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Abstract

We develop the theory of a generalization of the notion of BCH-

code to additive codes, which are not necessarily linear. The useful-

ness of this notion is demonstrated by constructing a large number of

record-breaking linear codes via concatenation.

1 General Theory

We start out by generalizing our theory of BCH-codes as developed in
[3, 4] to additive codes. Let F = IFqn , m < n, and E an m-dimensional
IFq−vectorspace. Let Φ : F −→ E be a surjective IFq−linear mapping.
We fix a divisor w|(qn − 1) and a natural number l. We construct an array
B = B(t, l, w, Φ). The columns of B are indexed by the elements u ∈ W of
the subgroup of order w of F ∗. Let P(l, t) = {∑l+t−2

i=l aiX
i|ai ∈ F}. The rows

of B are indexed by the polynomials p(X) ∈ P(l, t). The entry in row p(X)
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and column u ∈ W is defined as

Φ(p(u)).

Proposition 1 With notation as above the array B(t, l, w, Φ) is an orthog-

onal array of strength t− 1, with parameters OAq(t−1)(n−m)(t− 1, w, qm).

Proof: We can assume without restriction w = qn − 1. Let columns
u1, u2, . . . , ut−1 and entries e1, e2, . . . , et−1 ∈ E be given. Count the rows
p(X) satisfying Φ(p(ui)) = ei, i = 1, 2, . . . , t− 1. We claim that this number
is λ = q(t−1)(n−m). Fix a tuple (y1, y2, . . . , yt−1), where Φ(yi) = ei. There are
λ such tuples. We claim that there is precisely one p(X) ∈ P(l, t) such that
p(ui) = yi, i = 1, 2, . . . , t − 1. This is an elementary fact from polynomial
interpolation.
Let

P0(t, l, w, Φ) = {p(X) ∈ P(l, t), Φ(p(W )) = 0},

ρo(t, l, w, Φ) = dim(P0(t, l, w, Φ)).

All dimensions are dimensions of IFq− vectorspaces. The meaning of the
parameter is that in B(t, l, w, Φ) every row occurs with multiplicity qρ0 ,
where ρ0 = ρo(t, l, w, Φ). It follows that the simplification B0(t, l, w, Φ) of
B(t, l, w, Φ), where each row is written only once, is an orthogonal array
OAq(t−1)(n−m)−ρ0 (t− 1, w, qm). We wish to define a dual ( compare [6]).

Definition 1 Identify E with IFm
q . Then every row of B(t, l, w, Φ) can be seen

as an mw−tuple over IFq. Define the dual B(t, l, w, Φ)⊥ = B0(t, l, w, Φ)⊥ as

the dual with respect to the dot product in this space IFmw
q . Then B(t, l, w, Φ)⊥

clearly has dimension mw − n(t− 1) + ρo(t, Φ).

Observe that this definition is a generalization of the dual in the
IFqm−linear case when E = IFqm and Φ is an E-linear mapping.

Theorem 1 Consider B(t, l, w, Φ)⊥ as an IFq−linear qm−ary code of length

w. Then the minimum distance d of B(t, l, w, Φ)⊥ satisfies d ≥ t.
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Proof: The IFq−linearity of C = B(t, l, w, Φ)⊥ shows that d is the mini-
mum weight of a nonzero vector.
Let χ = (χi) ∈ C, i = 1, 2, . . . , w and χi = 0(i > t − 1). We have to show
χ = 0. Observe that the entries χi are themselves m−tuples over IFq. Fix
j, 1 ≤ j ≤ t − 1. As B(t, l, w, Φ) is an orthogonal array of strength t − 1 we
find for every e ∈ E a row v = (vi) ∈ B(t, l, w, Φ) such that vj = e and vk = 0
for k ≤ t − 1, k 6= j. The orthogonality shows χj · e = 0. As this is true for
all e ∈ E we see that χj = 0.

We propose the name twisted BCH-codes for these codes B(t, Φ)⊥

when Φ is not IFqm−linear. These qm−ary codes will be good if ρo(t, l, w, Φ)
is large.

1.1 The function ρo(t, Φ)

The above discussion shows that all we need to know about Φ is its kernel.
It turns out to be advantageous to use the trace form defined by

(x, y) = tr(x · y).

Here tr = tr : F −→ IFq is the trace. Let U =< γ1, . . . , γm > such that its
dual (with respect to the trace form) is the kernel of Φ : U⊥ = ker(Φ).
Put Γ = {γ1, . . . , γm}. Then the condition Φ(p(u)) = 0 is equivalent with
tr(γp(u)) = 0 for all γ ∈ Γ.
We wish to describe the growth of ρ0(t) = ρ0(t, l, w, Φ) as a function of t. It
is clear that

0 ≤ ∆Φ(t) = ρ0(t + 1, l, w, Φ)− ρ0(t, l, w, Φ) ≤ n.

Definition 2 Call a polynomial p(X) ∈ F [X] cyclotomic if all the expo-

nents of its nonzero monomials belong to the same cyclotomic coset. Here

a cyclotomic coset is an orbit of the Galois group Gal(F |IFq) in its operation

on the integers mod w. We choose R = {l, l + 1, . . . , l + w − 1} as set of

representatives.
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Let Z be a cyclotomic coset of length s. We determine its contribution to
the growth of ρ0(t, Φ).

Definition 3 Let Z = Z(i) be a cyclotomic coset of length s. The contri-

bution contr(Z, l, w, Φ) of Z to ρ0(t, l, w, Φ) is defined as the dimension of

the space of coefficients (aj)j=0,...,s−1 ∈ F s satisfying

s−1∑
j=0

aqj

j uiqj ∈ ker(Φ) for all u ∈ W.

Equivalently contr(Z, l, w, Φ) =
∑

z∈Z ∆Φ(z).

Proposition 2

contr(Z, l, w, Φ) =| Z | (n−m).

Proof: Let Z = Z(i), s =| Z | . Observe that the IFq− vector space gener-
ated by the xi, where x ∈ W is the subfield IFqs . Let α = (a0, a1, . . . , as−1) ∈
F s and consider the polynomial pα(X) =

∑s−1
j=0 aqj

j Xqj
. The contribution

contr(Z, l, w, Φ) is the dimension of the space of tuples α satisfying pα(xi) ∈
Ker(Φ) for every x ∈ W. As the polynomial pα(X) is linearized ( it affords an
IFq-linear mapping) an equivalent condition is pα(IFqs) ⊆ Ker(Φ). Another
equivalent condition is tr(γ · pα(u)) = 0 for all u ∈ IFqs and γ ∈ Γ. We have

γ ·pα(u) =
∑s−1

j=0(γ
qn−j

aju)qj
. It follows tr(γ ·pα(u)) = tr((

∑s−1
j=0 γqn−j

aj) ·u) =

0 for all u ∈ IFqs , equivalently
∑s−1

j=0 γqn−j
aj ∈ IF⊥

qs , where the orthogonal com-
plement is taken with respect to the trace-form.
As IF⊥

qs has dimension n − s we see that each such condition corresponding
to an element γ ∈ Γ defines a space of codimension precisely s. As Γ has
m elements we see that our space of coefficients has codimension ≤ ms. It
follows contr(Z, l, w, Φ) ≥ s(n−m).
Summing up this inequality over all cyclotomic cosets we get ρ0(w + 1) ≥
w(n−m). The simplification B0 of B is an OAqw(n−m)−ρ0(w+1)(w, w, qm). Cer-
tainly the parameter λ must be an integer. We conclude that we have equality
all the way. We also see that B(w + 1)⊥ is the 0-code.

In particular we conclude that it suffices to consider cyclotomic polyno-
mials:
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Proposition 3 If there is a polynomial p(X) =
∑i

k=l akX
k, ai 6= 0 such that

Φ(p(W )) = 0, then there is a cyclotomic such polynomial with the same

leading coefficient ai.

The values of ρ0(t, l, w, Φ) remain unchanged if the elements of Γ are
multiplied by a nonzero constant ( from F ). It follows in fact from the
definition of our array that the effect of replacing Γ by γ · Γ for some γ 6= 0
is a permutation of the rows of B(t, l, w, Φ). We can therefore assume 1 ∈ Γ.
It follows that in case m = 1 we may choose Φ = tr. This reverts to linear
BCH-codes in the ordinary sense.

Definition 4 Let us call a family of u automorphisms of F |IFq an interval

of length u if they have the form φj+a, j = 0, 1, . . . , u− 1 for fixed a. Here φ

is the Frobenius automorphism.

Theorem 2 Any nontrivial linear combination of an interval of length u of

automorphisms of F |IFq has a kernel of dimension < u.

Proof: It is clear that we can assume without restriction a = 0, so that
our automorphisms are given by σi(x) = xqi

, i = 0, . . . , u − 1. The kernel
of the linear combination

∑u−1
i=0 aiσi consists of the roots of the linearized

polynomial
∑u−1

i=0 aix
qi
. As this is a nonzero polynomial of degree ≤ qu−1, we

conclude that the dimension of the kernel is < u.
In our situation consider the square matrix M, with rows indexed by γ ∈ Γ
and columns indexed by φj+l, where φ is the Frobenius automorphism, and
j = 1, 2, . . . ,m. The preceding Theorem proves that M is a regular matrix (
meaning that det(M) 6= 0). We will make use of this fact in the sequel.
Fix a cyclotomic coset Z = Z(i) of length |Z| = s. Let p(X) be a correspond-
ing cyclotomic polynomial. Write p(X) =

∑s−1
j=0(ajX

i)qj
. We want to simplify

the condition Φ(p(W )) = 0. Consider the polynomial q(Y ) =
∑s−1

j=0(ajY )qj
.

We know from the proof of Proposition 3 that an equivalent condition is
Φ(q(IFqs)) = 0. For γ ∈ Γ put qγ(Y ) = γ · q(Y ) =

∑s−1
j=0(γ

qn−j
ajY )qj

. Another
equivalent condition is tr(qγ(IFqs)) = 0 for every γ ∈ Γ. Observe that IFqs

is an intermediate field between IFq and F. Therefore the trace tr factors:
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tr = trs ◦ Tr, where Tr : F −→ IFqs , trs : IFqs −→ IFq. Our condition reads

trs(
∑s−1

j=0(bju)qj
) = 0 for all u ∈ IFqs . Here bj = Tr(γqn−j

aj). The condition

simplifies: trs((
∑s−1

j=0 bj) ·u) = 0 for all u, hence
∑s−1

j=0 bj = 0. This is our final
result:

Lemma 1 The cyclotomic polynomial p(X) =
∑s−1

j=0(ajX
i)qj

satisfies

Φ(p(W )) = 0 if and only if for every γ ∈ Γ we have
∑s−1

j=0 Tr(γqn−j
aj) = 0.

Here Tr : F −→ IFqs is the trace.

Observe that the choice of the set of representatives R = {l, l + 1, . . . , l +
w − 1} implies an ordering of the degrees of our polynomials: l < l + 1 <
. . . < l + w − 1. We make use of the result above to compute ∆Φ(t). So let
the cyclotomic coset Z = Z(i) of length s be given. Use the ordering implied
by R and write Z = {z1, z2, . . . , zs}. Write zj = z1q

π(j). Were π is a bijective
mapping from {1, . . . , s} to {0, . . . , s− 1}.

We form a matrix M = M(Z) with m rows and s columns. The rows
are indexed by the elements γk ∈ Γ, k = 1, 2, . . . ,m. The entry of M in

row k, column j is mk,j = γq−π(j)

k . Denote by K the kernel of the trace
Tr : F −→ IFqs , put D = Km. Denote by Sj ⊂ Fm the space generated by
the first j columns of M. We introduce the IFq−dimensions dj = dim(Sj∩D).
The main result of our discussion above reads as follows:

Lemma 2 Put j = l + t − 1. With the terminology as introduced above we

have ∆(t) = ρ0(t + 1, l, w, Φ)− ρ0(t, l, w, Φ) = n + (dj − dj−1)− (dim(Sj)−

dim(Sj−1)). Here all dimensions are over IFq.

This can be considerably simplified. At first observe that dim(Sj) −
dim(Sj−1) can only take on values 0 or n. Moreover we know from Theorem
2 that matrix M has maximal rank r = min(m, s). Define H to be the set of
indices h where dim(Sh) − dim(Sh−1) = n. We know that H = {h1 < h2 <
. . . , hr} has cardinality r = min(m, s). Clearly h1 = 1. If j /∈ H, then ∆(t) =
n. If j ∈ H, then ∆(j) = dj − dj−1. In the generic case s = n of a cyclotomic
coset of maximal length n we have K = 0, hence ∆(t) = 0 if j ∈ H. Another
extremal case is s = 1. Here we have Tr = tr : F −→ IFq. Matrix M has only
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one column in that case. We see that ∆(t) is the dimension of the space U⊥,
which is n−m. Let us collect our result in the following main theorem:

Theorem 3 (Determination of ∆(t)) Put i = l + t − 1, consider the cy-

clotomic coset Z = Z(i) of length s. Write Z = {z1 < z2 < . . . < zs} and

zj = z1 · qπ(j). Here π is a bijective mapping from {1, . . . , s} to {0, . . . , s−1}.

In particular π(1) = 0.

Form the matrix M with m rows and s columns, with entries

mk,j = γq−π(j)

k .

Let K = ker(Tr), where Tr : F −→ IFqs is the trace to the intermediate

field. Let Sj ∈ Fm be the space generated by the j first columns of M, put

D = Km and dj = dim(Sj ∩ D) (as a vector space over IFq). Let H =

{h1, . . . , hr} ⊂ {1, 2, . . . , s} be the set of those indices h for which Sh ⊃ Sh−1.

Here r = min(m, s). If i = zj, then the following holds:

∆(t) = ρ0(t + 1, l, w, Φ)− ρ0(t, l, w, Φ) =

 n if j /∈ H

dj − dj−1 if j ∈ H

Observe the special cases

∆(t) =

{
0 if j ∈ H, s = n

n−m if j ∈ H, s = 1.

1.2 The linear case

The case of linear BCH-codes is m = 1, γ1 = 1, hence H = {1}. It follows

∆(t) =
{

n if l + t− 1 is not minimal
n− s if l + t− 1 is minimal.

Here minimal means minimal in the cylcotomic coset, with respect to the
ordering l < l + 1 < . . . .
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1.3 Case m = 2

We know that we can choose Γ = {1, γ}. Denote by IFqk the field generated
by γ. Assume s > 1. Then H = {1, h2}, where h2 is the minimal j such

that γ 6= γqπ(j)
, equivalently such that k is not a divisor of π(j). Consider

i = z1. We have to determine the dimension of the space of u ∈ F such that
u ∈ K and uγ ∈ K. This is equivalent with Tr(< 1, γ >) = 0. Now the space
< 1, γ >, seen as a vector space over IFqs , has dimension 1 or 2. Accordingly
its dual with respect to Tr has dimension n

s
− 1 or n

s
− 2. It follows that

∆(t) = n− s and = n− 2s, respectively. As we know the contribution of the
cyclotomic coset we do not have to consider the case then i = zh2 explicitly.

Theorem 4 With notation as in Theorem 3 let m = 2, Γ = {1, γ}. Denote

by IFqk the field generated by γ. Assume s > 1. Then h1 = 1, h2 is the minimal

j such that k does not divide π(j). Put i = l + t − 1, write i = zj. If j /∈ h,

then ∆(t) = n.

• If k|s, then ∆(t) = n− s if j = 1 or j = h2.

• If k does not divide s, then ∆(t) =

{
n− 2s if j = 1

n if j = h2.

2 Construction of good linear codes

We apply our theory of twisted BCH-codes as well as concatenation to con-
struct a large number of good linear codes. We start with the primitive
narrow-sense case w = qn − 1, l = 1. Observe that i = t in the notation of
Theorem 3. We find it convenient in this case to consider the corresponding
A-array instead of B(t) = B(t, 1, qn−1, Φ). This array A(t) has an additional
column corresponding to 0 ∈ F, its rows are indexed by pairs (p(X), z), where
p(X) ∈ P(1, t), z ∈ E. The entries are defined by Φ(p(u)) + z. The same ar-
gument as in the case of the B-array shows that A(t) is an orthogonal array
of strength t (whereas the strength of B(t) is t−1). It is clear that the multi-
plicity of each row in A(t) is the same as in B(t), hence qρ0(t). The parameters
of A(t) are OAq(t−1)(n−m)(t, qn, qm). We will refer to the A(t)⊥ as extended
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twisted BCH-codes. We know from the proof of Proposition 3 that A(qn)⊥

is the 0-code. As Z(qn − 1) has length 1 we conclude from Theorem 4 that
∆(qn−1) = n−m. It follows that A(qn−1)⊥ has dimension m (and distance
qn). It is clear that A(qn − 1)⊥ is the repetition code {(e, e, . . . , e)|e ∈ E}.
In case m = 2 we write Γ = {1, γ}.

2.1 Case q = 2, n = 6, m = 2, w = 63, l = 1

For the convenience of the reader we list the nonzero cyclotomic cosets in
this case:

cyclotomic cosets of IF64 over IF2

1,2,4,8,16,32
3,6,12,24,48,33
5,10,20,40,17,34
7,14,28,56,49,35

9,18,36
11,22,44,25,50,37
13,26,52,41,19,38
15,30,60,57,51,39

21,42
23,46,29,58,53,43

27,54,45
31,62,61,59,55,47

We know that Φ = trF |IF4 corresponds to the choice γ ∈ IF4 − IF2. Let
us denote the function corresponding to γ ∈ IF8 − IF2 simply by Φ. In the
following table we give the values of ρ0(t, Φ), and of ρ0(t, trF |IF4) as well as the
parameters of the linear quaternary codes and eventually of the correspond-
ing (twisted) extended BCH-codes. We list the parameters of the twisted
codes only if they are better than those of the BCH-codes. In order to
facilitate comparison we have written in the place of the dimension k the
quaternary dimension. Thus, if a code has 211 elements, we write k = 5.5.
This convention will be used in this and the following subsection.
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t ρ0(t, trF |IF4) BCH-code ρ0(t, Φ) twisted code
4 0 [64, 54, 5] 0
5 6 [64, 54, 6] 6
6 6 [64, 51, 7] 6
7 6 [64, 48, 8] 6
8 6 [64, 45, 9] 6
9 12 [64, 45, 10] 12
10 12 [64, 42, 11] 15 [64, 43.5, 11]
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t ρ0(t, trF |IF4) BCH-code ρ0(t, Φ) twisted code
11 12 [64, 39, 12] 15 [64, 40.5, 12]
12 12 [64, 36, 13] 15 [64, 37.5, 13]
13 18 [64, 36, 14] 21 [64, 37.5, 14]
14 18 [64, 33, 15] 21 [64, 34.5, 15]
15 18 [64, 30, 16] 21 [64, 31.5, 16]
16 18 [64, 27, 17] 21 [64, 28.5, 17]
17 24 [64, 27, 18] 27 [64, 28.5, 18]
18 30 [64, 27, 19] 33 [64, 28.5, 19]
19 36 [64, 27, 20] 36
20 42 [64, 27, 21] 36
21 48 [64, 27, 22] 42
22 52 [64, 26, 23] 44
23 52 [64, 23, 24] 44
24 52 [64, 20, 25] 44
25 58 [64, 20, 26] 50
26 64 [64, 20, 27] 56
27 64 [64, 17, 28] 62
28 64 [64, 14, 29] 65 [64, 14.5, 29]
29 70 [64, 14, 30] 71 [64, 14.5, 30]
30 76 [64, 14, 31] 71
31 76 [64, 11, 32] 71
32 76 [64, 8, 33] 71
42 136 [64, 8, 43] 131
43 140 [64, 7, 44] 137
44 140 [64, 4, 45] 143 [64, 5.5, 45]
45 146 [64, 4, 46] 149 [64, 5.5, 46]
46 152 [64, 4, 47] 152 [64, 4, 47]
47 158 [64, 4, 48] 158 [64, 4, 48]
48 158 [64, 1, 47] 158 [64, 1, 47]

Some of the quaternary codes are rather good. In fact, quaternary linear
codes of parameters [64, 43, 11], [64, 40, 12], [64, 37, 14], [64, 34, 15], [64, 28, 19]
or [64, 5, 46] are not known to exist. Our code [64, 5.5, 46] is in fact better
than any linear quaternary code as a linear [64, 6, 46] cannot exist. In the
next subsection we will use just this [64, 5.5, 46] and its subcodes [64, 4, 48]
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and [64, 1, 64] to construct new extremely good binary linear codes.

2.1.1 New binary codes

Let us use concatenation with a binary code [3, 2, 2]. When applied to our
quaternary [64, 5.5, 46] we obtain a binary linear code C1 with parameters

[192, 11, 92].

This code is optimal with respect to minimal distance and to dimension. By
construction it contains subcodes C2 ⊃ C3 with parameters [192, 8, 96] and
[192, 2, 128], respectively. Application of construction X ( see [8], chapter 18
and [4]) to the pair C1 ⊃ C2 with auxiliary codes [3, 3, 1] and [6, 3, 3] yields,
after addition of a parity check bit, new binary codes with parameters

[196, 11, 94] and [199, 11, 96].

These codes are length-optimal. Observe that length-optimality implies op-
timality with respect to dimension and to minimum distance. Application of
a Griesmer step yields codes

[100, 10, 46] and [103, 10, 48].

Both are d−optimal, the latter code is length-optimal.
Code [198, 11, 95] was obtained by lengthening of C1. It contains C3. Apply
construction X to this pair, using auxiliary codes [10, 9, 2], [14, 9, 4], [18, 9, 6]
and [21, 9, 8], add a final parity check bit in each case. This yields new code
parameters

[209, 11, 98], [213, 11, 100], [217, 11, 102] and [220, 11, 104].

Our IF2−linear quaternary codes can be used in many respects like linear
quaternary codes. It is clear that if truncation with respect to one coordinate
is applied to such a quaternary code [n, k, d], the result is an IF2−linear
quaternary [n − 1, k, d − 1]. In the same way shortening leads to a code
[n − 1, k − 1, d]. Applying these mechanism recursively to our quaternary
[64, 5.5, 46] yields, after concatenation with [3, 2, 2], the following new binary
linear codes:

[189, 11, 90], [186, 11, 88], [183, 11, 86][180, 11, 84][177, 11, 82],
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[174, 11, 80][171, 11, 78], [186, 9, 90].

The two first and the last of these codes are d-optimal. Codes [196, 11, 94]
and [199, 11, 96] have dual distance three. Application of construction Y 1
( see [8], chapter 18 and [4]) yields codes

[193, 9, 94] and [196, 9, 96].

Both are optimal with respect to d and to k.
Groneick&Grosse ([7], see also [4]) observe that the Griesmer mechanism can
be applied to any codeword of a binary linear code, not necessarily only those
of minimal weight:

Lemma 3 (Groneick,Grosse) If there is a binary linear code [n, k, d] pos-

sessing a nonzero codeword of weight w, where d > w
2
, then there is a code

[n− w, k − 1, d− [w
2
]].

The weight distribution of C1 is

A0 = 1, A92 = 1344, A96 = 252, A108 = 448, A128 = 3.

We see that C1 is doubly-even. The words of weights 0,96 and 128 form
the 8-dimensional subcode C2. Application of Lemma 3 in cases w = 96 and
w = 108 yields codes

[96, 10, 44] and [84, 10, 38].

Both are new and d−optimal. Case w = 128 yields [64, 10, 28]. This is a
d−optimal code, but not new. The auxiliary code [7, 3, 4] which was used to
construct the code [199, 11, 96] out of C1 has constant weight 4. In particular
the lengthened code is doubly-even and has a code word of weight w = 112.
Application of Lemma 3 yields a length-optimal code

[87, 10, 40].

Here are two more applications of Lemma 3: Our code [186, 11, 88] has a
word of weight 108, code [189, 11, 90] has a word of weight 96. This leads to
codes

[78, 10, 34] and [93, 10, 42].
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The latter code is optimal with respect to d. If a code [186, 11, 88] could
be constructed containing a word of weight 110, then a d−optimal code
[77, 10, 34] would exist. Finally we apply construction X to our chain
[192, 11, 92] ⊃ [192, 8, 96] ⊃ [192, 2, 128] of binary linear codes. Start from a
subcode of codimension 2 of the largest of these codes, apply X with the rep-
etition code [4, 1, 4]. This produces a [196, 9, 96], still containing [196, 2, 128].
Another application of X, with [50, 7, 24] as auxiliary code, produces the
new code [246, 9, 120]. In an analogous way we can start from a subcode of
codimension one, use construction X with [6, 2, 4] and in the last step with
[48, 8, 22] or [51, 8, 24] to obtain new parameters [246, 10, 118] and [249, 10, 120].

2.2 Case q = 2, n = 6, m = 2, w = 63 and more new

binary codes

We use the material collected in subsection 2.1, but we go back to the codes
B(t, l, 63, Φ)⊥, making use of the non-narrow sense case l 6= 1. The mapping
Φ is the same as in subsection 2.1. Twisted BCH-codes may best be de-
scribed by their defining intervals I = {l, l + 1, . . . , l + t − 2}. So we write
C(I) = B(t, l, 63, Φ)⊥. Observe that if I1 and I2 are intersecting defining in-
tervals, then C(I1)∩C(I2) = C(I1 ∪ I2). We consider the twisted BCH-codes
corresponding to the defining intervals

[19, 63] ⊂ [19, 8], [17, 63].

Observe that we calculate mod 63. As an example the interval [19, 8] =
{19, 20, . . . , 62, 63 = 0, 1, 2, . . . , 8} has 53 elements. The corresponding ad-
ditive quaternary codes have the following parameters, where the notational
conventions of the preceding subsections are used:

Da = [63, 4.5, 46] ⊃ Db = [63, 1.5, 54],Dc = [63, 3, 48].

We claim Db∩Dc = 0. As Db∩Dc has defining interval [17, 8] and the 0-code
certainly has defining interval [17, 16] it suffices in the light of Theorems 3
and 4 to show that for i ∈ {8, 9, . . . , 15} we have that i is neither minimal
nor second-to-minimal in its cyclotomic coset. Recall that the ordering is
given by 17 < 18 < 19 < . . . < 16. This is easily checked.
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Apply concatenation with the binary code [3, 2, 2]. We obtain binary linear
codes

Ca = [189, 9, 92] ⊃ Cb = [189, 3, 108], Cc = [189, 6, 96].

Naturally the relations of inclusion and intersection carry over from the Di

to the Ci.
An application of construction X to the pair Ca ⊃ Cb, with [32, 6, 16] as
auxiliary code, yields the new parameters [221, 9, 108]. Apply construction
XX ( see [1]) to the codes Ca ⊃ Cb, Cc. In a first step apply construction X
to the pair Ca ⊃ Cc, with [7, 3, 4] as auxiliary code. We get lengthened codes
C̃a = [196, 9, 96] ⊃ C̃b = [196, 3, 112]. Another application of construction
X with auxiliary codes ( in turn) [7, 6, 2], [15, 6, 6], [18, 6, 8], [32, 6, 16] yields
codes with new parameters:

[203, 9, 98], [211, 9, 102], [214, 9, 104], [228, 9, 112].

2.3 Case m = 2, k = n

With notation as in Theorem 4 this is the case when Γ = {1, γ} and IFq(γ) =
F. Use the notation of Theorem 3. If the length of our cyclotomic coset is
s > 1, then H = {1, 2}. Let t = zj. If j > 2, then of course ∆(t) = n.
Theorem 4 yields the following:

• If s = n, then ∆(t) = 0 if j = 1 or j = 2.

• If s < n, then ∆(t) =
{

n− 2s if j = 1
n if j = 2.

Proposition 4 In case m = 2, k = n > 2 the twisted BCH-code

A(qn − 1− qn−2, Φ)⊥ is an IFq2-ary and IFq−linear code with parameters

[qn, n + 2, qn−2(q2 − 1)].

It contains the repetition code [qn, 2, qn]. Here dimensions are over IFq.

Proof: Let t = qn − 1− j, where j < qn−2. As tq and tq2 both are smaller
than t it follows that ∆(t) = n in these cases. Let t = qn − 1 − qn−2. Then
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Z(t) has length n and consists of the −qj, j = 0, 1, . . . , n− 1. It follows that
t is second-smallest. We get ∆(t) = 0.

Observe that no linear IFq2−ary code can have such good parameters,
because of the Griesmer bound. Concatenation with the IFq-ary linear code
[q + 1, 2, q] leads to a series of IFq-ary linear codes with parameters [qn(q +
1), n + 2, qn−1(q2 − 1)], containing a subcode [qn(q + 1), 2, qn+1], This is a
well-known family of two-weight codes, a special case of construction SU1
of [5]. They meet the Griesmer bound with equality. Let us consider a few
special cases:

2.3.1 Case q = 3, n = 5, m = 2, w = 242, l = 1

We apply construction X to our pair of ternary linear codes

[972, 7, 648] ⊃ [972, 2, 729].

Using auxiliary codes [11, 5, 6], [20, 5, 12], [34, 5, 21], [45, 5, 28], [61, 5, 39],
[74, 5, 48], [87, 5, 57], [100, 5, 66] and [113, 5, 75] yields the following ternary
codes:

[983, 7, 654], [992, 7, 660], [1006, 7, 669], [1017, 7, 676], [1033, 7, 687],

[1046, 7, 696], [1059, 7, 705], [1072, 7, 714], [1085, 7, 723].

All but three of these codes meet the Griesmer bound with equality, the
remaining three are one longer than the Griesmer bound. In two of these
cases ([1006, 7, 669] and [1046, 7, 696]) two Griesmer steps lead to optimal
codes ([114, 5, 75] and [118, 5, 78], respectively). The Griesmer bound shows
that even the last code [1033, 7, 687] is d−optimal. Codes with parameters
obtained by two Griesmer steps are already known. The best of them are
[112, 5, 74], [115, 5, 76], [121, 5, 81].

2.3.2 Case q = 4, n = 3, m = 2, w = 63, l = 1

We obtain quaternary codes

[320, 5, 240] ⊃ [320, 2, 256],
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Construction X with auxiliary quaternary codes [6, 3, 4], [9, 3, 6],
[16, 3, 12], [21, 3, 16] yields parameters

[326, 5, 244], [329, 5, 246], [336, 5, 252] and [341, 5, 256].

Each of these codes meets the Griesmer bound with equality.

2.4 Case m = 2, n = 6, k = 3, w = q6 − 1, l = 1

Let t = q6 − 1− j, where j < q4. Then tq = q6 − 1− jq, tq2 = q6 − 1− jq2.
Both these elements are smaller than t. We see that t = zj, j /∈ H. It follows
∆(t) = 6 in these cases.
Let t = q6 − q4 − 1. The cyclotomic coset Z(t) = −Z(1) has length 6, with
minimal element z1 = q6 − q5 − 1 and t = z2 = z1q It follows 2 ∈ H. By
Theorem 4 we have ∆(q6 − q4 − 1) = 0. It follows that A(q6 − q4 − 1, Φ)⊥ is
a q2-ary code with IFq-dimension 2 + 6 = 8.
Let t = q6 − 1 − q4 − j, where j < q. We have tq = q6 − q5 − jq − 1, tq5 =
q6 − jq5 − q3 − 1. Again we see that both these elements are smaller than
t. As tq5/tq = q4 and 3 does not divide 4 we see that t = zj, j /∈ H. Thus
∆(t) = 6.
Finally consider t = q6−1− q4− q. We have s = 3, z1 = q6−1− q5− q2, z2 =
t = z1q

5. As 3 does not divide 5 we have 2 ∈ H, hence ∆(t) = n − s = 3
(Theorem 4). We have shown the following:

Theorem 5 Let n = 6, m = 2, k = 3, w = q6 − 1, l = 1. Then the extended

twisted BCH-codes A(q6−q4−q−1, Φ)⊥ ⊃ A(q6−q4−1, Φ)⊥ ⊃ A(q6−1, Φ)⊥

form a chain of q2−ary IFq−linear codes with parameters

[q6, 11, q6 − q4 − q] ⊃ [q6, 8, q6 − q4] ⊃ [q6, 2, q6].

Here the dimensions are over IFq. Concatenation with an IFq−ary linear code

[q + 1, 2, q] leads to a chain of linear IFq−ary codes

[q6(q + 1), 11, q2(q5 − q3 − 1)] ⊃ [q6(q + 1), 8, q5(q2 − 1)] ⊃ [q6(q + 1), 2, q7].
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The middle code, of dimension 8, meets the Griesmer bound with equality.
We have analized the special case q = 2 of this Theorem in subsection 2.1.
In case q = 3 we obtain codes

[2916, 11, 1935] ⊃ [2916, 8, 1944] ⊃ [2916, 2, 2187].

Griesmer steps, when applied to the largest of these codes, produce ternary
codes [981, 10, 645], [336, 9, 215] and [121, 8, 72]. Observe that no ternary code
[121, 8, 73] is known.

2.5 Parameters of new linear codes

For the convenience of the reader we collect the new parameters of linear
codes constructed in this section. More parameters improving on the data
base [2] may be obtained by standard constructions like shortening, punc-
turing and residues.
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q code parameters section
2 [78,10,34] 2.1.1
2 [84,10,38] 2.1.1
2 [87,10,40] 2.1.1
2 [93,10,42] 2.1.1
2 [96,10,44] 2.1.1
2 [100,10,46] 2.1.1
2 [103,10,48] 2.1.1
2 [171,11,78] 2.1.1
2 [174,11,80] 2.1.1
2 [177,11,82] 2.1.1
2 [180,11,84] 2.1.1
2 [183,11,86] 2.1.1
2 [186,11,88] 2.1.1
2 [186,9,90] 2.1.1
2 [189,11,90] 2.1.1
2 [192,11,92] 2.1.1
2 [193,9,94] 2.1.1
2 [196,11,94] 2.1.1
2 [196,9,96] 2.1.1
2 [199,11,96] 2.1.1
2 [203,9,98] 2.2
2 [209,11,98] 2.1.1
2 [213,11,100] 2.1.1
2 [211,9,102] 2.2
2 [217,11,102] 2.1.1

19



q code parameters section
2 [214,9,104] 2.2
2 [220,11,104] 2.1.1
2 [221,9,108] 2.2
2 [228,9,112] 2.2
2 [246,10,118] 2.1.1
2 [249,10,120] 2.1.1
3 [983,7,654] 2.3.1
3 [992,7,660] 2.3.1
3 [1006,7,669] 2.3.1
3 [1017,7,676] 2.3.1
3 [1033,7,687] 2.3.1
3 [1046,7,696] 2.3.1
3 [1059,7,705] 2.3.1
3 [1072,7,714] 2.3.1
3 [1085,7,723] 2.3.1
3 [2916,11,1935] 2.4
3 [2916,8,1944] 2.4
4 [326,5,244] 2.3.2
4 [329,5,246] 2.3.2
4 [336,5,252] 2.3.2
4 [341,5,256] 2.3.2
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