ∪. {∗} ,

where {∗} is the group with one element, equipped with the following topology:
Gt ⊆ G (together with its profinite topology) is open in G for all t, and for every
open neighborhood V ⊆ T of ∗ ∈ T , let⋃

.

t∈V

Gt ∪. {∗}

be an open neighborhood of ∗ ∈ G. Then (G, pr, T ), where pr is the continuous
map

pr : G → T ; Gt 3 gt 7→ t, ∗ 7→ ∗
is a compact bundle of pro-c-groups.

Now we consider the topology of a corestricted bundle over T . Let

(G,U) = (
⋃
.

t∈T0

Gt ∪. {∗},
⋃
.

t∈T0

Ut ∪. {∗})

be a corestricted bundle of pro-c-groups over T with respect to the compact
subbundle U . Then a subset V of (G,U) is open if and only if the following holds:

(i) If ∗ ∈ V , then Ut ⊆ V for almost all t ∈ T0,
(ii) V ∩ Gt is open in Gt for all t ∈ T0.

Indeed, assume V is open in (G,U), and so (ii) holds, and W = V ∩U is open in
U . Let S = {t ∈ T |Ut ⊆ W}. Then

T\S = {t ∈ T | Ut * W} = prU(U\W ).

Since U is compact, and so U\W is compact, it follows that T\S is compact,
hence S is open in T . If ∗ ∈ V , then S contains ∗, thus T\S is finite, i.e. (i)
holds. Conversely, assume that (i) and (ii) holds. If ∗ ∈ V , then T\S is finite.
It follows that W = U\

⋃.
T\S(Ut\Wt) is open in U . If t 6= ∗, then Ut is open in

U , and so every open subset of Ut is open in U , thus W = V ∩ U is open in U , if
∗ /∈ V .

We will prove that under certain conditions a fibrewise surjective strict mor-
phism φ : (G,U)→(H,V) of corestricted bundles is open, where (H,V) is a core-
stricted bundle over the one-point compactification of a discrete set. We need
the following

16



Lemma 2.8 Let (U , prU , T ), (V , prV , S) be compact bundles of pro-c-groups
where T is a profinite space and S = S0 ∪. {∗} is the one-point compactifica-
tion of the discrete set S0 such that V∗ = {∗V} is the group with one element.
Assume that

(i) φ : U →V is a fibrewise surjective morphism,

(ii) φT : T →S is an open map and

(iii) #φ−1(∗V) = 1, i.e. ∗V has a unique preimage.

Then φ is open.

Proof: Let W ⊆ U be an open subset, and so Wt = W ∩Ut is open in Ut for all
t ∈ T . Since φ is fibrewise surjective, the homomorphisms φt : Ut −� UφT (t) are
open. Hence it follows that for all s ∈ S the set

φ(W )s = φ(W ) ∩ Vs =
⋃

t∈φ−1
T (s)

φt(Wt)

is open in Vs. In order to prove that φ(W ) is open in V , by lemma (1.6) it remains
to show that for a closed subset X ⊆ V , the set

SX = {s ∈ S | Xs ⊆ φ(W )s}

is open in S. Again by lemma (1.6), the set

TX = {t ∈ T | φ−1(X)t ⊆ Wt}

is open in T . Hence, since φT is open, it follows that φT (TX) is open in S.
Obviously φT (TX) ⊆ SX . Since S = S0 ∪. {∗} is the one-point compactification
of a discrete space, it remains to note that ∗ ∈ φT (TX) if ∗ ∈ SX . In fact, this is
guaranteed by the assumption #φ−1(∗V) = 1. �

We are now able to prove the following

Proposition 2.9 Let (G,U) be a corestricted bundle of pro-c-groups over a profi-
nite space T and (H,V) be a corestricted bundle over S where S = S0 ∪. {∗} is
the one-point compactification of the discrete set S0 such that H∗ = {∗H} is the
group with one element. Let

φ : (G,U)→(H,V)

be a fibrewise surjective strict morphism of corestricted bundles such that

(i) φT : T →S is an open map and

(ii) #φ−1(∗H) = 1, i.e. ∗H has a unique preimage.

Then φ is open.
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Proof: Let W ⊆ G be an open subset. For all t ∈ T , the set Wt ⊆ Gt is open.
Since φ is fibrewise surjective, the homomorphisms φt : Gt −� HφT (t) are open
and hence for all s ∈ S the set

φ(W )s = φ(W ) ∩Hs =
⋃

t∈φ−1
T (s)

φt(Wt)

is open in Hs. It remains to show that φ(W ) ∩ V is open in V . Note that since
φ is strict and surjective, we have

φ(W ) ∩ V = φ(W ∩ U).

By lemma (2.8), the induced map φ|U : U −� V is open which implies the claim.
�

One should remark that the assumption (i) in the above “open mapping re-
sult” is necessary by the following general observation: If φ : (G,U)→ (H,V) is an
open morphism of corestricted bundles over T and S, respectively, then φT : T →
S is open. In fact, let T ′ ⊆ T be an open subset and let W = φ(

⋃.
t∈T ′ Gt) ∩ V

which is an open subset of V by assumption. Now lemma (1.6) implies that the
set φT (T ′) = {s ∈ S | {1t} ⊆ Wt}, where 1t denotes the unit element in Vt, is
open in S.

The following lemma shows that the canonical projections of projective limits
of profinite spaces are open provided the transition maps are. More precisely, we
have the following

Lemma 2.10 Let {Si, ρij}I be a projective system of profinite spaces such that
all transition maps ρij : Si → Sj, i ≥ j are surjective. Let S = lim

←− j∈I
Sj and

denote by ρi the canonical surjection S � Si, i ∈ I. Then the following holds:

(i) If all transition maps ρij are open, then the maps ρi are open, too.

(ii) If Si = S0i ∪. {∗i} is the one-point compactification of a discrete set S0i and
ρ−1
ij ({∗j}) = {∗i} for all i ≥ j, then the maps ρij and ρi are open.

Proof: Assertion (ii) follows from (i), since the maps ρij are obviously open.
In order to prove (i), it is sufficient to show that the set ρi(V ∩ S) is open in Si,
where

V =
∏
j∈I

Vj ⊆
∏
j∈I

Sj

with open and closed subsets Vj ⊆ Sj such that Vj = Sj for all j /∈ I0, where I0

is a finite non-empty subset of I. For any i ∈ I we define a subseteq Wi ⊆ Si as
follows: Let k ∈ I such that k ≥ i and k ≥ j for all j ∈ I0 and set

Wi := ρki
( ⋂
j∈I0

ρ−1
kj (Vj)

)
⊆ Vi ⊆ Si.
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Since I is directed, it follows that Wi is independent from the choice of k. As-
suming that ρij is open for all i ≥ j, Wi is an open and closed subset of Si. We
claim that Wi = ρi(V ∩ S). It is easy to see that ρij maps Wi surjectively onto
Wj for all i ≥ j. Let W = lim

←− j∈I
Wj and denote by ρ̃i the canonical surjection

W � Wi. Since W ⊆ V ∩ S, we have

Wi = ρ̃i(W ) ⊆ ρi(V ∩ S).

Conversely, let x = (xj)I ∈ V ∩ S and let k ∈ I such that k ≥ i and k ≥ j
for all j ∈ I0. Then ρki(xk) = xi and ρkj(xk) = xj ∈ Vj for all j ∈ I0, i.e.
xk ∈

⋂
j∈I0 ρ

−1
kj (Vj). Therefore ρi(x) = xi ∈ Wi which finishes the proof. �

Theorem 2.11 Let {(Gi,Ui), Ti, φi,j}I be a projective system of corestricted bun-
dles of pro-c-groups, where Ti = T0i ∪. {∗i} is the one-point compactification of a
discrete set T0i and (Gi)∗i = {∗Gi} for all i ∈ I. Let T = lim

←− i∈I
Ti and

(G,U) = lim
←−
i∈I

(Gi,Ui)

as defined in section 2.2. Assume that the following holds.

(i) The morphisms φij are fibrewise surjective and strict.

(ii) For all i ≥ j the transition maps satisfy φ−1
ij ({∗j}) = {∗i}.

Then

∗
T
G = lim

←−
i∈I

∗
Ti

(Gi,Ui).

Proof: Using (2.9) and (2.10), we see that the canonical maps φi : G � (Gi,Ui)
are open. Now (1.10) (with G = 1) and its following remark give the desired
result. �

In proposition (2.3) we have seen that every corestricted free product

∗T (G,U) can be written as the completion of the unrestricted free product

∗T (G, 1 ). In the case where T is the one-point compactification of a discrete
set T0, we will show that ∗T (G,U) can also be obtained in a different way as pro-
jective limit involving unrestricted free products of quotient bundles with fibres
Gt/Ut.

Assume that Ut is a normal subgroup of Gt for all t ∈ T . If S is a finite subset
of T0, then US denotes the compact subbundle

⋃.
t∈T\S Ut of U . According to

(2.1), we have a canonical (open) surjection of bundles

(G,U) � (G/US,U/US) = (G/US, 1 ),
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where as sets
G/US =

⋃
.

t∈S

Gt ∪.
⋃
.

t∈T\S

Gt/Ut.

It follows that we obtain an isomorphism of bundles

(G,U) −→∼ lim
←−
S

(G/US, 1 ),

where S runs trough the finite subsets of T0. Thus we get the following proposi-
tion, see also [4] Satz (2.2):

Proposition 2.12 Let T = T0 ∪. {∗} be the one-point compactification of a dis-
crete set T0 and let (G,U) be a corestricted bundle of pro-c-groups over T . Let Ut
be normal in Gt for all t ∈ T . Then

∗
t∈T

(Gt,Ut) = lim
←−
S

( ∗
t∈S
Gt ∗ ∗

t∈T\S
(Gt/Ut, 1 )

)
.

Proof: If S1 ⊆ S2 are finite subsets of T0, then the morphism of bundles

φS2,S1 : (G/US2 , 1) � (G/US1 , 1 )

is fibrewise surjective and φS : (G,U) � (G/US, 1 ) is open. Using (1.10) (with
G = 1), we obtain the desired result. �

3 Corestricted free products of families

Let G be a pro-c-group and let (Gt)t∈T and (Ut)t∈T be families of closed
subgroups of G indexed by the points of a profinite space T , where Ut is a closed
subgroup of Gt for every t ∈ T . Assume that (Ut)t∈T is a continuous family, i.e.

U = {(g, t) ∈ G× T | g ∈ Ut}

is a compact bundle over T , see (1.7)(i). Let

G = {(g, t) ∈ G× T | g ∈ Gt}

and let prG be the restriction to G of the projection G × T � T . Let G be
equipped with the following topology: a set V ⊆ G is open if and only if

(i) V ∩ U is open in U ,
(ii) V ∩ Gt is an open subset of Gt for all t ∈ T .
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(We identify the fiber Gt = (Gt, t) with Gt.) Observe that this topology on
G is finer than the topology which is induced by the topology of the constant
(compact) bundle (G × T, pr, T ). We define the maps m, ι, e by restricting the
corresponding maps from the constant bundle to G.

Lemma 3.1 With the notation and assumptions as above let x ∈ G and let V
be an open neighborhood of x. Then there exists an open neighborhood V0 of x of
the following form:

(i) if x ∈ Ut, then V0 = (xN × S) ∩ G, where N is an open normal subgroup of
G and S open in T , and V0 ∩ U ⊆ V ∩ U ,

(ii) if x ∈ Gt\Ut, then V0 = xNt, where Nt is an open normal subgroup of Gt,
and V0 ⊆ V .

Proof: If x ∈ Ut, then x ∈ W = V ∩U . Since W is open in the compact bundle
U (which equipped with the induced topology of the compact constant bundle
G×T ), there exists an open normal subgroup N of G and an open subset S of T
such that (xN ×S)∩U ⊆ W . Then V0 = (xN ×S)∩G is an open neighborhood
of x ∈ G and V0 ∩ U ⊆ V ∩ U .

Assume that x ∈ Gt\Ut and let Nt be an open normal subgroup of Gt such
that xNt ⊆ Vt = V ∩ Gt. We may assume that Nt is small enough such that
xNt ∩ Ut = ∅. It follows that the set V0 = xNt ⊆ Gt ⊆ G is open in G. Indeed,
for t′ 6= t the set V0 ∩Gt′ = ∅ is open in Gt′ , the set V0 ∩Gt = xNt is open in Gt

and V0 ∩ U = ∅ is open in U . �

Lemma 3.2 Let G be a pro-c-group, U0 ⊆ U are closed subgroups of G and g an
element of G. Let V be an open subset of G containing gU0 such that

gU0 = V ∩ gU.

Then there exists an open subgroup H of G such that gU0 ⊆ gH ⊆ V and
U0 = H ∩ U .

Proof: Since U0 =
⋂
i∈I Hi, where Hi is an open subgroup of G for every i ∈ I,

we have G\V ⊆
⋃
i∈I(G\gHi). Since G\V is closed in G, hence compact, and

the sets G\gHi are open (Hi is open and closed), we get G\V ⊆
⋃n
i=1(G\gHi),

and so
gU0 ⊆

n⋂
i=1

gHi ⊆ V.

Thus H =
⋂n
i=1Hi has the desired properties. �
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Theorem 3.3 With the notation as above, the space G = (G,U) is a corestricted
bundle of pro-c-groups over T with respect to U , and we have continuous inclu-
sions

U � � // (G,U) �
� φ // G× T.

Proof: Since the injective map (G,U)
φ
↪→ G × T is continuous and G × T is a

totally disconnected Hausdorff space, the same is true for the space (G,U).
Obviously, the map prG : G→T is continuous: if S ⊆ T is open, then pr−1

G (S)∩
Gt is empty or equal to Gt for all t ∈ T and pr−1

G (S)∩ U = pr−1
U (S) is open in U .

In particular, it follows that a fiber Gt is closed in (G,U) and that the topology
on Gt induced by the topology of G is the pro-c topology of Gt.

Now we prove that the multiplication m : G ×T G → G is continuous. Let
(a, b) ∈ G ×T G and let t0 ∈ T such that a, b ∈ Gt0 . Let V =

⋃.
t∈T Vt ⊆ G be an

open neighborhood of m(a, b) = ab. We consider the following two cases.
1. Let a /∈ Ut0 or b /∈ Ut0 . Assume that a /∈ Ut0 and let Nt0 be an open normal

subgroup of Gt0 such that abNt0 ⊆ Vt0 . We may assume that Nt0 is small enough
such that aNt0 ∩ Ut0 = ∅. It follows that the set Va := aNt0 ⊆ Gt0 ⊆ G is an
open neighborhood of a in G, see lemma (3.1).

Let Vb :=
⋃.

t6=t0 Gt ∪. (bNt0). Then Vb is open in (G,U), since Vb ∩ U =⋃.
t6=t0 Ut ∪

. (bNt0 ∩ Ut0) is open in U and Vb ∩ Gt is open in Gt for all t ∈ T .
Furthermore, m(Va, Vb) = abNt0 ⊆ Vt0 ⊆ V .

2. Let a, b ∈ Ut0 . Using lemma (3.1), we replace V by (abN×S)∩V , where N
is an open normal subgroup of G and S an open subset of T , i.e. we may assume
that

W = V ∩ U = (abN × S) ∩ U =
⋃
.

t∈S

(abN ∩ Ut).

Thus Vt ∩ Ut = abN ∩ Ut for every t ∈ S. Let

Wa =
⋃
.

t∈S

(aN ∩ Ut) and Wb =
⋃
.

t∈S

(bN ∩ Ut).

Then Wa and Wb are open neighborhoods of a and b in U , respectively, and
mU(Wa,Wb) ⊆ W . Let

Sa := {t ∈ S|aN ∩ Ut 6= ∅} and Sb := {t ∈ S|bN ∩ Ut 6= ∅}.

For every t ∈ Sa resp. t ∈ Sb there are elements nt ∈ N resp. mt ∈ N such that
ant ∈ Ut and bmt ∈ Ut and

aN ∩ Ut = ant(N ∩ Ut) resp. bN ∩ Ut = amt(N ∩ Ut).

Let t ∈ Sa ∩ Sb. Using lemma (3.2) and

antbmt(N ∩ Ut) = abN ∩ Ut = Vt ∩ Ut = antbmtUt ∩ Vt,
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there exists an open subgroup Ht of Gt such that

antbmt(N ∩ Ut) ⊆ antbmtHt ⊆ Vt

and N ∩ Ut = Ht ∩ Ut. Let

Va =
⋃
.

t∈Sa∩Sb

ant(Ht)
bmt ∪.

⋃
.

t∈Sa\Sb

aN,

Vb =
⋃
.

t∈Sa∩Sb

bmtHt ∪.
⋃
.

t∈Sb\Sa

bN,

where (Ht)
bmt = (bmt)Ht(bmt)

−1. Then m(Va, Vb) ⊆ V . We show that the sets
Va and Vb are open in (G,U). Obviously we have condition (ii). Furthermore,

Va ∩ U =
⋃
.

t∈Sa

(aN ∩ Ut) = Wa, and Vb ∩ U =
⋃
.

t∈Sb

(bN ∩ Ut) = Wb,

since

ant(Ht)
bmt ∩ Ut = ant(Ht ∩ Ut)bmt = ant(N ∩ Ut)bmt = ant(N ∩ Ut) = aN ∩ Ut.

In order to prove that the inversion map ι : G → G is continuous, let a−1 ∈ G
and V ⊆ G an open neighborhood of a−1. Then the set V −1 = {x ∈ G|x−1 ∈ V }
contains a, ι(V −1) = V and V −1 is open in G, since V −1 ∩ U = ι−1

U (V ∩ U) is
open in U as ιU is continuous, and V −1 ∩Gt = (V ∩Gt)−1 is an open subset of Gt

for all t ∈ T .

Finally, since the unit e is equal to the composition T
eU−→U ↪→ G, the map e

is continuous. �

The continuous map φ induces a homomorphism

φ∗ : ∗
T

(G,U)−→G.

Definition 3.4 Let (Gt)t∈T and (Ut)t∈T be families of closed subgroups of a pro-
c-group G indexed by the points of a profinite space T . Assume that (Ut)t∈T is a
continuous family and Ut is a closed subgroup of Gt for every t ∈ T . Let (G,U)
be the corestricted bundle which is associated to these families.

We say that the pro-c-group G is the corestricted free pro-c-product of the
family (Gt)t∈T with respect to the continuous family (Ut)t∈T of closed subgroups
of G if φ∗ is an isomorphism. We write

G = ∗
t∈T

(Gt, Ut).

23



Remarks: We consider the situation given in definition (3.4).

1. If (G,U) is a corestricted bundle of pro-c-groups over the one-point compact-
ification T is of a discrete set T0. Then it can be considered as a corestricted
bundle associated to the families (Gt)t∈T and (Ut)t∈T of closed subgroups of the
pro-c-group G = ∗T (G,U), see corollary (1.5); indeed, since the bundle U is
compact, the family (Ut)t∈T is continuous, see (1.7)(ii).

2. For all t ∈ T , let U ′t ⊆ Ut be a closed subgroup such that (U ′t)t∈T is a
continuous family. If U ′ denotes the compact bundle associated to the family
(U ′t)t∈T , then we have a canonical surjection ∗T (G,U ′) −� ∗T (G,U) and an
isomorphism lim

←− N
(∗T (G,U ′))/N −→∼ ∗T (G,U), see proposition (2.3).

3. If t0 ∈ T , then the canonical map ωGt0 : Gt0→ ∗
t∈T

(Gt, Ut) is an injec-

tive group homomorphism. This follows from the fact that the composition
Gt0→∗t∈T (Gt, Ut)→G is injective.

3.1 Abelianization of corestricted free products

Let ∏∐
t∈T0

(At, Bt) =
{

(at)t∈T0 ∈
∏
t∈T0

At | at ∈ Bt for almost all t ∈ T0

}
be the restricted product over a discrete set T0 of abelian locally compact groups
At with respect to closed subgroups Bt. The topology is given by the subgroups
V such that

(i) V ∩ At is open in At for all t ∈ T0,
(ii) V ⊇ Bt for almost all t ∈ T0.

Then we call ∏∐
t∈T0

c(At, Bt) := lim
←−
V

( ∏∐
t∈T0

(At, Bt)
)
/V,

the compactification of
∏∐

t∈T0(At, Bt), where V runs through all open subgroups of
finite index in

∏∐
t∈T0(At, Bt). The canonical map

∏∐
t∈T0(At, Bt)→

∏∐
c
t∈T0(At, Bt)

has dense image.

We define the discretization of
∏∐

t∈T0(At, Bt) by∏∐
t∈T0

d(At, Bt) := lim−→
W

W

where W runs through the finite subgroups of
∏∐

t∈T0(At, Bt). If the subgroups
Bt of At, t ∈ T0, are open and compact, then

∏∐
t∈T0(At, Bt) is locally compact.

Using the equality (
∏∐

t∈T0(At, Bt))
∨ =

∏∐
t∈T0(A

∨
t , (At/Bt)

∨), we obtain∏∐
t∈T0

d(At, Bt) = (((
∏∐
t∈T0

(At, Bt))
∨)c)∨ and

∏∐
t∈T0

c(At, Bt) = (((
∏∐
t∈T0

(At, Bt))
∨)d)∨,

where ∨ denotes the Pontryagin-dual.
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Proposition 3.5 Let T the one-point compactification of the discrete set T0.

(i) Let At, t ∈ T0, be discrete abelian torsion groups such that their exponents
have a common finite bound. Then we have the equality of abstract groups∏∐

t∈T0

d(At, Bt) =
∏∐
t∈T0

(At, Bt).

However,
∏∐

d
t∈T0(At, Bt) is endowed with the discrete topology in contrast to∏∐

t∈T0(At, Bt).

(ii) Let each At, t ∈ T0, be a profinite abelian group. Then the canonical map∏∐
t∈T0(At, Bt) ↪→

∏∐
c
t∈T0(At, Bt) is injective. Setting A∗ = B∗ = {0}, then

(Bt)t∈T is a continuous familiy of closed subgroups of
∏∐
t∈T0

c(At, Bt) and

∗
t∈T

(At, Bt) ∼=
∏∐
t∈T0

c(At, Bt)

where ∗t∈T (At, Bt) is the corresponding corestricted free pro-abelian product.

(iii) Let ∗t∈T (Gt, Ut) be the corestricted free pro-c-product of the family {Gt}t∈T
with respect to the continuous family {Ut}t∈T where G∗ = U∗ = {∗}. Then( ∗

t∈T
(Gt, Ut)

)ab
=
∏∐
t∈T

c(Gab
t , Ũt) = lim

←−
N

(∏∐
t∈T

(Gab
t , Ūt)

)
/N,

where Gab
t = Gt/[Gt, Gt] and Ūt = Ut[Gt, Gt]/[Gt, Gt] and N runs through

the subgroups of
∏∐

t∈T (Gab
t , Ūt) of finite index such that N ∩ Gab

t is open in
Gab
t for all t ∈ T and N ⊇ Ūt for almost all t ∈ T .

Proof: Under the assumption of (i) every element of
∏∐

t∈T0(At, Bt) generates a
finite subgroup. Thus (i) is obvious.

In order to prove (ii), we fix t0 ∈ T0. If Vt0 is an open subgroup of At0 ,
then Ṽt0 := Vt0 ×

∏∐
t6=t0(At, Bt) is an open subgroup of

∏∐
t∈T0(At, Bt) of finite

index. If Vt0 runs through a basis of neighborhoods of the unit of At0 , then the
t0-component of the intersection of the open subgroups Ṽt0 is {0}. Varying t0,
it follows that the intersection

⋂
V of all open subgroups V of finite index in∏∐

t∈T0(At, Bt) is zero. This proves the first assertion of (ii). The second assertion
of (ii) follows immediately from the definitions. Finally, (iii) follows from (ii) and
(2.5). In fact, noting that {s} ⊆ T is open and closed in T for all s ∈ T0, by (1.4)
(ii) there exists a continuous splitting of Gs→ ∗

t∈T
(Gt, Ut). �
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4 Cohomology of corestricted free products

Now we consider the cohomology of a corestricted free pro-c-product

G = ∗
t∈T

(Gt, Ut)

of a family (Gt)t∈T with respect to a continuous family (Ut)t∈T of closed subgroups
of a pro-c-group G̃ in the case where T = T0 ∪. {∗} is the one-point compactifi-
cation of a discrete set T0. By Ũt we denote the normal closure of Ut in Gt.

Lemma 4.1 With the above notation (Ũt)t∈T is a continuous family. Further-
more, if G =

⋃.
t∈T0 Gt ∪. {∗}, U =

⋃.
t∈T0 Ut ∪

. {∗} and Ũ =
⋃.

t∈T0 Ũt ∪
. {∗},

then the (continuous) morphism of bundles id : (G,U) → (G, Ũ) induces an iso-
morphism of pro-c-groups

∗
t∈T

(Gt, Ut) −→∼ ∗
t∈T

(Gt, Ũt).

Proof: Let V be an open neighborhood of the identity in G̃. Then V contains
a normal subgroup N of G̃. Since {Ut}t∈T is a continuous family, the set

T (N) = {t ∈ T | Ut ⊆ N} = {t ∈ T | Ũt ⊆ N}

is an open subset of T containing {∗}. Since T is the one-point compactification
of the discrete set T0, it follows that also the set

T (V ) = {t ∈ T | Ũt ⊆ V }

containing T (N) is open in T . Hence, the family (Ũt)t∈T is also continuous and
we have the continuous (not necessarily open) morphism of bundles id : (G,U)→
(G, Ũ). In order to show that the corresponding corestricted free products co-
incide, it remains to show that any morphism (G,U) → H, where H is a finite
c-group, is continuous with respect to the topology of (G, Ũ). However, this is a
direct consequence of remark 2 following definition (3.4). �

Let A be a discrete ∗t∈T (Gt, Ut)-module. Let H i
nr(Gt, A) be defined as the

image of the inflation map H i(Gt/Ũt, A
Ũt)→H i(Gt, A). It is easy to see that the

map

resH : H i(G,A)→
∏
t∈T

H i(Gt, A)

has image in
∏∐
T

d(H1(Gt, A), H1
nr(Gt, A)), see [4] §4.
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Theorem 4.2 With the notation and assumptions as above let A be a finite

∗t∈T (Gt, Ut)-module. Then there is an exact sequence

0→A/AG→
∏∐
T

d(A/AGt , AŨt/AGt)→H1(G,A)→
∏∐
T

d(H1(Gt, A), H1
nr(Gt, A))→ 0

and an isomorphism

H2(G,A) −→∼
∏∐
T

d(H2(Gt, A), H2
nr(Gt, A)).

If the cohomological dimension of Gt/Ũt is equal or less than 1 for all t ∈ T , then

H i(G,A) −→∼
⊕
T

H i(Gt, A), i ≥ 3.

Proof: By lemma (4.1), we may assume without loss of generality that Ut =
Ũt, i.e. Ut is a normal subgroup of Gt for any t ∈ T . If i ≤ 2, the assertion
follows along the same lines as in [4] Satz (4.1); but one has to be careful with
the topology and has to replace the restricted product by its discretization, see
(3.5)(i).

If i ≥ 3, we use dimension shifting: Let A′ be defined by the exact sequence
0→A→CoindGA→A′→ 0, where CoindGA denotes the coinduced G-module
consisting of all continuous functions from G to A. By assumption we have
H i
nr(Gt, A) = 0 for all t ∈ T and i ≥ 2. Thus the assertion follows since we get

compatible isomorphisms φ : H i−1(G,A′) →∼ H i(G,A) and φt : H
i−1(Gt, A

′) →∼
H i(Gt, A), see also [4] Satz (4.2). �

Now we consider in the following case which has an application in number
theory. Let I be a directed set and let

G = lim
←−
λ∈I

Gλ,

be a pro-c-group given as projective limit of pro-c-groups Gλ. Let T = lim
←− λ∈I

Tλ,

where Tλ = T0λ ∪. {∗λ} is the one-point compactification of a discrete set T0λ.
Let {G,U} = {(Gλ,Uλ)}λ be a projective system of corestricted bundles (Gλ,Uλ)
over Tλ with transition maps φµλ, where Gλ =

⋃.
tλ∈T0λ Gtλ ∪. {∗λ} and Uλ =⋃.

tλ∈T0λ Utλ ∪
. {∗λ} and Utλ ⊆ Gtλ ⊆ Gλ are closed subgroups, i.e. the diagrams

Utµ
� � //

��

Gtµ
� � //

��

Gµ

��
Utλ
� � // Gtλ

� � // Gλ

commute for µ ≥ λ and φµλ(tµ) = tλ. Let U = lim
←− λ

Uλ and G = lim
←− λ

Gλ be

the projective limits and let Gt = lim
←− λ

Gtλ , Ut = lim
←− λ

Utλ . Assume that the

following holds:
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(i) the morphisms φµλ are fibrewise surjective and strict,

(ii) for all µ ≥ λ the transition maps satisfy φ−1
µλ({∗λ}) = {∗µ}.

By theorem (2.11) we have

∗
T

(G,U) = ∗
t∈T

(Gt, Ut) −→∼ lim
←−
λ

∗
tλ∈Tλ

(Gtλ , Utλ)

and we have a canonical homomorphism

ϕ : ∗
t∈T

(Gt, Ut)−→G.

Remark: In the number theoretical situation we have in mind, one can also

argue with theorem (2.6) in order to establish the isomorphism above.

Proposition 4.3 With the notation and assumptions as above let p be a prime
number and let c be the class of finite p-groups. Then the following are equivalent.

(i) ∗
t∈T

(Gt, Ut)
ϕ
∼−→ G is an isomorphism.

(ii) The induced maps

ϕ∗ : H1(G,Z/pZ)→∼ lim−→
λ

∏∐
Tλ

d(H1(Gtλ ,Z/pZ), H1
nr(Gtλ ,Z/pZ))

ϕ∗ : H2(G,Z/pZ) ↪→ lim−→
λ

∏∐
Tλ

d(H2(Gtλ ,Z/pZ), H2
nr(Gtλ ,Z/pZ))

are bijective resp. injective.

Proof: Using (4.2), we have

H i(∗
t∈T

(Gt, Ut),Z/pZ) = lim−→
λ

H i( ∗
tλ∈Tλ

(Gtλ , Utλ),Z/pZ)

= lim−→
λ

∏∐
Tλ

d(H i(Gtλ ,Z/pZ), H i
nr(Gtλ ,Z/pZ))

for i = 1, 2. Now the usual argument, see [5] (1.6.15), gives the result. �

We have the following application in number theory. Let p be a prime number
and let k be number field and T a set of primes of k. We use the following notation.

k(p) is the maximal p-extension of k,
kT is the maximal p-extension of k which is completely decomposed

at every prime of T ,
G(k(p)|kT ) is the Galois group of the extension k(p)|kT ,
GP(k) is the decomposition group of G(k(p)|k) with respect to P,
IP(k) is and inertia group of G(k(p)|k) with respect to P,

where P is an extension of a prime p of k to k(p).
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Theorem 4.4 Let p be an odd prime number and let k be a number field of CM-
type containing the group µp of all p-th roots of unity, with maximal totally real
subfield k+, i.e. k = k+(µp) is totally imaginary and [k : k+] = 2. Let

T = {p | p ∩ k+ is inert in k|k+} ∪ {p|p}.

Then the Galois group G(k(p)|kT ) is the corestricted free pro-p-product of the
family (GP(k))P∈T with respect to the continuous family (IP(k))P∈T , i.e. the
canonical map

∗
P∈T

(GP(k), IP(k)) −→∼ G(k(p)|kT )

is an isomorphism. Here T = lim
←− K

T̄K is the projective limit of the one-point

compactifications T̄K of the discrete sets TK of all prolongations of T to K and
K runs through all finite Galois extensions inside kT |k.

This follows from (4.3) and the results of [7]: (2.4), (2.5), (2.2).

References

[1] Gildenhuys, D., Ribes, L. A Kurosh subgroup theorem for free pro-c-products
of pro-c-groups. Trans. Amer. Math. Soc. 186 (1973) 309–329

[2] Haran, D. On closed subgroups of free products of profinite groups. Proc.
London Math. Soc. (3) 55 (1987) 266–298

[3] Melnikov, O. V. Subgroups and homology of free products of profinite groups
(in Russian). Izv. Akad. Nauk SSSR 53 (1989). English translation in Math.
USSR Izv. 34 (1990) 97–119

[4] Neukirch, J. Freie Produkte pro-endlicher Gruppen und ihre Kohomologie.
Archiv der Math. 22 (1971) 337–357

[5] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields,
2nd edition. Springer 2008

[6] Pontryagin, L. S. Topological Groups. New York, London, Paris 1966

[7] Wingberg, K. Sets of Completely Decomposed Primes in Extensions of
Number Fields. Preprint 2013

Mathematisches Institut e-mail: gaertner (at) mathi.uni-heidelberg.de
der Universität Heidelberg wingberg (at) mathi.uni-heidelberg.de
Im Neuenheimer Feld 288
69120 Heidelberg
Germany

29


