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Abstract

In this paper we develop a theory of translation groups for dimensional
dual hyperovals and APN functions. It will be seen that both theories can
be treated, to a large degree, simultaneously. For small ambient spaces it
will be shown that the translation groups are normal in the automorphism
group of the respective geometric object. For large ambient spaces there
may be more than one translation group. We will determine the struc-
ture of the normal closure of the translation groups in the automorphism
group and we will exhibit examples which in fact do admit more than one
translation group.

1 Introduction

In this paper we investigate dimensional dual hyperovals and APN functions
which admit translation groups (the notion translation group refers to regular
action on the underlying geometric object together with a natural assumption
on the fixed points of such a group). It turns out that both cases lead to similar
theories and can be studied to a large part simultaneously.

In Section 2 we introduce translation groups for APN functions and dimen-
sional dual hyperovals. We also exhibit a one-to-one correspondence between
alternating dimensional dual hyperovals and quadratic APN functions (Theo-
rem 2.4).

In Chapter 3 we introduce a common hypothesis (Hypothesis A) shared by
translation groups of dual hyperovals and APN functions. This implies (Theo-
rems 3.2 and 3.5) that translation groups are elementary abelian 2-groups which
have a quadratic action on the underlying F2-space. Moreover these theorems
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show that the existence of a translation group implies, in the case of a dimen-
sional dual hyperoval, that this hyperoval is bilinear. In the case of an APN
function we are lead to quadratic APN functions. In Theorem 3.10 we show
that the automorphism group of an alternating dimensional dual hyperoval is
isomorphic to the normalizer of a translation group in the automorphism group
of the associated quadratic APN function. The notion of a nucleus of a bilinear
dimensional dual hyperoval is introduced, which is an analogue of the notion of
nuclei in semifields. Then we prove (Theorem 3.11) that the translation groups
form a conjugacy class of self-centralizing TI subgroups in the automorphism
group.

Chapter 4 is devoted to the investigation of the normal closure of the trans-
lation groups in the automorphism group of a dimensional dual hyperoval or
an APN function respectively. This section is mainly of group theoretic nature
and it is based on the theory of weakly closed TI subgroups of Timmesfeld [23].
Using this strong tool from group theory we get in Theorem 4.6 a pretty precise
description of the normal closure of the translation groups in the automorphism
group. However this result will be even improved in the subsequent section
by Corollary 5.13. In the sequel we also pin down the action of this group on
the underlying F2-space. In particular we show that the ambient space of an
n-dimensional dual hyperoval has a dimension ≥ 3(n − 1) (Theorem 4.10), if
the hyperoval admits more than one translation group. The analogous assertion
holds for APN functions too.

In Chapter 5 we give extension constructions of dimensional dual hyperovals
(Theorem 5.1) and APN functions (Theorem 5.3). These lead to examples of
dimensional dual hyperovals and APN functions whose automorphism groups
contain more than one translation group. Nontrivial nuclei of dual hyperovals
will provide a useful criterion for the existence of more than one translation
group. We also show that each dimensional dual hyperovals or APN function,
which admits more than one translation group, can be recovered as an extension
of a dimensional dual hyperoval or an extension of an APN function respectively
(Theorem 5.10).

In Chapter 6 we provide concrete examples of dimensional dual hyperovals
and APN functions which admit at least two translation groups.

We always assume that hyperovals are at least 4-dimensional and APN func-
tions are defined on at least 4-dimensional spaces since for n ≤ 3 some special
phenomena can occur. Indeed the appendix addresses the n-dimensional dual
hyperovals for n ≤ 3 (which are all known) and explains these special phenom-
ena.

2 APN functions and dual hyperovals with trans-
lation groups

Notation. The group theoretic notation of our text follows standard references
like [10], [12], or [16]. Linear transformations are usually denoted by Greek
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letters and, following the conventions of group theory, we write them on the
right side of their argument. Also, if U is a vector space and H a group (set) of
invertible linear operators, the fixed points of H on U are denoted by

CU (H) = {u ∈ U |uσ = u, all σ ∈ H},

while the space
[U,H] = 〈[u, σ] |u ∈ U, σ ∈ H〉,

with [u, σ] = u(1− σ), is called the commutator of U and H.

Definition. Let U be an n+m-dimensional space over F2, n > 1, m ≥ 1.

(a) A set S of size 2n of n-dimensional subspaces of U is called a dimensional
or n-dimensional dual hyperoval if for any S ∈ S and any one-dimensional
subspace V of S there exists precisely one S′ ∈ S such that V = S ∩ S′. We
also denote a dimensional dual hyperoval by the symbol DHO. We call 〈S〉 the
ambient space of the DHO. If Y is a subspace of U such that Y ⊕ S = U for all
S ∈ S then we say that the DHO splits over Y . The group

Aut(S) = {σ ∈ GL(〈S〉) | Sσ = S}

is the automorphism group of S. A subgroup T ≤ Aut(S) which acts regularly
on S, such that the DHO splits over Y = CU (T ), is called a translation group
of the DHO. Clearly, |T | = 2n.

(b) Let U = X ⊕ Y , dimX = n. A function f : X → Y is called an almost
perfect nonlinear function or an APN function if for 0 6= a ∈ X and b ∈ Y the
equation

f(x+ a) + f(x) = b

has at most two solutions. Note that if x is a solution then x + a is a second
solution. The set

Sf = {x+ f(x) |x ∈ X}

is the graph of f . Two APN functions f, g : X → Y are equivalent if there exists
an affine isomorphism of U which maps Sf onto Sg. The APN function f is
normed if f(0) = 0. Clearly, every APN function is equivalent to a normed APN
function. Let f be normed. The space 〈Sf 〉 is the ambient space of the APN
function. The automorphism group Aut(f) is the stabilizer of Sf in AGL(〈Sf 〉).
We say that the normed APN function f splits over the subspace W of U iff
dimW = m and Sf ∩W = 0.

(c) We denote elements of AGL(U) by symbols τ = τ + cτ with τ ∈ GL(U),
cτ ∈ U if

uτ = uτ + cτ , u ∈ U.

From now on we always assume that APN functions are normed.
We will also assume that the ambient space of a DHO, or an APN
function, coincides with the space U on which they are defined.
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We note that the automorphism group of a DHO S (of an APN function f)
acts faithfully as a permutation group on S (on Sf ). For the case of a DHO
see [26, Lemma 4.1] while for the case of an APN function the property follows
from the fact that Sf contains 0 and a basis of the ambient space.

Before we can define translation groups for APN functions we need:

Lemma 2.1. Assume the notation of the definition and let f be an APN func-
tion. The restriction of the epimorphism φ : AGL(U)→ GL(U), τ 7→ τ , to the
group Aut(f), is a group monomorphism.

Proof. Let τ = 1 + cτ ∈ kerφ. Assume cτ 6= 0. For x ∈ X we get (x+ f(x))τ =
x+ cX + f(x) + cY ∈ Sf , where cX and cY are the projections of cτ into X and
Y . Hence f(x + cX) = f(x) + cY for x ∈ X. Clearly, cX 6= 0. So |X| ≤ 2 by
the APN property, a contradiction as n > 1.

Definition and Remark. We denote by A(f) the image of Aut(f) under φ
and call it the linear part of the automorphism group of f . We constantly will
make use of the isomorphism

Aut(f) ' A(f).

So for any τ ∈ A(f) there exists a unique cτ ∈ U such that τ = τ + cτ lies in
Aut(f). We also call τ the pre-image of τ . Since

στ + cστ = στ = σ τ = στ + cστ + cτ

we observe that the map c : A(f) → U , τ 7→ cτ , is an 1-cocycle. Let T be a
subgroup of Aut(f) and T its the linear part. We call T or T a translation group
if T acts regularly on Sf and f splits over CU (T ). Clearly, |T | = 2n.

Definition. Let U = X ⊕ Y , dimX = n, and dimY = m.

(a) Let S be an n-dimensional DHO in U which splits over Y . Then there
exists an injection β : X → Hom(X,Y ) such that

S = {Se | e ∈ X}, where Se = {x+ xβ(e) |x ∈ X}.

If in addition the mapping β is linear, one calls S a bilinear DHO. In fact then
the mapping

X ×X → Y, (x, e) 7→ xβ(e)

is bilinear. Bilinearity guarantees the existence of at least one translation group,
the standard translation group (with respect to β) T = Tβ = {τe | e ∈ X} ≤
GL(U) with

(x+ y)τe = x+ y + xβ(e), x ∈ X, y ∈ Y.

We call a bilinear DHO defined by β symmetric if

xβ(e) = eβ(x), x, e ∈ X,
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and alternating if in addition

xβ(x) = 0, x ∈ X,

holds.

(b) Let f : X → Y be a quadratic APN function, i. e. an APN function f
such that the mapping

X ×X → Y, (x, e) 7→ f(x+ e) + f(x) + f(e)

is bilinear. For e ∈ X define τe = τe + ce ∈ AGL(U), ce = e+ f(e), by

(x+ y)τe = x+ y + f(x+ e) + f(x) + f(e), x ∈ X, y ∈ Y.

Then τe is an automorphism of f and the group

T = T f = {τe | e ∈ X}

is a translation group of f , the standard translation group of f with respect to Y .

Example 2.2. Let X = Fq, q = 2n, n ≥ 3.
(a) Typical examples of bilinear DHOs are the DHOs of Yoshiara [24] which

are defined by β : X → Hom(X,X), xβ(e) = xσe + xeτ , where σ and τ are
suitably chosen field automorphisms of X. A survey article with more examples
of DHOs is [27]. Other bilinear DHOs can be found in [5].

(b) Typical examples of quadratic APN functions are the Gold functions

f : X → X defined by f(x) = x2
k+1, (k, n) = 1. An account of APN functions

in small dimensions can be found in [8].

Notation. LetX and Y be finite dimensional F2-spaces. Let α be in Hom(X,Hom(X,Y )).
Then α defines canonically a bilinear map X ×X → Y by (x, x′) 7→ xα(x′) and
Hom(X,Hom(X,Y )) can be identified with the vector space of bilinear map-
pings from X to Y . The elements α which are symmetric form the subspace
Hom(X,Hom(X,Y ))sym of symmetric bilinear mappings and the elements α
which are alternating form the subspace Hom(X,Hom(X,Y ))alt of alternating
bilinear mappings. The following lemma is well known and has a straightfor-
ward verification (using the dimensions of the spaces of bilinear, symmetric and
alternating mappings).

Lemma 2.3. Let X and Y be finite dimensional F2-spaces and α ∈ Hom(X,Hom(X,Y )).
Define αt ∈ Hom(X,Hom(X,Y )) by xαt(x′) = x′α(x). The following holds.

(a) The mapping α 7→ α+αt is an epimorphism of Hom(X,Hom(X,Y )) onto
Hom(X,Hom(X,Y ))alt whose kernel is Hom(X,Hom(X,Y ))sym.

(b) For σ ∈ Hom(X,Hom(X,Y ))sym define λσ : X → Y by xλσ = xσ(x).
Then λ is an epimorphism of Hom(X,Hom(X,Y ))sym onto Hom(X,Y )
which has the kernel Hom(X,Hom(X,Y ))alt.
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The following result explains the connection between quadratic APN func-
tions and alternating DHOs. This was already observed in [7] for n = m. The
direction, that quadratic APN functions define alternating DHOs was already
shown in [9] and [28].

Theorem 2.4. Let X and Y be finite dimensional F2-spaces.

(a) Let f : X → Y be a quadratic APN function. Then β : X → Hom(X,Y ),
defined by

xβ(e) = f(x+ e) + f(x) + f(e),

defines an alternating DHO. There exists an α ∈ Hom(X,Hom(X,Y ))
such that β = α+ αt and f(x) = xα(x).

(b) Let the homomorphism β : X → Hom(X,Y ) define an alternating DHO.
Let α be in Hom(X,Hom(X,Y )) such that β = α + αt. Then f = fα :
X → Y , defined by f(x) = xα(x), is a quadratic APN function such that
xβ(e) = f(x+e)+f(x)+f(e). Assume that also β = γ+γt. Then fα+fγ
is a linear function.

Proof. (a) Clearly, the bilinear form defined by a quadratic APN function is
alternating, in particular β(e), e ∈ X, is linear. Define in U = X ⊕ Y for e ∈ X
the subspace Se = {x+ xβ(e) |x ∈ X}. The equation xβ(d) = xβ(e), d, e ∈ X,
d 6= e, leads to

f(x+ d) + f(x+ e) = f(d) + f(e)

which has only the solutions x = 0 and x = d + e as f is an APN function.
Hence Sd ∩ Se = 〈e+ d+ (e+ d)β(d)〉 which shows that S = {Se | e ∈ X} is an
alternating DHO. Using Lemma 2.3 we choose α ∈ Hom(X,Hom(X,Y )) with
β = α + αt. Define g : X → Y by g(x) = xα(x). A calculation shows that
the function f + g is linear. By (b) of Lemma 2.3 there exists a symmetric
σ : X → Hom(X,Y ) such that (f + g)(x) = xσ(x). Then f(x) = x(α + σ)(x)
and β = (α+ σ) + (α+ σ)t (as σt = σ) and the assertion follows.

(b) Clearly, f is a quadratic function. Let a ∈ X − 0, b ∈ Y . Consider the
equation

f(x+ a) + f(x) = b, i.e. xβ(a) = xα(a) + aα(x) = b+ aα(a).

As β defines a DHO this equation has either 0 or 2 solutions (of the form x and
x+ a as β is alternating). So f is an APN function.

Assume that γ has been chosen as in the assertion. Then σ = α + γ is
symmetric and thus fγ = fα+λσ with a linear function λσ (see Lemma 2.3).

Definition. Let f : X → Y be a quadratic APN function. We call the alter-
nating DHO defined in (a) of Theorem 2.4 the alternating DHO associated with
f .

Lemma 2.5. Let X and Y be finite dimensional F2-spaces.
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(a) Let f : X → Y be a quadratic APN function and T the standard translation
group. Then the normalizer of T in the automorphism group is

NAut(f)(T ) = T ·A

with A = Aut(f)0,Y .

(b) Let the homomorphism β : X → Hom(X,Y ) define a bilinear DHO S = Sβ
on X ⊕ Y . Let T be the standard translation group. Then the normalizer
of T in the automorphism group is

NAut(S)(T ) = T ·A

with A = Aut(S)X,Y .

Proof. (a) Since 0 ∈ Sf and as T acts regularly on Sf we get NAut(f)(T ) = T ·A
with A = NAut(f)(T )0. By definition Aut(f) ∩ A(f) = Aut(f)0, so that A ≤
A(f). As the image of A under φ (φ as in Lemma 2.1) lies in NA(f)(T ) and as
φ is the identity on A we see that A fixes Y = CU (T ), i. e. A ≤ Aut(f)0,Y .

We now show that T is the centralizer in A(f) of U/Y and Y . Since the
abelian group T acts regularly on Sf and as Aut(f) acts faithfully on Sf we see
CAut(f)(T ) = T (see [12, II.3.1] or exercise 6, [16], p. 57) and hence CA(f)(T ) =
T . If τ ∈ A(f) centralizes U/Y and Y then τ centralizes T , i. e. τ ∈ T . So T is
the centralizer of U/Y and Y in A(f), in particular T is normal in A(f)Y . This
implies by Lemma 2.1 that Aut(f)0,Y = A(f)0,Y lies in NAut(f)(T ). We deduce
A = Aut(f)0,Y .

(b) Since X ∈ S = Sβ and as T acts regularly and faithfully on S we get
NAut(S)(T ) = T · A with A = NAut(S)(T )X . Similarly as in (a) one observes
that the centralizer of Y and U/Y in Aut(S) is T . This shows that Aut(S)X,Y
normalizes T and A = Aut(S)X,Y follows.

3 Properties of translation groups

The main result of this section is that the translation groups of a DHO, or
an APN function, form in their automorphism group a conjugacy class of self-
centralizing, elementary abelian TI subgroups which have quadratic action on
the underlying space (see Theorems 3.2, 3.5, and 3.11). The basis for the com-
mon study of translation groups of APN functions and DHOs is described by
the following group theoretic property:

Hypothesis A. Let U be an n + m-dimensional F2 space and T ≤ GL(U),
|T | = 2n, n ≥ 3. Then the following hold.

(1) dimCU (T ) = m.

(2) Let σ be in T . Then dimCU (σ) = m+ 1 (equivalently rk (1 + σ) = n− 1)
if σ is an involution and CU (σ) = CU (T ) if |σ| > 2.

(3) CU (σ) ∩ CU (τ) = CU (T ) for two non-identity elements σ 6= τ in T .
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Proposition 3.1. Let U and T ≤ GL(U) satisfy Hypothesis A. The following
hold:

(a) T is elementary abelian.

(b) The group T has a quadratic action on U , i. e. [U, T ] ⊆ CU (T ).

Proof. (a) Let σ be a 2-element in GL(U) of order 2r. Since (t− 1)2
r

= t2
r − 1

in the polynomial ring over F2 we can apply the theorem of the Jordan normal
form to σ, i. e. U = U1 ⊕ · · · ⊕ Us with indecomposable, uniserial σ-spaces and
all composition factors of an Ui have dimension 1. A moment’s thought shows
dimUi ≤ 2r for all i and there is at least one indecomposable space - say Us -
such that dimUs > 2r−1.

Suppose that σ ∈ T , |σ| = 4, and decompose U as above into indecomposable
σ-spaces. Then m = dimCU (σ) = s. Also dimCUi(σ

2) = 2 if dimUi ≥ 2 and as
dimCU (σ2) = m+ 1 we conclude that Um is the only space whose dimension is
not 1. Also dimUm ≤ 4. Thus m+n = m− 1 + dimUm ≤ m+ 3. Hence n = 3,
dimUm = 4, |T | = 8, 〈σ〉� T , and therefore 〈σ2〉 ≤ Z(T ) (the only nonabelian
groups of order 8 are D8 and Q8). We conclude that X = [U, σ2] = [Um, σ

2] has
dimension 2 and is invariant under T . Then |CT (X)| ≥ 4, σ 6∈ CT (X), and we
have a τ ∈ T − 〈σ〉 such that

CU (T ) +X = CU (σ) +X ⊆ CU (τ), i.e. CU (τ) = CU (σ2),

contradicting (3) of Hypothesis A. Thus T has exponent 2 and is elementary
abelian.

(b) Set Y = CU (T ). As every nontrivial element has order 2 we deduce by
conditions (2) and (3) of Hypothesis A that {CU (σ)/Y | 1 6= σ ∈ T} is the set
of points of PG(U/Y ).

Assume now that T acts nontrivially on U/Y , i. e. there is a σ ∈ T such
that σU/Y is not the identity. Then there exists nonzero x1, x2 ∈ U , x1 6≡ x2
(mod Y ) and y ∈ Y , such that x1σ = x1 +x2 +y. As x1 = x1σ

2 = x1 +x2 +x2σ
we have CU (σ) = 〈x2, Y 〉. There exists τ ∈ T such that CU (τ) = 〈x1, Y 〉. As
x1 6≡ x2 one has σ 6= τ by property (3). Now x1τσ = x1σ = x1 + x2 + y and
x1στ = x1 +x2τ +y. As T is commutative we have 0 = x1στ +x1τσ = x2 +x2τ
hence CU (τ) ⊇ 〈x1, x2, Y 〉, a contradiction as dimCU (τ) = m+1. Thus [U, T ] ⊆
Y holds.

Theorem 3.2. Let S be an n-dimensional DHO, n ≥ 3, in the n+m-dimensional
space U and let T be a translation group of S. Then T satisfies Hypothesis A,
i. e. T is elementary abelian and has quadratic action on U . Pick X ∈ S and
set Y = CU (T ). Let τ : X → T , e 7→ τe, be any isomorphism from X to T .
Then β : X → Hom(X,Y ), defined by xβ(e) = [x, τe], is a homomorphism, i. e.
S is a bilinear DHO with respect to β and T is the standard translation group.

Proof. By assumption X ∩ Y = 0. This shows property (1) of Hypothesis A.
Let 1 6= τ ∈ T . If τ is an involution we have CX(τ) ⊆ X ∩ Xτ ⊆ CX(τ) as
X,Xτ ∈ S, i. e. CX(τ) = X ∩Xτ has dimension 1. Assume now |τ | > 2. We
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claim CU (τ) = Y . As Y ⊆ CU (τ) it suffices to show CX(τ) = 0 and to assume
|τ | = 4. We know CX(τ) ⊆ CX(τ2) = X∩Xτ2. As X∩Xτ ∩Xτ2 = 0 the claim
follows. This implies properties (2) and (3) of the Hypothesis. By Proposition
3.1 the first assertion of the corollary holds. Defining τ and β as above and
using the quadratic action we get immediately that β is linear.

Lemma 3.3. Let f : V → W be an APN function. Assume that f has a
translation group whose linear part is T . The following hold.

(a) U/Y = {s+ Y |s ∈ Sf}, where Y = CU (T ).

(b) T and U = V ⊕W satisfy Hypothesis A.

Proof. Let T be the pre-image of T in Aut(f). By definition of a translation
group property (1) of Hypothesis A is satisfied.

To (a): Since 0 ∈ Sf we obtain

Sf = {0τ |τ ∈ T} = {cτ | τ = τ + cτ ∈ T}.

Suppose cσ ≡ cτ (mod Y ) for σ, τ ∈ T , σ 6= τ . Hence cσ = cτ + y with y ∈ Y .
Using that c is an 1-cocycle we obtain

0 = c1 = cσσ−1 = cσσ
−1 + cσ−1 = cτσ

−1 + cσ−1 + yσ−1 = cτσ−1 + y.

So we may assume that cτ = y ∈ Y for some 1 6= τ ∈ T . But as T acts regularly
on the graph y = cτ ∈ Sf−{0}, which is impossible as f splits over Y . Assertion
(a) follows.

To (b): We turn to the verification of properties (2) and (3) of Hypothesis A.
Assume first that σ is an involution. Then σ is an involution too, showing cσ ∈
CU (σ). Assume x ∈ CU (σ) − 〈cσ, Y 〉. Using that Sf is a set of representatives
of U/Y there exists a 1 6= τ ∈ T , σ 6= τ , such that cτ ≡ x (mod Y ). Thus
cτ ∈ CU (σ). Again as c is a cocycle

cτσ = cτσ + cσ = cτ + cσ.

We view this equation as an equation among elements from the graph. Hence
there exist 0 6= v, v1 ∈ V , v 6= v1, such that (v + f(v)) + (v1 + f(v1)) =
(v+ v1) + f(v+ v1). So the equation f(v+ v1) + f(v) = f(v1) has the solutions
0, v, and v + v1, contradicting the APN property. Hence

CU (σ) = 〈cσ, Y 〉.

Assume now |σ| = 4. Set τ = σ2. Then CU (σ) ⊆ CU (τ) = 〈cτ , Y 〉. If cτσ = cτ
then

cστ + cτ = cστ = cτσ = cτ + cσ

which implies cσ ≡ cτ (mod Y ), a contradiction. Thus CU (σ) = Y . But again
as CU (σ) ⊆ CU (σ2) for every σ ∈ T we obtain property (2) of Hypothesis A.
Since cσ 6≡ cτ (mod Y ) for σ 6= τ also property (3) is true.
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Lemma 3.4. Let f : V → W be an APN function. Set U = V ⊕W and let Y
be a subspace of U isomorphic to W , such that the canonical surjection from U
onto U/Y becomes injective, when it is restricted to Sf . Let U = X ⊕ Y and
πX (πY ) the projection of U onto X (Y ). Let π̂X be the restriction of πX onto
Sf . Then π̂X : Sf → X is bijective. Moreover the function g : X → Y defined
by g(x) = πY (π̂−1X (x)) is an APN function equivalent to f .

Proof. The bijectivity of π̂X follows immediately from the assumptions. Let
x+ g(x) ∈ Sg. Define s = π̂−1X (x) ∈ Sf . Then

x+ g(x) = πX(s) + πY (s) = s ∈ Sf ,

i. e. Sg ⊆ Sf and equality must hold. Then φ = 1 is an equivalence map, i. e. g
is an APN function equivalent to f .

Theorem 3.5. Let T be the linear part of a translation group of an APN func-
tion f : V → W , dimV ≥ 3. Then T satisfies Hypothesis A and the following
hold.

(a) T is elementary abelian and has quadratic action on U = V ⊕W .

(b) Let U = X ⊕ Y , with Y = CU (T ), and let τ : X → T be an isomorphism.
The function g : X → Y defined by g(x) = πY (cτx) (here πY is the pro-
jection into Y with respect to the decomposition U = X ⊕Y ) is equivalent
to f (and hence APN).

(c) The APN function g is quadratic and T is the standard translation group
of g.

Proof. Assertion (a) follows from Lemma 3.3 and Proposition 3.1.
We know Sf = {cτ | τ = τ + cτ ∈ T} . By assertion (a) of Lemma 3.3

U/Y = {s + Y | s ∈ Sf}. Let X be a complement of Y in U and τ as in the
theorem. Then g is equivalent to f by Lemma 3.4, assertion (b) follows.

In order to verify that g is quadratic we have to show that the mapping
b : X × X → Y , defined by b(x, t) = g(x + t) + g(x) + g(t), is bilinear. A
computation shows

b(x, t) = πY (cτxτt + cτx).

Since cτxτt + cτx = πY (cτxτt + cτx) (quadratic action) we obtain (as g(x)τt =
g(x))

[x, τt] = x+ xτt = (cτx + g(x)) + (cτx + g(x))τt = cτxτt + cτx = b(x, t),

which shows linearity in x. Since b is invariant under the transposition of the
arguments we see that b is bilinear. So indeed T is the standard translation
group associated with the quadratic APN function g.
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We now show that alternating DHOs admit precisely one translation group.
For a DHO S and S, S′ ∈ S, S 6= S′, we denote by [S ∩S′] the nontrivial vector
in S ∩ S′. Moreover if S′′ ∈ S, S 6= S′′ 6= S′, we set

p(S, S′, S′′) = [S ∩ S′] + [S ∩ S′′] + [S′ ∩ S′′],

and
P (S) = 〈p(S, S′, S′′) |S, S′, S′′ ∈ S, S 6= S′ 6= S′′ 6= S〉.

We have the following generalization of [7, Theorem 1]:

Theorem 3.6. Let S be a DHO in the ambient space U . Equivalent are:

(a) The DHO S splits with respect to P (S).

(b) There exist a decomposition U = X ⊕ Y and a homomorphism β : X →
Hom(X,Y ) such that β defines the alternating DHO S = Sβ. Moreover
CU (T ) = Y = P (S), where T is the standard translation group with respect
to β.

Proof. Set Y = P (S).
(a)⇒(b). Pick X ∈ S. Choose the injection β : X → Hom(X,Y ) such that

S = {Se | e ∈ X}, S0 = X ( i. e. β(0) = 0), Se = {x + xβ(e) |x ∈ X}, and
[S0 ∩ Se] = e for 0 6= e ∈ X ( i. e. eβ(e) = 0). We have for 0 6= e, e′ ∈ X, e 6= e′,
that [Se ∩ Se′ ] = x+ y where x 6= 0 and xβ(e) = y = xβ(e′). Now

Y 3 [S0 ∩ Se] + [S0 ∩ Se′ ] + [Se ∩ Se′ ] = e+ e′ + x+ y

which shows x = e+ e′ and (e+ e′)β(e) = (e+ e′)β(e′) or

e′β(e) = eβ(e′),

as eβ(e) = e′β(e′) = 0. Since

eβ(x) + eβ(x′) = xβ(e) + x′β(e) = eβ(x+ x′)

for x, x′, e ∈ X, we see that β is linear, i. e. S is a bilinear DHO. By definition,
S is even alternating with respect to β and CU (T ) = Y = P (S).

(b)⇒(a). By definition xβ(x) = 0 for x ∈ X. This implies [Se ∩ S′e] =
e+ e′ + eβ(e′) and we see that CU (T ) = Y = P (S).

Corollary 3.7. Let S be an alternating DHO. Every alternating homomorphism
which defines the DHO is associated with the same standard translation group.
In particular this translation group is normal in Aut(S).

Proof. Let U be the ambient space. Let U = X ⊕ Y and U = X1 ⊕ Y1 be
decompositions such that the alternating homomorphisms β : X → End(X,Y )
and β1 : X1 → End(X1, Y1) both define S and T = Tβ and T1 = Tβ1 be the
corresponding standard translation groups.
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Form Theorem 3.6 we deduce Y = CU (T ) = P (S) = CU (T1) = Y1. Then
using the quadratic action T1 ≤ CAut(S)(T ). Thus T = T1 by Proposition 3.8.

As the conjugate of a standard translation group, corresponding to an alter-
nating bilinear form, is again a standard translation group, corresponding to an
alternating bilinear form, we have shown that T is normal.

Recall that a subgroup H of a group G is self-centralizing iff H = CG(H).

Proposition 3.8. Translation groups of DHOs or APN functions are self-
centralizing in their automorphism group.

Proof. A regular abelian subgroup of the symmetric group S(Ω), Ω a finite set,
is self-centralizing in S(Ω) (see [12, II.3.1] or exercise 6, [16], p. 57). The
automorphism group of a DHO is faithfully represented on the DHO (see [27])
and the automorphism group of an APN is faithfully represented on its graph
as the graph generates the ambient space. By Theorems 3.2 and 3.5 in both
cases translation groups are regular abelian groups. The assertion follows.

Definition. Let X,Y be finite dimensional F2-spaces and β : X → Hom(X,Y )
be a homomorphism which defines a bilinear DHO S.

(a) An automorphism of S fixing X and Y is written as diag(λ, ρ) if x+y 7→
xλ + yρ with λ ∈ GL(X) and ρ ∈ GL(Y ). Such automorphisms are called
autotopisms. Note that there exists µ ∈ GL(X) such that

β(e)ρ = λβ(eµ)

if Seµ is the image of the space Se under the autotopism since

(x+ xβ(e))diag (λ, ρ) = y + yλ−1β(e)ρ

with y = xλ. It is sometimes convenient to denote an autotopism by a triple
(λ, µ, ρ) too.

(b) We say that this autotopism is special if λ = µ and we call it nuclear
ρ = 1.

(c) We define the nucleus of the DHO as

K = {(λ, µ) ∈ End(X)× End(X) |λβ(e) = β(eµ), e ∈ X}.

Remarks. (a) The terms ”autotopisms”, ”nuclear” and ”nucleus” refer to
related definitions in semifield planes (cf. [13]).

(b) Let G be the automorphism group of S and let T be the translation group
induced by β. By Lemma 2.5 the normalizer of T has the form NG(T ) = T ·A,
where A is the group of autotopisms.

(c) The notions ”autotopism”, ”special”, etc. depends on the splitting of
U as X ⊕ Y ; namely, it depends on the choice of the translation group T with
CU (T ) = Y . However, since we show later that all translation groups are
conjugate, this dependency will become irrelevant.

Proposition 3.9. With the notation of the definition the following hold:
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(a) The projections of the elements of the nucleus on the first (or the second)
components are injective.

(b) The nucleus is a field with component-wise addition and multiplication.

(c) The mapping K∗ 3 (λ, µ) → (λ, µ−1, 1) (which corresponds to diag(λ, 1))
is a isomorphism of the multiplicative group of the nucleus onto the group
of nuclear autotopisms.

(d) Let β be symmetric and (λ, µ, ρ) an autotopism. Then (µ, λ, ρ) is an au-
totopism too.

(e) Let β be alternating. Then every autotopism is special.

(f) Let β be alternating. The nucleus is isomorphic to F2 or F4. If the second
case occurs dimX is even.

Proof. Clearly, (0, 0), (1, 1) are elements of the nucleus and the nucleus is closed
under component-wise addition.

Suppose, λ is not invertible for (λ, µ) ∈ K. Let 0 6= e ∈ X lie in the kernel
of λ. Then for all f ∈ X we get 0 = eλβ(f) = eβ(fµ). This shows that the
rank of µ can be at most 1 (by the DHO property for e 6= 0 the linear mapping
x 7→ eβ(x) has rank n − 1). So there exists a hyperplane H of X such that
0 = xβ(fµ) = xλβ(f) for all x ∈ X and f ∈ H. We deduce λ = 0 which implies
that β(eµ) = 0 for all e ∈ X or (λ, µ) = (0, 0). Similarly, if µ is not invertible,
we get the same equation. This shows (a) and that the components of elements
in K∗ are elements of GL(X).

Form
λλ′β(e) = λβ(eµ′) = β(eµ′µ)

we deduce that the nucleus is closed under the multiplication

(λ, µ)(λ′, µ′) = (λλ′, µ′µ).

It is obvious that (λ−1, µ−1) is the inverse of (λ, µ). Since the projection of
the nucleus to the first component is a homomorphism, we conclude that K is
a finite skew field, i. e. a finite field by Wedderburn’s theorem. In particular
we can interchange the roles of µ and µ′ in the above multiplication rule. This
implies (a) and (b) while (c) follows from the definition of the nucleus.

Let β be symmetric and (λ, µ, ρ) an autotopism. Then

yµβ(xλ) = xλβ(yµ) = xβ(y)ρ = yβ(x)ρ

for all x, y ∈ X which shows (d). If β is even alternating then 0 = eβ(e)ρ =
eλβ(eµ) implies that eλ generates the kernel of β(eµ) and since S is an alter-
nating DHO eλ = eµ and (e) follows.

To (f): By (e) nuclear autotopisms have the form (λ, λ, 1), i. e. the nontrivial
elements of the nucleus have the form (λ, λ−1). Thus the field F = {0} ∪
{λ | (λ, λ−1) ∈ K∗} admits an automorphism 0 7→ 0, F ∗ 3 λ 7→ λ−1 ∈ F ∗.
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Assume 0, 1 6= x ∈ F . Then x−1 + 1 = (x+ 1)−1, which leads to x2 +x+ 1 = 0,
i. e. |x| = 3. So K ' F ' F2 or ' F4. Assume F ' F4. Clearly, X is an
F -vector space (as K is represented faithfully as a field on X). Thus dimF2

X =
2 · dimF4

X. This shows the second assertion of (f).

Definition and Remark. (a) Let (λ, µ) be an element of the nucleus K of a
symmetric bilinear DHO. By (b) and (c) of Proposition 3.9 also (µ, λ) ∈ K and
ι : K 3 (λ, µ) 7→ (µ, λ) ∈ K is a field automorphism of order ≤ 2. We call the
set of fixed points K0 = {(λ, µ) ∈ K|λ = µ} the symmetric nucleus of the DHO.
In particular either |ι| = 1 and K0 = K or |ι| = 2 and |K0|2 = |K|. If the DHO
is even alternating then K0 ' F2 by (e) of Proposition 3.9. The relevance of the
symmetric nucleus becomes apparent in Theorem 5.7.

(b) Some alternating DHOs associated with Gold APN-functions have a
nucleus isomorphic to F4 (see Example 6.4).

Theorem 3.10. Let X and Y be finite dimensional F2-spaces and f : X → Y
a quadratic APN function. Let S be the associated alternating DHO. Then

Aut(S) ' NAut(f)(T )

where T is the standard translation group in Aut(f).

Proof. Set U = X ⊕ Y and define β : X → Hom(X,Y ) as in Theorem 2.4, i. e.
S = Sβ is the associated DHO to f . By Corollary 3.7 and Lemma 2.5

Aut(S) = T ·A

where T is the standard translation group and A = Aut(S) is the group of
autotopisms. Recall that T = {τe | e ∈ X}, (x + y)τe = x + y + xβ(e) and
by (e) of Proposition 3.9 the elements in A have the form diag (λ, ρ) such that
λβ(eλ) = β(e)ρ. Again by Lemma 2.5

NAut(f)(T ) = T · L

where T is the standard translation group and L = Aut(f)0,Y . Typical elements
in T have the form τe = τe + ce, ce = e + f(e). An element φ ∈ L is written
formally as

φ =

(
λ γ

ρ

)
where x+ y 7→ xλ+ xγ + yρ,

with λ ∈ GL(X), ρ ∈ GL(Y ) and γ ∈ Hom(X,Y ) such that f(xλ) = xγ+f(x)ρ.
Define

Ψ : NAut(f)(T )→ GL(U) by τeφ 7→ τediag (λ, ρ).

A calculation shows that Ψ is an homomorphism and of course T is the image
of T under Ψ. Moreover, since γ is linear, and using f(xλ) = xγ + f(x)ρ, we
see for x, e ∈ X that

xβ(e)ρ = xλβ(eλ)
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showing by Proposition 3.9 that diag (λ, ρ) is an autotopism. So LΨ ≤ A, i. e.
Im Ψ ≤ Aut(S). It remains to show that every element in A is an image of an
element in L.

Choose α ∈ Hom(X,Hom(X,Y )) such that β = α + αt and f(x) = xα(x)
(Theorem 2.4) and let diag (λ, ρ) be an element in A. By (e) of Proposition 3.9
we have β(e)ρ = λβ(eλ) which implies

λα(eλ) + α(e)ρ = λαt(eλ) + αt(e)ρ.

Hence κ : X → Hom(X,Y ) defined by

κ(e) = λα(eλ) + α(e)ρ

is symmetric. Thus γ : X → Y defined by

xγ = xκ(x)

is linear (see (b) of Lemma 2.3). Set φ =

(
λ γ

ρ

)
. Now for x ∈ X we have

(x+ f(x))φ = xλ+ xγ + xα(x)ρ = xλ+ (xλ)α(xλ) = xλ+ f(xλ)

which implies φ ∈ L. Hence φΨ = diag (λ, ρ) and the proof is complete.

Autotopisms of quadratic APN functions. Let f : X → Y be a quadratic
APN function, T the standard translation group, and S the associated alter-
nating DHO. We use the preceding theorem to translate the terms autotopisms
and nucleus from DHOs to APN functions: We know by this theorem that
NAut(f)(T ) = TL, L = Aut(f)0,Y ≤ A(f). As we have seen a typical element in

L has the shape

(
λ γ

ρ

)
with λ ∈ GL(X), ρ ∈ GL(Y ), and γ ∈ Hom(X,Y ).

Moreover, for all x ∈ X the equation

f(xλ) = xγ + f(x)ρ

holds. By the proof of Theorem 3.10 we know that

L 3
(
λ γ

ρ

)
7→ diag(λ, ρ) ∈ Aut(S)X,Y

is an isomorphism on the autotopism group of S. Therefore we call the elements
of L autotopisms of f and such an element is nuclear if its image in Aut(S)X,Y
is nuclear.

The following group theoretic notion is central:

Definition. A subgroup T 6= 1 of the group G is called a TI group if for σ ∈ G
either T = Tσ or T ∩ Tσ = 1 holds.
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Theorem 3.11. Let n > 3. The translation groups of an n-dimensional DHO
over F2 and the translation groups of an APN function defined on an n-dimensional
F2-space, respectively, form a conjugacy class of self-centralizing, elementary
abelian TI subgroups in their automorphism group.

Proof. Let G be the automorphism group of the DHO (the linear part of au-
tomorphism group of the APN function) and T a (linear part of a) translation
group. By Proposition 3.8 we have CG(T ) = T . Note also that CU (T ) =
CU (σ)∩CU (τ) for 1 6= σ, τ ∈ T , σ 6= τ since Hypothesis A is satisfied by Theo-
rems 3.2 and 3.5. We claim next: Let T, T ′ be two different translation groups.
Then T ∩ T ′ = 1.

Assume 1 6= T ∩ T ′. Set U0 = CU (T ) ∩ CU (T ′), U1 = CU (T ) + CU (T ′), and
H = 〈T, T ′〉. We have CU (T ) 6= CU (T ′) as otherwise T ′ ≤ CG(T ) (quadratic
action) which contradicts Proposition 3.8. By Proposition 3.1 we infer that H
acts trivially on U0 and U/U1.

Let 1 6= σ ∈ T ∩ T ′. Then U1 ≤ CU (σ), i. e. dimU1 ≤ m + 1. Hence
dimU0 ≥ m − 1 and dimU1/U0 ≤ 2 and in both cases equality holds since
CU (T ) 6= CU (T ′).

Case 1. T is not a Sylow 2-subgroup in H. Let T ≤ S, S ∈ Syl2(H). Then
T < NS(T ) (see [10, 1.2.11] or [16, 3.1.10]). Choose σ ∈ NS(T ) − T such that
σT has order 2 in NS(T )/T . We may assume |σ| ≥ 4: If σ is an involution
there exists by Proposition 3.8 a τ in T which does not commute with σ. We
can replace σ by στ . As U/U1 is centralized by H we have U(1 + σ) ⊆ U1 and
since U0 ⊆ CU1

(H) and 1 + σ2 = (1 + σ)2 we see that

dimU(1 + σ2) ≤ dimU1(1 + σ) ≤ dimU1/U0 = 2.

But since σ2 is a nontrivial element in T we get, as by Hypothesis A dimCU (σ2) =
m+ 1,

n− 1 = rk (1 + σ2) ≤ 2,

a contradiction. So we have:

Case 2. T is a Sylow 2-subgroup of H. Denote by Q the normal subgroup
of the elements of H which act trivially on U1/U0. Then Q is a 2-group since
Q stabilizes the series 0 ⊂ U0 ⊂ U1 ⊂ U (see [10, 5.3.3]). Then, as T and T ′

are Sylow 2-subgroups of H, we have Q ≤ T ∩T ′. Moreover H/Q is isomorphic
to a subgroup of GL(U1/U0) ' GL(2, 2) ' S3. Now Q = T ∩ T ′ and H/Q ' S3

follows. Also Q ≤ Z(H) as H is generated by T and T ′.
Let R be a Sylow 3-subgroup of H. Consider the group R × Q of order

3 · 2n−1. The group Q (the group Q) has two orbits, say B1, B2 on the DHO
S (on the graph Sf ). The group R (the group R) must fix both orbits as R
centralizes Q and has order 3. The group Q (group Q) acts regularly on both
orbits, i. e. this group restricted to Bi is self-centralizing in the symmetric group
S(Bi) (see [12, II.3.1] or exercise 6, [16], p. 57). Thus the restriction of R (of
R) acts trivially on both orbits, i. e. on S (on Sf ), a contradiction.

We now know that the translation groups are TI subgroups. Let T be a
translation group which lies in the Sylow 2-subgroup S of G. Then 1 6= Z(S) ≤
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T , as Z(S) = CS(S) ≤ CG(T ) = T . This shows that a Sylow 2-subgroup
contains at most one and thus precisely one translation group (Sylow’s theorem).
The translation groups are therefore all conjugate.

Remark. Corollary 3.7 and the theorem show that, for n ≥ 4, a n-dimensional
alternating DHO, contains precisely one translation group. In Sections 5 and
6 we will provide examples of DHOs which admit more than one translation
group.

CCZ equivalence, EA equivalence and all that. Assume that for two
functions f : X → Y and g : X → Y there exists γ ∈ AGL(U), U = X ⊕ Y ,
with Sg = Sfγ, i. e. f and g are equivalent. Let γ be the linear part of γ. One
calls f and g affine equivalent iff γ fixes X and Y and extended affine equivalent
or EA equivalent iff γ fixes Y . Whereas the more general notion of equivalence
often is called CCZ equivalence. Suppose now that f and g are quadratic APN
functions and that γ is a CCZ equivalence map from Sf onto Sg. Let Tf be
the linear part of the standard translation group of f . Then γ−1Tfγ is the
linear part of a translation group of g. Hence there exists an α ∈ A(g) with
Tg = α−1γ−1Tfγα where Tg is the linear part of the standard translation group
of g. Set δ = γα. Then

Y δ = CU (Tf )δ = CU (δ−1Tfδ) = CU (Tg) = Y.

Hence δ is an EA equivalence map form Sf onto Sg. We summarize (using
Theorem 3.11):

Theorem 3.12. Let f : X → Y and g : X → Y be quadratic APN functions,
dimX ≥ 4. Then f and g are CCZ equivalent iff they are EA equivalent.

This generalizes [30, Theorem 1] (special case m = n) and [1, Theorem 8]
(special case m = n for a restricted class of functions). A DHO version of the
preceding theorem is:

Proposition 3.13. Two n-dimensional, bilinear DHOs Sβ and Sγ , n ≥ 4, are
isomorphic iff they are isotopic, i. e. if there exists a triple (λ, µ, ρ) of invertible
operators such that β(e)ρ = λγ(eµ) for all e.

The following generalizes [20, Proposition 3] from the case m ≤ n to the case
that m is arbitrary.

Corollary 3.14. A n-dimensional, bilinear DHO Sβ, n ≥ 4, is isomorphic to
an alternating DHO iff the map

e 7→
{

0, e = 0,
[kerβ(e)], e 6= 0,

is linear.

Here again [K] denotes the nontrivial vector of the 1-dimensional vector
space K.
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Proof. It is sufficient to deal with e 6= 0. If Sβ is isomorphic to an alternating
DHO, then, by the proposition, there exists also an isotopism (λ, µ, ρ) to this
alternating DHO. Hence λβ(eµ)ρ−1 is alternating, thus e 7→ [kerβ(e)] = eµλ−1

is linear.
Assume now the map κ : e 7→ [kerβ(e)] is linear. By the DHO condition κ is

a permutation. The image of β under the isotopism (κ, 1, 1) is alternating.

4 Groups generated by translation groups

In this section we study the structure of the automorphism groups of a DHO or
an APN function which contain more than one translation group. Starting point
for our investigation is Theorem 3.11. It will allow us to use the structure result
of Timmesfeld on weakly closed TI subgroups [23]. Together with structure
results of finite simple groups we are then in the position to pin down, to a
great extend, the structure of the group G∗, the group generated by translation
groups. For the most part the case of DHOs and the case of APN functions
can be handled simultaneously. But to describe the operation of G∗ on the
underlying vector space both cases must be treated differently. The next lemma
is (implicitly) contained in [23]. For convenience we provide a proof.

Lemma 4.1. Let T be a TI subgroup of the finite group G and assume that T
is self-centralizing and an elementary abelian 2-subgroup. Let N be a nontrivial,
elementary abelian, normal 2-subgroup in G. Then the following holds:

(a) 1 6= CN (T ) = T ∩N .

(b) T �NT and [T,N ] ≤ T ∩N .

(c) TN/N is a TI-subgroup of G/N .

Proof. (a) As NT is a 2-group with the normal subgroup N we have 1 6= N ∩
Z(NT ) ≤ CN (T ) ≤ CG(T ) = T . Hence 1 6= CN (T ) and as N ∩T ≤ CN (T ) ≤ T
the assertion follows.

(b) Suppose T is not normal in NT . Choose 1 ≤ N1 < N2 ≤ N , such that
|N2 : N1| = 2 and T � N1T , but T is not normal in N2T . Then T 6= T ν for
ν ∈ N2−N1 and T, T ν are normal subgroups of N1T (note that N1T is normal in
N2T as |N2T : N1T | ≤ 2). Then TT ν is a 2-group and hence 1 6= CT (T ν) ≤ T ν .
Hence T = T ν , a contradiction. The second assertion is a consequence of the
first one.

(c) Suppose T 6= T γ , TN/N ∩ T γN/N 6= 1. Then there exist τ, τ1 ∈ T −N
and some ν ∈ N such that τγ = τ1ν. Using (b)

[τγ , N ] = [τ1, N ] ≤ T γ ∩ T ∩N = 1.

This shows τγ ∈ T γ ∩N by (a), a contradiction.

Remark. By (2.11) of [23] the group TN/N is even a self-centralizing TI
subgroup of G/N , if N lies in the maximal normal 2-subgroup of the group G∗,
where G∗ is the group generated by the conjugates of T .
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Lemma 4.2. Let T be a TI subgroup of the finite group G and assume that T
is an elementary abelian 2-subgroup. Let G = NT , N = O(G). Then |T | = 2
or T ≤ Z(G) ( i. e. G = T ×N).

Proof. Assume that G is a minimal counter example. In particular T does not
lie in Z(G) and |T | > 2.

Assume first that N is abelian. Then by a theorem of Suzuki [16, 8.4.2], [10,
Theorem 5.2.3]

N = N0 ×N1, N0 = CN (T ), N1 = [N,T ].

As |T | > 2 we deduce from [16, 8.3.4], [10, Theorem 6.2.4], that

N1 = 〈CN1(τ) | 1 6= τ ∈ T 〉.

By assumption N1 6= 1. So pick 1 6= τ ∈ T commuting with 1 6= ν ∈ N1. Then
τ ∈ T ∩ T ν , i. e. T ν = T . Hence

[ν, T ] ≤ T ∩N = 1,

i. e. ν ∈ CN (T ) ∩N1 = N0 ∩N1 = 1, a contradiction.
So assume now that N is nonabelian. Then the derived subgroup M of N

is a proper subgroup of N by the Odd Order Theorem and hence N/M is a
nontrivial abelian group. The group TM satisfies the assumptions and is not a
counter example. Thus M ≤ CN (T ).

One knows from [16, 8.2.2], [10, Theorem 5.3.5], that CG/M (TM/M) =
CG(T )M/M . Moreover TM/M is a TI-subgroup in G/M : If 1 6= τM ∈
T γM/M ∩ TM/M we have that τ lies in a Sylow 2-subgroup of TM = T ×M
and T γM = T γ × M , i. e. τ ∈ T ∩ T γ , i. e. T = T γ . Thus G/M satis-
fies the assumptions of the lemma. By induction TM/M ≤ Z(G/M), i. e.
G/M = CG/M (TM/M) = CG(T )M/M . This shows T ≤ Z(G), a contradic-
tion.

We assume for the remainder of this section, that n ≥ 4 and that S
is an n-dimensional dual hyperoval or the graph of a quadratic APN
function defined on an n-dimensional F2-space. In both cases U will
be the ambient F2-space and n + m will denote its dimension. If we
need to distinguish the two situations we speak of the

DHO case or the APN case respectively.

By the symbol G ≤ GL(U) we denote a subgroup of the automorphism group
in the DHO case, while in the APN case this is the linear part of a subgroup
G of the automorphism group. We assume that T ≤ G is a translation
group which is not normal in G. In particular

|C| > 1, C = {T γ | γ ∈ G}.

Finally in the APN case we have the convention: If H ≤ G and S ∈ S in then

HS is the linear part of the stabilizer HS
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Notation. Assume A ≤ H ≤ G with an abelian 2-group A. One says that A
is strongly closed in H with respect to G if for every α ∈ A, αγ ∈ H (γ ∈ G)
one has αγ ∈ A.

Lemma 4.3. Suppose NTγ (T ) = 1 for all T γ ∈ C − {T}. Then T is strongly
closed in CG(τ) with respect to G for every 1 6= τ ∈ T .

Proof. Let γ ∈ G be such that τγ ∈ CG(τ1) for 1 6= τ, τ1 ∈ T . The group T
is weakly closed in CG(τ1) (see the introduction of [23]), in particular T is a
normal subgroup of CG(τ1). Thus τγ ∈ NTγ (T ). By our assumption T γ = T
and hence τγ ∈ T .

Lemma 4.4. There exists T γ ∈ C − {T} such that NTγ (T ) 6= 1.

Proof. Assume the converse. Then T is strongly closed in every CG(τ), 1 6=
τ ∈ T by Lemma 4.3. Set G∗ = 〈C〉. By (2.5) of [23] one has G∗ = Z∗(G∗),
G∗ ' L2(q), Sz(q), or G∗/Z(G∗) ' U3(q) for some 2-power q. We know that
the first case cannot occur by Lemma 4.2 and as n > 3. So we exclude this
case. Since T ≤ G∗ we see that G∗ (G

∗
in the APN case) acts transitively on

S. In particular G∗ has a subgroup of index 2n. But none of the groups L2(q),
Sz(q), or U3(q) has a subgroup of 2-power index by [12, II.8.27], [11, p. 157],
[17, Thm. 9].

Lemma 4.5. Let T γ ∈ C −{T} such that NTγ (T ) 6= 1. Set H = 〈T, T γ〉. Then
one has.

(a) N = O2(H) = L× L1 with L = NT (T γ) and L1 = NTγ (T ).

(b) CN (τ) = L for τ ∈ T −N . Every involution in H −N is conjugate to τ .

(c) Let S ∈ S. Then |H : HSN | = 2.

(d) H/N ' D2k, 1 < k odd.

(e) Let 1 6= µ ∈ H be of odd order. Then CN (µ) = 1.

Proof. By (2.14) of [23] (a) holds and H/N ' D2k (k odd), L2(q), or Sz(q), q a
2-power > 2.

To (b): Let τ ∈ T − N . By the second section of the proof of [23, (2.14)]
we have CN (τ) = L. As |[N, τ ]| = |{τντ |ν ∈ N}| = |N : CN (τ)| and [N, τ ] ≤
CN (τ), we get CN (τ) = [N, τ ]. This implies that the involutions in the coset Nτ
are in Lτ and they are conjugate under N . On the other hand all involutions
in H/N are conjugate. Now (b) is verified.

Let S ∈ S and assume that we are in the DHO case. In the APN case
we replace the linear part H by its affine pre-image H. All arguments remain
unchanged and the assertions follow from Lemma 2.1. We distinguish the cases
HSN < H and HSN = H. We show that in the first case the assumptions of
the lemma hold while the second case does not occur.

Case 1 HSN < H. We have 2n = |H : HS |. Thus |H : HSN | is a
nontrivial 2-power. If H is nonsolvable, then the group L2(q) or Sz(q) has
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a proper subgroup of 2-power index which is excluded as in the proof of the
previous lemma. Thus H/N ' D2k and (c) and (d) hold.

To (e): Let C be a cyclic group of order k in H and 1 6= C0 = 〈µ〉 a
subgroup of C, say of order k0. We want to show CN (C0) = 1. We already
know H0/N = 〈C0, T 〉N ' D2k0 for H0 = 〈T, Tµ〉. Assume 1 6= CN (C0).
Then 1 6= CN (C0) ≤ Z(M), M = NC0. Since H0/M ' C2, we even have
1 6= CN (M) ∩ CN (T ) ≤ Z(H0). But Z(H0) ≤ T ∩ Tµ = 1, a contradiction. So
(e) holds.

Case 2HSN = H. We know that TN/N is a self-centralizing TI subgroup in
H/N (remark after Lemma 4.1). Write ω ∈ (TN∩HS)−N as ω = τηη1 with 1 6=
τ ∈ T , η ∈ L, and η1 ∈ L1. If η1 = 1, then 1 6= ω ∈ T , a contradiction. Hence
η1 6= 1. Then σ = ω2 = [η1, τ ] 6= 1 and σ ∈ T ∩HS , again a contradiction.

Theorem 4.6. Set G∗ = 〈C〉 and N = O2(G∗). The following hold:

(a) The group N is elementary abelian of order 22n−2.

(b) The group N in the DHO case, respectively the group N in the APN case,
has two orbits S0, S1 on S such that |S0| = |S1| = 2n−1. Moreover
N = N0 ×N1, where Ni (N i in the APN case) is the pointwise stabilizer
of Si, i = 0, 1.

(c) G∗ > G∗SN for S ∈ S.

(d) Let M be the pre-image of O(G∗/N) in G∗. Then |G∗ : M | = 2. The
group M leaves both orbits S0 and S1 invariant, while the elements in
G∗ −M interchange both orbits.

Proof. By the main result of [23] the group N is elementary abelian. We know
that TN/N is an elementary abelian TI group such that CG/N (TN/N) = TN/N
(see the remark following Lemma 4.1). We will work in the DHO case. For the
APN case one has to replace the linear parts by their affine pre-images. All
arguments remain unchanged and the assertions follow from Lemma 2.1. We
distinguish the case G∗ > G∗SN and G∗ = G∗SN and show in the first case that
the assertions of the theorem hold, whereas the second case does not occur.

Assume first, that G∗ > G∗SN for S ∈ S and that G∗ is solvable. By the main
result of Timmesfeld [23] and Lemma 4.2 we get |(G∗/N)/O(G∗/N)| = 2. Thus
|T ∩N | = 2n−1. Then N is not transitive on S. Otherwise N would be regular
(as N is abelian), i. e. |N | = 2n. But if T 6= T ′ ≤ G∗ is another translation
group we see 1 6= T ∩ T ′ ∩N (as |T | > 4), a contradiction. Let S0 be an orbit
of N . Since T ∩N acts semiregularly on S we get |S0| ≥ 2n−1. Thus we have
precisely two orbits both of length 2n−1. Also |N | ≥ |(N∩T )×(N∩T ′)| = 22n−2

for two translation groups T, T ′ ≤ G∗. Let N0 be the kernel of the action of N
on S0. As N is abelian we have 2n−1 = |N : N0| and as N0 acts faithfully and
semiregularly on S1 we see |N | ≤ 22n−2. This implies N = N0 ×N1. Define M
as in assertion (d). Since |M/N | is odd the group M leaves each of the orbits
S0 and S1 invariant. So in this case all assertions of the theorem hold.
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Suppose still G∗ > G∗SN but that G∗ is nonsolvable. Now G∗SN/N is a
proper subgroup of 2-power index in G∗/N . This index is ≤ 2n as G∗ = G∗ST .
As in the proof of Lemma 4.4 one sees that G∗/N cannot be the covering group
of a Bender group. If G∗/N is the covering group of a group Lr(2) then TN/N is
a self-centralizing TI subgroup of order 2r−1, i. e. |G∗/N : G∗SN/N | ≤ 2r−1. But
by [14, Theorem 1] for r > 5 and by [3] for r = 5 the index of a maximal subgroup
of Lr(2) is ≥ 2r − 1. So this case is ruled out too. For the remaining groups
the subgroup structure is given by the ATLAS of finite groups [3]. This implies
G∗/N ' A8 ' SL(4, 2) or G∗/N ' L2(7) ' SL(3, 2). Also |TN/N | = 22 or 23

if G∗/N ' SL(3, 2) or ' SL(4, 2) respectively. Since |T | > 23 we get N 6= 1.
It suffices to rule out the case G∗/N ' SL(3, 2): If G∗/N ' SL(4, 2), then
this group contains two classes of subgroups (maximal parabolic subgroups),
which are the extension of the SL(3, 2) by its natural module F3

2. Both contain
translation groups since they have odd index in G∗/N . So at least one of these
subgroups is generated by translation groups. Thus G∗ contains a subgroup H∗

generated by translation groups such that H∗/O2(H∗) ' SL(3, 2) and we can
argue with H∗ instead with G∗.

As |G∗ : G∗SN | is a nontrivial 2-power and as G∗SN/N is isomorphic to a sub-
group of G∗/N ' SL(3, 2) we conclude that G∗SN/N is a maximal subgroup of
G∗/N , namely a Frobenius group of order 21. We know that N is not transitive
on S as otherwise G∗ = G∗SN . Let S0 be an N -orbit on S, S ∈ S0. Then G∗SN
lies in the stabilizer G∗S0 of the set S0 and G∗S0 < G∗. The maximality of G∗SN
in G∗ shows G∗S0 = G∗SN . Hence N has precisely 8 = |G∗ : G∗SN | orbits on S,
each of size 2n/8 = 2n−3. On the other hand |TN/N | = 4, i. e. |N ∩ T | = 2n−2

and N ∩ T acts semiregularly on S0. This shows |S0| ≥ 2n−2, a contradiction.
Assume now G∗ = G∗SN . Then N is a transitive abelian normal subgroup,

i. e. N acts regularly on S. Thus |N | = 2n. Assume that G∗ is solvable. Then
as before |T ∩N | = 2n−1 which is impossible.

So assume that (G∗/N)/Z(G∗/N) is nonabelian simple. By Lemma 4.4
and Lemma 4.5 we have that 〈TN/N, T γN/N〉 is solvable for some TN/N 6=
T γN/N . Inspecting the list of [23] we see that G∗/N has to be among the
following groups Lr(2), A6, A7, A8, A9, M22, M23, or M24. Let K be the number
of conjugates of TN/N in G∗/N , 2k = |T ∩N |. Since the sets (T γ ∩N)− 1 are
pairwise disjoint

(2k − 1)K ≤ 2n − 1.

We claim that G∗/N ' Lr(2) and that N is the natural G∗/N -module:

Assume first G∗/N ' Lr(2). Then K = 2r − 1, |TN/N | = 2r−1, i. e.
k = n − r + 1. Hence (2k − 1)(2r − 1) ≤ 2k+r−1 − 1 which implies k = 1 and
n = r. It follows from (2.9) [23] that N is the natural module (or its dual, but
this distinction is irrelevant).

If G∗/N ' A6 then n − k = 2 and K = 15 which implies (2k − 1)(24 −
1) < 2k+2, a contradiction. Similarly the cases A7 and A9 are ruled out while
A8 ' L4(2) was treated already. If G∗/N ' M22 then n− k = 4 and K ≥ 77 by
the information from the ATLAS of finite groups [3]. Hence (2k − 1)26 < 2k+4,
again a contradiction. Similarly the remaining cases are ruled out.
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Now G∗S ' GL(n, 2) ' Ln(2), n ≥ 4, G∗S ∩ N = 1, so that G∗ is a split
extension of GL(n, 2) by its natural module. Let η be an element in the pre-
image of NG∗/N (TN/N). Then 〈T η, T 〉 is a 2-group, i. e. T η = T , which shows
that NG∗(T ) covers NG∗/N (TN/N). In particular NG∗(T ) contains a cyclic
group C of order 2n−1 − 1 which normalizes the extraspecial (see Lemma 4.1)
2-group E = NT of order 22n−1. Since all cyclic groups of order 2n−1 − 1 are
conjugate in GL(n, 2) and thus in G∗ we may assume C ≤ G∗S (choose S in
a suitable way). We view the quotient E/(N ∩ T ) as a symplectic space of
dimension 2(n − 1) (cf. [12, Satz III.13.7-8]). Thus the representation of C on
the isotropic space N/(N ∩ T ) is dual to the representation of C on E/N and
both representations are inequivalent (consider the eigenvalues and use n > 3).
Thus the F2C-module E/(N ∩ T ) has precisely two invariant C-spaces, namely
T/(N∩T ) and N/(N∩T ). Also EC∩G∗S = FC, F = E∩G∗S , with F elementary
of order 2n−1 by the modular law. This implies F ≤ T . But nontrivial elements
in F do not fix S, a contradiction.

We remark that the theorem implies

NTγ (T ) 6= 1 for each T γ ∈ C − {T}.

Hence the assumptions of Lemma 4.5 are automatically satisfied.

Lemma 4.7. Let T γ ∈ C−{T}. Set H = 〈T, T γ〉. Then N = O2(G∗) = O2(H)
and H/N ' D2k, 1 < k odd. Let C be a cyclic subgroup of H of order k. The
group C in the DHO case, respectively, in the APN case, the group C, fixes
precisely two elements S, S′ ∈ S. Moreover NH(C) = C〈µ〉 with an involution
µ conjugate to some element in T . Finally, H = 〈T, µ〉 for a suitable choice of
µ.

Proof. As before it suffices to consider the DHO case. We can apply Theorem 4.6
to H in the role of G∗. Thus H/N ' D2k, 1 < k odd, and O2(H) = N by
Lemma 4.5. Also N = O2(G∗) as |N | = |O2(G∗)|.

Let S0, S1, N0, N1 be defined as in Theorem 4.6. Since CN (C) = 1
(Lemma 4.5) and, as N0 acts regularly on S1, we deduce that C fixes pre-
cisely one space S′ in S1. Similarly, C fixes precisely one space S in S0.
By a Frattini argument H = NH(C)N . But [NN (C), C] ≤ C ∩ N = 1, so
NN (C) = CN (C) = 1 which implies NH(C) = C〈µ〉 with an involution µ.
Choosing a suitable µ we see C ≤ 〈T, µ〉.

Lemma 4.8. Consider the F2-block matrices

L =

 1t A B
1t

1s

 , L′ =

 1t
C 1t D

1s

 ,

and assume that

(LL′)2 =

 1t X Y
1t

1s

 .

Then X = 0 and Y = AD.
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Proof. A computation shows

(LL′)2 =

 1t +AC + (AC)2 ACA AC(AD +B) +AD
CAC 1t + CA C(AD +B)

1s

 .

We conclude CA = 0 and then AC = 0 and finally CB = 0. The proof is
complete.

Lemma 4.9. Let T, T γ ∈ C be two translation groups. Set H = 〈T, T γ〉, N =
O2(H), Y = CU (T ) and Y ′ = CU (T γ). The following holds.

(a) Set U0 = CU (H), U1 = Y + Y ′. Then dimU0 = m− n+ 1, dimU1/U0 =
2(n− 1) and dimU/U1 = 1. Moreover H acts trivially on U0 and U/U1.

(b) [U1, T ∩N ] ⊆ U0.

(c) dimU ≥ 3(n− 1).

Proof. The APN case: Since U0 = Y ∩ Y ′ and dimU1 ≤ m+ n we have

dimU0 ≥ m− n.

We claim:

(1) U1 is a proper subspace of U .

Assume the converse. Then

U/U0 = Y/U0 ⊕ Y ′/U0

is a decomposition into n-spaces. Choose subspaces Z ⊆ Y , Z ′ ⊆ Y ′, such that
U = Z ′ ⊕ Z ⊕ U0. If we adjust to this decomposition a basis of U we get for
τ ∈ T and τ ′ ∈ T γ matrix representations

τ =

 1n A(τ) B(τ)
1n

1m−n

 , and τ ′ =

 1n
C(τ ′) 1n D(τ ′)

1m−n

 .

Choose in particular τ ∈ T −N . Then

T γ ∩N 3 τ ′ 7→ [τ, τ ′] = (ττ ′)2 ∈ T ∩N

is an injection since CN (τ) = CN (T ) = T ∩N . By Lemma 4.8 the elements in
T ∩N are represented by the matrices 1n A(τ)D(τ ′)

1n
1m−n


where τ ′ ranges over the elements of T γ∩N . Hence CZ′(T∩N) 6= 0 as kerA(τ) ⊆
kerA(τ)D(τ ′) and therefore dimCU (σ, σ′) ≥ m + 1 for 1 6= σ, σ′ ∈ T ∩ N ,
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σ 6= σ′. But dimCU (σ, σ′) = dimY = m by Theorem 3.5, a contradiction.
Hence assertion (1) holds. So we have

dimU0 = m− n+ k, k > 0.

Denote by N0 the stabilizer in N of 0 ∈ S. Then N0 ≤ N ≤ H. We know by
Theorem 4.6 that |S0| = 2n−1 for S0 = FixS(N0). Moreover |(S0+Y )/Y | = 2n−1

by Lemma 3.3. So either U = W+Y or dimU/(W+Y ) = 1 where W = CU (N0).
Assume the first case. As CU (T ) = CU (T ∩N) and CU (T ′) = CU (T ′ ∩N) we
have CU (N) = U0. Hence n = dim(W +Y )/Y = dimW/(W ∩Y ) = dimW/U0.
By symmetry dimY/U0 = n and U/U0 = Y/U0⊕W/U0 is a decomposition into
n-spaces which forces dimU0 = m− n, i. e. k = 0, a contradiction.

So we have dim(W+Y ) = m+n−1 and n−1 = dim(W+Y )/Y = dimW/U0,
i. e. dimW = m + k − 1. Let τ ∈ T − N , N1 = Nτ

0 and W ′ = CU (N1). Then
dimW ′ = m+ k − 1 too. Since τ centralizes Y and U/Y we see

W + Y = (W + Y )τ = W ′ + Y.

Therefore

m+ n− 1 ≥ dim(W +W ′) = 2(m+ k − 1)− (m− n+ k) = m+ n+ k − 2

which shows k = 1. Assertion (a) follows.

To (b) and (c): We write U1 = Z ′ ⊕Z ⊕U0, with (n− 1)-spaces Z ⊆ Y and
Z ′ ⊆ Y ′. Then

U = 〈v0〉 ⊕ Z ′ ⊕ Z ⊕ U0

where v0 ∈ U − U1. If we adjust to this decomposition a basis of U we get for
τ ∈ T and τ ′ ∈ T γ matrix representations

τ =


1 a(τ) b(τ)

1n−1 A(τ) B(τ)
1n−1

1m−n+1

 , and τ ′ =


1 c(τ ′) d(τ ′)

1n−1
C(τ ′) 1n−1 D(τ ′)

1m−n+1

 .

Choosing τ ∈ T − N and using Lemma 4.8 again we see that the elements in
T ∩N are represented by matrices of the form

1 ? ?
1n−1 A(τ)D(τ ′)

1n−1
1m−n+1


where τ ′ ranges over the elements of T γ ∩ N . Since N = (T γ ∩ N) × (T ∩ N)
and by symmetry this implies assertion (b). As 1 + σ has rank n − 1 for 1 6=
σ = (ττ ′)2 ∈ T ∩N we see that the matrix A(τ)D(τ ′) must have at least n− 2
columns, i. e. m− n+ 1 ≥ n− 2. Thus dimU ≥ 1 + 2(n− 1) + n− 2 = 3(n− 1)
and assertion (c) holds too.
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The DHO case: Let S ∈ S0 and σ ∈ N0 (S0 and N0 as in Theorem 4.6).
Then S ∩ Sσ ⊆ CS(N0), which implies dimCS(N0) ≥ n − 1. On the other
hand N0 acts regularly on {S ∩ S′σ |σ ∈ N0} for S′ ∈ S1 (again S1 as in
Theorem 4.6). This shows dimCS(N0) = n− 1 and S −CS(N0) is an N0-orbit.
Since U(σ + 1) ⊆ U1 for σ ∈ H we deduce S(σ + 1) ⊆ S ∩ U1 if σ ∈ N0. This
implies

S ∩ U1 = CS(N0) = [S,N0] and S = (S ∩ U1)⊕ (S ∩ S′).

Thus CU (T )⊕(S∩U1) ⊆ U1, i. e. dimU1 ≥ m+n−1. But we have seen U1 6= U .
This shows dimU1 = m + n − 1 and dimU0 = m − n + 1 and (a) holds. We
are now in the same situation as in the APN case. We can argue as before and
obtain assertions (c) and (d) in the DHO case too.

A consequence of part (c) of Lemma 4.9 is:

Theorem 4.10. Let U be the ambient space of an n-dimensional bilinear DHO
which admits at least two translation groups or the ambient space of a quadratic
APN function which is defined on an n-space and which admits at least two
translation groups. Then dimU ≥ 3(n− 1).

Remark. In the case of APN functions the lower bound of Theorem 4.10
will be improved by Corollary 5.11.

5 Extensions

In this section we construct extensions of bilinear, symmetric DHOs (see The-
orem 5.1) and extensions of alternating, quadratic APN functions (see Theo-
rem 5.3). Such extensions are candidates for DHOs or APN functions which
admit more than one translation group (see Corollary 5.2 and Corollary 5.5).
It will be shown, that if such a DHO or APN function admits more than one
translation group, then the automorphism group of this extension is already de-
termined by the automorphism group of the extended object (see Theorem 5.7
and Theorem 5.9). Finally, we show that any DHO or APN function which
admits more than one translation group can be constructed as an extension
of a symmetric bilinear DHO or a quadratic APN function respectively (see
Theorem 5.10). As a consequence one obtains the complete information on the
structure of the normal closure of the translation groups (see Corollary 5.13).

In the subsequent section we will apply the results of the present section
and give concrete examples of bilinear DHOs and APN functions with many
translation groups.

Theorem 5.1. Let X,Y be finite dimensional F2-spaces, β : X → Hom(X,Y )
a homomorphism which defines a symmetric, bilinear DHO S = Sβ. Set X =
F2 ×X and Y = X × Y . For (a, e) ∈ X define a subspace of X × Y by

Sa,e = {(b, be+ ax, be+ (a+ 1)x, (be+ x)β(e)) | (b, x) ∈ X}.

and set S = {Sa,e | (a, e) ∈ X}. The following hold.
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(a) The set S is a DHO in X × Y .

(b) For (a, e) ∈ X set

τa,e =


1 e e eβ(e)

(a+ 1)1 a1 β(e)
a1 (a+ 1)1 β(e)

1

 .

Then T = {τa,e | (a, e) ∈ X} is a translation group of S.

(c) For e ∈ X set

n1,e =


1 e

1
1 β(e)

1

 , n0,e =


1 e

1 β(e)
1

1

 .

Then Na = {na,e | e ∈ X}, a = 0, 1, are elementary abelian 2-subgroups
of Aut(S). The group Na fixes all elements in Sa = {Sa,e | e ∈ X} and it
acts regularly on Sa+1. The group N = N0×N1 is an elementary abelian
group of order |X|2 and the groups N and T normalize each other.

(d) Let α = (λ, µ, ρ) be an autotopism of S. Then uα = diag(1, λ, µ, ρ), is an
automorphism S.

(e) We have Tuα = T iff α is a special autotopism.

Notation. We write elements from X × Y as (a, x, y, z) with a ∈ F2, x, y ∈ X,
and z ∈ Y .

Proof. (a) + (b) A simple calculation (which uses the symmetry of β) shows
that τa,eτb,f = τa+b,e+f , i. e. T is an elementary abelian group of order 2n+1. A
typical element of S0,0 has the shape (b, 0, x, 0). Then

(b, 0, x, 0)τa,e = (b, eb+ ax, eb+ (a+ 1)x, (eb+ x)β(e))

which implies S0,0τa,e = Sa,e. Hence T acts regularly on S. We also observe

S0,0 ∩ S0,e = 〈(0, 0, x, 0)〉

for 0 6= e ∈ X and kerβ(e) = 〈x〉 and

S0,0 ∩ S1,e = 〈(1, 0, e, 0)〉.

Using the action of T we conclude that S is a DHO. Finally,

CX×Y (T ) = {(0, x, x, y) | (x, y) ∈ X × Y }.

This space intersects trivially with every subspace of the DHO. Hence T is a
translation group.
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(c) Simple block matrix multiplication shows that all na,e, (a, e) ∈ X, com-
mute, i. e. N is elementary abelian of order |X|2. Let v = (b, be, be + x, (be +
x)β(e)) be a typical element in S0,e. Then (using again the symmetry of β)

vn0,f = (b, be, b(e+ f) + x, beβ(f) + (be+ x)β(e)) = (b, be, be+ y, (be+ y)β(e)),

y = bf+x, which lies again in S0,e. Thus S0,en0,f = S0,e. A similar computation
shows vn1,f ∈ S1,e+f . A computation shows that τ1,0 interchanges the the
groups N0 and N1 (via conjugation) and that each τ0,e commutes with elements
in Na, a = 0, 1, i.e. T normalizes N . Also [τ1,0, na,e] ∈ T (computation), so
that N normalizes T too. By symmetry all assertions of (c) follow.

(d) Let v = (b, be, be+ x, (be+ x)β(e)) be a typical element in S0,e. Then

vuα = (b, beλ, (be+ x)µ, (be+ x)β(e)ρ) = (b, beλ, beλ+ y, (beλ+ y)β(eλ)),

y = beλ+(be+x)µ, since (beλ+y)β(eλ) = (be+x)β(e)ρ by (d) of Proposition 3.9.
Hence S0,euα = S0,eλ . Similarly, we see that S1,euα = S1,eµ holds. So all
assertions of (b) follow.

(e) A computation shows that u−1α τ1,0uα ∈ T iff α is special.

Remark. Assume in the theorem that X × Y is the ambient space of S. It is
not hard to see that the ambient space of S is X × Y .

Definition. Let X,Y be finite dimensional F2-spaces, β : X → Hom(X,Y ) a
homomorphism which defines a symmetric DHO S = Sβ . Set X = F2 ×X and
Y = X × Y . We call the bilinear DHO S in X × Y (defined in Theorem 5.1)
the extension of S.

As a corollary of assertion (e) from Theorem 5.1 we have.

Corollary 5.2. The extension of a symmetric, bilinear DHO S admits more
than one translation group if S admits non-special autotopisms.

We now treat extensions of APN functions.

Theorem 5.3. Let f : X → Y be a normed APN function. Set X = F2 ×X
and Y = X × Y . Then F : X → Y , (a, x) 7→ (ax, f(x)) is a normed APN
function.

Proof. Let 0 6= (a0, x0) ∈ X and consider g defined by g(a, x) = F (a + a0, x +
x0)+F (a, x). Let (x, y) = g(a, x) be an element in the image of g. Let (a′, x′) be
a second pre-image, then (1) a0(x+x′) = (a+ a′)x0 and (2) f(x+x0) + f(x) =
f(x′ + x0) + f(x′). We have to show (a′, x′) = (a, x) + (a0, x0).

If x0 = 0 then a0 = 1 and we get x = x′ and a′ = a+ 1 as desired. If x0 6= 0
then x′ = x + x0 by the APN property of f and (2). Then by equation (1)
a′ = a+ a0 and the proof is complete.

Definition. Let f : X → Y be a normed APN function. The APN function
F : X → Y defined in Theorem 5.3 is called the extension of f .

We now proof the analogue of Theorem 5.1 for quadratic APN functions.
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Theorem 5.4. Let f : X → Y be a normed, quadratic APN function and
denote by β : X → Hom(X,Y ) the monomorphism which defines the associated
DHO. Let F : X → Y be the normed APN function in the sense of Theorem 5.3.
The following hold:

(a) The function F is quadratic. For (a, e) ∈ X set

τa,e =


1 e

1n a1n β(e)
1n

1m

 .

Then T = {τa,e|(a, e) ∈ X} is the linear part of the standard translation
group. Moreover the pre-image of τa,e in T is τa,e = τa,e + ca,e and
ca,e = (a, e) + F (a, e) = (a, e, ae, f(e)) is the associated 1-cocycle.

(b) For e ∈ X define

νe =


1 e e f(e)

1n
1n β(e)

1m

 .

Then N0 = {νe|e ∈ X} is an elementary abelian group of order 2n in
A(F ) ∩Aut(F ).

(c) For a ∈ F2 define Sa = {(a, e, ae, f(e))|e ∈ X}. Then SF is the disjoint
union of S0 and S1. The group N0 fixes S0 pointwise and acts regularly
on S1. Set

N = 〈N0, τ0,e|e ∈ X〉.

Then N is an elementary abelian 2-group in A(F ) of order 22n and the
groups N and T normalize each other. The pre-image N of N has the
orbits S0 and S1 on SF .

(d) Let (
λ ϕ

ρ

)
and

(
γ ψ

ρ

)
be autotopisms of f (note that ϕ and ψ are functions of the pairs (λ, ρ)
and (γ, ρ) respectively). Define

φ(λ, γ, ρ) =


1

λ ϕ
λ+ γ γ ϕ+ ψ

ρ


Then φ(λ, γ, ρ) is an automorphism of F which fixes (0, 0, 0, 0) and (1, 0, 0, 0)
( i. e. the automorphism lies in A(F )∩Aut(F )). The automorphism nor-
malizes T iff λ = γ. The set L of automorphisms φ(λ, γ, ρ) forms a group.
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Proof. (a) Denote by β the bilinear form associated to f . Then

F (a+ a′, x+ x′) + F (a, x) + F (a′, x′) = (ax′ + a′x, β(x, x′)).

This shows that F is quadratic. Moreover a calculation shows τa,eτb,d = τa+b,e+d.
Hence T is an elementary abelian 2-group of order 2n+1. A routine computation
shows (b, x, F (b, x))τa,e = (a+ b, e+x, F (a+ b, e+x)). Hence T is the standard
translation group (T acts regularly on SF and Y = CU (T )).

(b) + (c) A computation shows that N0 fixes all elements in S0 and acts
on S1 by (1, x, x, f(x))νe = (1, x + e, x + e, f(x + e)). It is easy to see that
the elements in N commute with every τ0,e. Then N is an elementary abelian
2-group of order 22n which is normalized by τ1,0 (calculation). But elements of
the form τ0,e even commute with N , i.e. T normalizes N . But a calculation
shows that T is also normalized by N . Hence TN is a 2-group of order 22n+1.
The orbits of N on SF are S0 and S1.

(d) Let (a, x, ax, f(x)) be a typical element in SF . We compute

(a, x, ax, f(x))φ(λ, γ, ρ) = (a, xλ+ ax(λ+ γ), axγ, xϕ+ ax(ϕ+ ψ) + f(x)ρ).

So clearly φ(λ, γ, ρ) fixes (0, 0, 0, 0) and (1, 0, 0, 0). By our assumption the
equations f(xλ) = xϕ + f(x)ρ and f(xγ) = xψ + f(x)ρ hold. This implies
(a, x, ax, f(x))φ(λ, γ, ρ) = (0, xλ, 0, f(xλ)) if a = 0 and for a = 1 we obtain
(1, xγ, xγ, f(xγ)). Hence φ(λ, γ, ρ) ∈ A(F ) ∩ Aut(F ). A simple computation
shows that φ(λ, γ, ρ) normalizes N . Moreover φ(λ, γ, ρ)−1τ1,0φ(λ, γ, ρ) ∈ T iff
λ = γ. Namely, the quadratic block submatrix with respect to the positions
(k, l), k, l ∈ {2, 3}, of φ(λ, γ, ρ)−1τ1,0φ(λ, γ, ρ) has the form(

λ−1γ λ−1γ
λ−1γ + γ−1λ λ−1γ

)
.

So if φ(λ, γ, ρ)−1τ1,0φ(λ, γ, ρ) ∈ T we conclude λ−1γ = γ−1λ and λ−1γ = 1.
This implies λ = γ. Since the mappings φ(λ, γ, ρ) are defined by autotopisms
of f and as the autotopisms of f are a group, an obvious matrix multiplication
shows that L is a group too.

Remark. The group L can be viewed as a direct product with identified factor
group (”direktes Produkt mit vereinigter Faktorgruppe”) in the sense of [12, I.
9.10]. Indeed we have

L ' {(φ, ε) ∈ A×A|φK = εK}

where A is the autotopism group of f and K is the normal subgroup of nuclear
autotopisms.

Corollary 5.5. The extension of a quadratic APN function f admits more than
one translation group if f admits nontrivial nuclear autotopisms.

Proof. This corollary is an immediate consequence of assertion (d) of Theo-
rem 5.4.
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Let G be the automorphism group of an extension of a symmetric, bilinear
DHO. By Theorem 5.1 G contains an elementary abelian 2-group N which
has precisely two orbits on the DHO. Suppose that G contains more than one
translation group and denote by G∗ the group generated by the translation
groups. By Theorem 4.6 we know that O2(G∗) has the same order as N and it
also has a similar action on the DHO. We now show that these groups do indeed
coincide and that for extensions of APN functions an analogous assertion holds.

Proposition 5.6. Let G be the automorphism group of an extension of a n-
dimensional, symmetric, bilinear DHO, n ≥ 4, or the linear part of the au-
tomorphism group of the extension of a quadratic APN function defined on a
F2-space of dimension ≥ 4. Suppose that G contains more then one translation
group and denote by G∗ the group generated by the translation groups. Let N be
the group defined in Theorem 5.1 (DHO case) or in Theorem 5.4 (APN case).
Then N = O2(G∗).

Proof. We set N = O2(G∗) and denote by T a translation group which normal-
izes N (notation as in 5.1 and 5.4). Thus TN is a 2-group and as N is a normal
2-group in G also S = TNN is a 2-group. We also define n by |N | = |N | = 22n

( i. e. |T | = 2n+1). Let M be either N or N .

(1) Consider T as a (n+1)-dimensional F2-space. Then MT/T 'M/(M∩T )
is the centralizer in GL(T ) of the hyperplane M ∩ T .

Clearly, |M ∩ T | = |MT/T | = 2n and as CG(T ) = T we see that MT/T is
isomorphic to an elementary abelian 2-group of order 2n in GL(T ). Moreover
MT/T centralizes M∩T . On the other hand it is well known that the centralizer
of a hyperplane in GL(T ) is elementary abelian of order 2n. Claim (1) follows.

(2) N = N .

Assume first N ∩ T = N ∩ T . So for τ ∈ N there exists by (1) a σ ∈ N
such that both elements induce the same automorphism on T . Hence σ−1τ ∈
CG(T ) = T or τ ∈ NT . So N is an elementary abelian 2-group of order 22n

in NT . However N is the only elementary abelian 2-group of order 22n in NT
(we know that |CN (τ)| = 2n for τ ∈ NT −N ). Hence N = N .

Assume now N ∩ T 6= N ∩ T . Then Z = T ∩ N ∩ N is a subspace of
codimension 2 in T and NT/T and NT/T induce two different groups of order
2 on the space T/Z of dimension 2 (note that (T ∩ N)/Z 6= (T ∩ N )/Z). But
GL(T/Z) ' GL(2, 2) ' S3. Hence 〈T,N,N〉 induces the symmetric group of
degree 3 on T/Z. But then the order of S is divisible by 3, a contradiction. So
(2) holds and the proof is complete.

Theorem 5.7. Let S be the extension of the bilinear, symmetric DHO S = Sβ
and let G be the automorphism group of S. We assume the notation of Theorem
5.1. The following hold.

(a) The normalizer of N in G has the form

NG(N) = 〈τ1,0〉LN, L ∩N = 1,
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where L is a group which is isomorphic to the autotopism group of S.

(b) Assume now that S has dimension ≥ 4, that G has more than one transla-
tion group and denote by G∗ the normal closure of the translation groups.
Then G = 〈τ1,0〉LN and G∗ = 〈τ1,0〉L0N , where L0 is isomorphic to the
multiplicative group of the symmetric nucleus of S. Moreover, G contains
precisely |L0| translation groups.

Proof. (a) Set M = NG(N). Then M leaves {S0,S1} as a set invariant. Let H
be the normal subgroup of index 2 of M which fixes the two N -orbits S0 and
S1. Since τ1,0 interchanges S0 with S1, one has M = 〈τ1,0〉H and N ≤ H. Since
N is transitive on S0 we get H = NK, where K is the stabilizer of S0,0 in H.
Also N ∩K = N0. But N0 acts regularly on S1. Hence K = N0L, where L is
the stabilizer of S1,0 in K. Now

L ∩N = L ∩K ∩N = L ∩N0 = 1,

and
H = KN = LN0N = LN.

As L fixes S0,0 and S1,0 it fixes the intersection of these spaces too. Also L fixes
CX×Y (N) = {(0, 0, 0, y)|y ∈ Y }. So σ ∈ L has the form

σ = diag (1, λ, µ, ρ).

Since σ normalizes both groups N0 and N1 we see that

β(xλ) = µ−1β(x)ρ, β(xµ) = λ−1β(x)ρ

for all x ∈ X. Using (d) of Proposition 3.9 we see that (λ, µ, ρ) is an autotopism
of S and by (d) of Theorem 5.1 every autotopism of this DHO lifts to an element
of L.

(b) By Proposition 5.6 N is normal in G, i. e. the first assertion holds. Note
that τ1,0 normalizes L as στ1,0 = diag (1, µ, λ, ρ) with a σ defined as above.
Hence the commutator

[σ, τ1,0] = σ−1στ1,0 = diag (1, λ−1µ, µ−1λ, 1)

lies in the group L0 = {diag(1, δ−1, δ, 1)|(δ−1, δ, 1) nuclear}. Clearly, this group
is isomorphic to the multiplicative group of the symmetric nucleus of S (see (c)
of the Proposition 3.9 and the definition of the symmetric nucleus). Moreover,
L0 is a normal subgroup of L (since the group of nuclear autotopisms of S is
cyclic, i. e. every subgroup is characteristic) and we have τσ1,0L0 = τ1,0L0 for all
σ ∈ L.

We claim G∗ = 〈τ1,0〉L0N . As all involutions in T −N are conjugate under
N to τ1,0, it suffices to show that the RHS contains the conjugacy class of τ1,0
in G. A typical element in G can be written as ω = ω0ω1 with ω0 ∈ TN and
ω1 ∈ L. Hence

τω1,0 = (τω0
1,0)ω1 ∈ τω1

1,0N
ω1 = τω1

1,0N ⊆ τ1,0L0N
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as desired.
Since G∗/N is a dihedral group of order 2|L0| (τ1,0N acts invertingly on

the cyclic group L0N/N), we have NG∗/N (TN/N) = TN/N . This implies
NG∗(T ) = TN and hence G∗ and thus G has precisely |L0| = |G∗ : NG∗(T )|
translation groups.

We now turn to the computation of the automorphism group of extensions
of quadratic APN functions. We need the following Lemma.

Lemma 5.8. Let F be the extension of a quadratic APN function. Assume the
notation of Theorem 5.4. The stabilizer of (0, 0, 0, 0) and (1, 0, 0, 0) ∈ SF in the
normalizer of N in Aut(F ) is L.

Proof. It is convenient to use the basis transformation represented by
1

1n
1n 1n

1m

 .

This results in somewhat simpler representations of SF , T , N , and L. We have
for the graph

S0 = {(0, x, 0, f(x))|x ∈ X} and S1 = {(1, 0, x, f(x))|x ∈ X}.

The elements in N0 and τ1,0 have now the form

νe =


1 e f(e)

1n
1n β(e)

1m

 , τ1,0 =


1

1n
1n

1m


and c1,0 = (1, 0, 0, 0). Let N1 be the pointwise stabilizer of S1 in N . Then
N1 = 〈µe|e ∈ X〉 where

µe =


1 e f(e)

1n β(e)
1n

1m

 , cµe = (0, e, 0, f(e)).

Finally elements in L have now the shape

φ(λ, γ, ρ) =


1

λ ϕ
γ ψ

ρ


such that (

λ ϕ
ρ

)
and

(
γ ψ

ρ

)
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are autotopisms of f .
Pick a φ ∈ NAut(F )(N) which fixes (0, 0, 0, 0) and (1, 0, 0, 0). This implies

φ ∈ A(F ) and therefore φ also normalizes N0 and N1. So this automorphism
leaves invariant CX×Y (N) = {(0, 0, 0, y)|y ∈ Y } and CX×Y (Ni), i = 0, 1. This
implies that the automorphism is represented as

φ =


1

λ ϕ
γ ψ

ρ

 .

We have to show:

(
λ ϕ

ρ

)
and

(
γ ψ

ρ

)
are autotopisms of f .

We have

φ−1νeφ =


1 eγ f(e)ρ+ eψ

1n
1n γ−1β(e)ρ

1m

 ∈ N0

and

φ−1µeφ =


1 eλ f(e)ρ+ eϕ

1n λ−1β(e)ρ
1n

1m

 ∈ N1.

This shows f(eγ) = f(e)ρ+ eψ and f(eλ) = f(e)ρ+ eϕ and indeed this pair of
equations proves the claim.

Theorem 5.9. Let F be the extension of a quadratic APN function f and let
G = A(F ) be the linear part of the automorphism group of F . We assume the
notation of Theorem 5.4. The following hold.

(a) The normalizer of N in G has the form

NG(N) = 〈τ1,0〉LN, L ∩N = 1.

(b) Assume now that F is defined on a space of dimension n ≥ 4, that G has
more than one translation group and denote by G∗ the normal closure of
the translation groups. Then G = 〈τ1,0〉LN and G∗ = 〈τ1,0〉L0N , where
L0 is isomorphic to the group of nuclear autotopisms of f , i. e. L0 ' C3

and G contains precisely three translation groups. Moreover n is odd.

Proof. (a) Set M = NG(N). We can now proceed completely similar as in the
proof of Theorem 5.7 (with M in the role of M and the graph of SF in the role
of S) and obtain (using Lemma 5.8: L is the stabilizer of the given two points
of the graph in M)

NG(N) = 〈τ1,0〉LN, L ∩N = 1.
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(b) By Proposition 5.6N = O2(G∗). This shows the first assertion of (b). We
use the same basis transformation as in the proof of Lemma 5.8. Let φ(λ, γ, ρ)
be a typical element from L. A computation shows

τ1,0φ(λ, γ, ρ)τ1,0 = φ(γ, λ, ρ).

In particular φ = φ(λ, γ, ρ) ∈ L is inverted by τ1,0 iff ρ = 1 and γ = λ−1. This
implies (one can use precisely the same arguments as in the proof of part (b) of
Theorem 5.7) L ∩G∗ = L0 = [L, τ1,0] ' C3 and there exist a nontrivial nuclear

autotopism of f of the form

(
λ ϕ

1

)
. Here we also use that f is associated

with an alternating DHO and use (f) of Proposition 3.9. As in the proof of
Theorem 5.7 we see that G has precisely three translation groups. Also n is odd
by (f) of Proposition 3.9.

We now show that bilinear DHOs which admit more than one translation
group are extensions of symmetric bilinear DHOs and we prove the analogous
result for quadratic APN functions.

Theorem 5.10. Let U = X ⊕ Y be an F2-space with dimX = n ≥ 4 and
dimY = m.

(a) Let S be a n-dimensional, bilinear DHO in U , which admits at least two
translation groups. Then S is the extension of a symmetric (n − 1)-
dimensional DHO.

(b) Let F : X → Y be a quadratic APN function, which admits at least two
translation groups. Then n is odd and F is equivalent to the extension of
a quadratic APN function g : Fn−12 → Fm−n+1

2 .

Proof. We consider the group H = 〈T, T γ〉 generated by two translation groups.
Form Lemma 4.5 we know that H = NC〈γ〉 with N = O2(H), C a cyclic group
of odd order, and we may assume that γ is an involution conjugate in H to
some element in T −N . Also we assume wlog. Y = CU (T ) (cf. Theorem 3.11).

Define again as in Lemma 4.9 U1 = Y +Y ′, U0 = Y ∩Y ′ with Y ′ = CU (T γ).
We have shown in Lemma 4.9 that [U1, N ∩ T ] ⊆ U0 and since N is normal in
H, also [U1, N ∩ T γ ] ⊆ U0, so that finally [U1, N ] ⊆ U0 holds. We now split our
argument into the DHO and the APN case.

(a) (DHO case) Here S is a bilinear DHO. From the proof of Lemma 4.9 we
deduce further that

(∗) U = 〈v0〉 ⊕ (S′ ∩ U1)⊕ (S ∩ U1)⊕ U0,

v0 ∈ U − U1, S ∈ S0, S′ ∈ S1, and that the mapping N0 3 τ 7→ [v0, τ ] ∈ S ∩ U1

is injective. Hence there is an isomorphism ν : F2n−1 ' S ∩ U1 → N0, e 7→ νe
such that [v0, νe] = e. We may assume that S and S′ are interchanged under γ.
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So we can choose a basis of U adapted to the decomposition (∗) such that we
have matrix representations of the form

νe =


1 e

1n−1 β(e)
1n−1

1m−n+1

 and γ =


1

1n−1
1n−1

1m−n+1


with a homomorphism β : Fn−12 → Hom(Fn−12 ,Fm−n+1

2 ). As S0 is a subset of
an n-dimensional DHO the mapping β(e) : 〈v0〉 ⊕ (S′ ∩ U1) → (S ∩ U1) ⊕ U0

represented by

(
e

β(e)

)
has rank n−1 for 0 6= e, which implies that β(e) has

rank n−2, i.e. β defines an (n−1)-dimensional, bilinear DHO. Conjugating with
γ we see that there is an isomorphism ν′ : Fn−12 → N1 such that the elements
of N1 are represented as

ν′f =


1 f

1n−1
1n−1 β(f)

1m−n+1

 .

As νe and ν′f commute we see fβ(e) = eβ(f), i.e. β is symmetric. It now follows
that S is the extension of the DHO defined by the homomorphism β.

(b) (APN case) Now S = SF is the graph of the quadratic APN function
F . Since γ interchanges the spaces Y and Y γ we see dimCU1

(γ) ≤ m. As
rk (1 + γ) = n − 1 (all involutions in T − NC are conjugate in H by (b) of
Lemma 4.5) we see CU (γ) 6⊆ U1. Then for any involution σ ∈ H −CN we have
rk (1 + σ)U1/U0

= n− 1 and CU (σ) 6⊆ U1.
In order to investigate the graph more closely we turn from the element

γ to an element π in T − N . Pick v0 ∈ CU (π) − U1. By the modular law
U1 = (U1 ∩X)⊕ Y and as rk (1 + π)U1/U0

= rk (1 + π) = n− 1 we see that Z =
[U1 ∩X,π] has dimension n− 1 and Y = Z ⊕U0. We obtain the decomposition

(∗∗) U = 〈v0〉 ⊕ Z ′ ⊕ Z ⊕ U0

where Y ′ = Z ′ ⊕ U0 and v0 is some element in U − U1. Let τ : Fn−12 → N ∩ T ,
e 7→ τe, be an isomorphism (which will be specified later) and adapt a basis of
U to the decomposition (∗∗). This choice of the basis will be refined at a later
stage. Since [U1, N ∩T ] ⊆ U0 and [U, T ] ⊆ Y we have for the elements in N ∩T
a matrix representation of the form

τe =


1 a(e) b(e)

1n−1 β(e)
1n−1

1m−n+1

 and π =


1

1n−1 A
1n−1

1m−n+1


with A ∈ GL(n−1, 2), a(e) ∈ Fn−12 , b(e) ∈ Fm−n+1

2 , and β(e) ∈ F(n−1)×(m−n+1)
2 .

But choosing the basis of the complement Z in a suitable way we may even
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assume
A = 1n−1.

From now on we identify the elements u of U with their coordinates (a, x, y, z),
a ∈ F2, x, y ∈ Fn−12 , z ∈ Fm−n+1

2 , with respect to the given basis; in particular
u ∈ U1 iff a = 0. We know from the proof of Lemma 4.9 that the fixed points S0
of N0 in S lie in U1. We conclude that the set S0 are represented by elements of
the form (0, x, y, z) whereas the elements in S1 have the shape (1, x, y, z). Now
SF is the orbit of 0 under T , i.e. SF = {cσ|σ ∈ T} and thus {cσ|σ ∈ N∩T} = S0
or S1. However from the cocycle rule cτσ = cτσ+ cσ we deduce that the second
case cannot occur. So if τe ∈ T∩N then the pre-image has the form τe = τe+cτe
where the 1-cocycle c evaluated at τe has (in coordinates) the form

cτe = (0, xe, ye, ze).

Again using the cocycle rule we deduce

xe+f = xe + xf , ye+f = ye + yf , ze+f = ze + zf + xeβ(f).

Thus the mappings x : Fn−12 → Fn−12 , y : Fn−12 → Fn−12 are homomorphisms.
By assertion (a) of Lemma 3.3 the mapping x is bijective. Since π interchanges
S0 and S1 and as π and cπ commute we see that

cπ = (1, 0, y, z).

Next we exploit the equation πτe = τeπ, i.e.

cπτe + cτe = cπτe = cτeπ = cτeπ + cπ.

This implies the equations xe = a(e) and b(e) = 0. However by a suitable choice
of v0 we may even assume y = 0 and z = 0. We now choose the isomorphism τ
such that xe = a(e) = e. We get

τe =


1 e

1n−1 β(e)
1n−1

1m−n+1

 , π =


1

1n−1 1n−1
1n−1

1m−n+1


and

cτe = (0, e, eδ, ze), and cπ = (1, 0, 0, 0),

where δ : Fn−12 3 e 7→ eδ = ye ∈ Fn−12 is a linear mapping. So with this choice
of the basis the graph has the shape

SF = {(a, x, ax+ xδ, zx)|(a, x) ∈ F2 × Fn−12 },

i.e. F (a, x) = (ax + xδ, zx). Define a linear mapping γ : F2 × Fn−12 → Fn−12 ×
Fm−n+1
2 by (a, x)γ = (xδ, 0) and set F = F + γ. Then F (a, x) = (ax, zx) and F

is quadratic and equivalent to F . The restriction of F to the subspace 0×Fn−12

is a quadratic APN function too, i.e. g : Fn−12 → Fm−n+1
2 defined by x 7→ zx, is

a quadratic APN function. Clearly F is the extension of g. Hence n is odd by
Theorem 5.9. The proof is complete.
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The lower bound of Theorem 4.10 can be improved somewhat for APN
functions.

Corollary 5.11. Let f : Fn2 → Fm2 , n ≥ 4, be a quadratic APN function such
that the automorphism group contains at least two translation groups. Then the
ambient space of f has dimension ≥ 3(n− 1) + 1.

Proof. By Lemma 4.9 we already know that the ambient space has dimension
≥ 3(n − 1). Suppose that equality holds. Then it follows from Theorem 5.10
that there exists a quadratic APN function g : Fn−12 → Fn−22 . But this is in
conflict with the following Lemma 5.12.

Lemma 5.12. Let f : Fn2 → Fm2 be a normed APN function, n ≥ 3. Then
m ≥ n.

Proof. Assume that the assertion is false. Then the elements of the graph of f ,
for x 6= 0, span a space of dimension at most 2n− 1, contradicting [2, Corollary
1 (i)] or [6, Thm. 1.1].

Assume that a bilinear DHO or a quadratic APN function admits more than
one translation group. Then we know by Theorem 4.6 that the quotient of the
normal closure of the translation groups modulo the 2-radical is the extension
of a group of odd order by a group of order 2. Theorem 5.10 leads to much
more precise information.

Theorem 5.13. (a) Let S be a bilinear, n-dimensional DHO, n ≥ 4, such that
G = Aut(S) contains more than one translation group. Let G∗ be the normal
closure of the translation groups in G. Then G∗/O2(G∗) is isomorphic to a
dihedral group of order 2k, 1 < k odd. Moreover, G∗ can be generated by two
translation groups.

(b) Let f be a quadratic APN-function defined on an F2 space of dimension ≥
4, such that G = A(f) contains more than one translation group. Let G∗ be the
normal closure of the translation groups in G. Then G∗/O2(G∗) is isomorphic
to a dihedral group of order 6. Moreover, G∗ can be generated by two translation
groups.

Proof. (a) By Theorem 5.10 S is the extension of a bilinear, symmetric DHO
S ′. By Theorem 5.7 G∗/O2(G∗) is a dihedral group of order 2k, where k is the
order of the multiplicative group of the symmetric nucleus of S ′. The claim
follows.

(b) follows in the same manner by Theorems 5.10 and 5.9.

6 Examples

In this section we give concrete examples of extensions of DHOs and APN
functions, in particular examples with many translation groups.

38



Example 6.1. Let S be the set of skew symmetric 3×3-matrices over F2. Define
β : F3

2 → S by β(0) = 0 and for e 6= 0 let β(e) be the unique matrix in S with
kerβ(e) = 〈e〉. Then β defines an alternating DHO (see also case n = 3 in the
appendix). One has Aut(Sβ)/T ' GL(3, 2) (T the standard translation group).
Computer calculations show that the extension S is the Huybrecht DHO (see
[27, Sec. 5.3]) of dimension 4 and Aut(S)/T ' A8 ' GL(4, 2) (T the standard
translation group). This shows that the group N of Theorem 5.1 is in general
not a normal subgroup of Aut(S), i. e. the group NG(N) in Theorem 5.7 cannot
be replaced by G if Aut(S) contains only one translation group.

The next two examples are based on the following observation (compare with
[4, Example 1.2(a)] or [19, Proposition 3]): Let V = Fn2 and β : V → GL(V )∪0,
β(0) = 0, be an injection which defines a spread on V × V ( i. e. S = {Se | e ∈
V } ∪ {0 × V }, Se = {(x, xβ(e)) | e ∈ V }, is a spread). Let π : V → H be a
projection on a hyperplane H. Then β ◦ π : V → Hom(V,H) defines a DHO on
V ×H.

Example 6.2. Set X = F2n and let Tr : X → F2 be the absolute trace.
Set Y = {x ∈ X |Tr(x) = 0} then Y = Imπ where xπ = x + x2. Define
β : X → Hom(X,Y ) by

xβ(e) = (xe)π, x, e ∈ X.

Then β defines a DHO S = Sβ on X × Y , where a typical space of S has the
form Se = {(x, xβ(e)) |x ∈ X}. In fact S is isomorphic to a bilinear DHO of
Yoshiara denoted by Sdd−1,1 in [27]: Namely if we define for e ∈ X the element

a ∈ X by a2
n−1

= e we observe

Se = Sa2n−1 = {(x, a2
n−1

x+ ax2)|x ∈ X},

which leads exactly to the description of the DHO of Yoshiara. The automor-
phism group of S has the form T · A, with T the standard translation group
and the autotopism group A. According to [24] the group A is isomorphic to
the semidirect product F∗2n ·Gal(F2n : F2) ' C2n−1 · Cn for n > 3.

Clearly, β is symmetric. Let S be the extension of S. Set G = Aut(S).
Let e, f ∈ X, f 6= 0. Then fβ(e) = β(ef). Therefore the nucleus K of S has

the maximal possible order 2n and it is also the symmetric nucleus, i. e. K = K0.
By Theorem 5.7 G contains a cyclic subgroup L0 ' C2n−1, which is inverted
by τ1,0 and which acts regularly on the 2n − 1 translation groups in G. More
precisely, it is easy to see that

G/N ' C2n−1 · (Cn × C2).

with N = O2(G) = O2(G∗). In fact, 2n−1 is the maximal number of translation
groups, which the extension of a symmetric, n-dimensional, bilinear DHO can
admit: By Theorem 4.6 N = O2(G) is elementary abelian of order 22n. Now
|T∩N | = 2n and the groups N0, N1 lie in N and are disjoint from any translation
group. So there can be at most 2n − 1 translation groups.
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Example 6.3. Let X, Tr, π, and Y have the same meaning as in the previous
example. Let ∗ : X ×X → X be a bilinear composition such that (X,+, ∗) is a
commutative pre-semifield (for background information on (pre-)semifields and
the associated translation planes consult [13]). Define β : X → Hom(X,Y ) by

xβ(e) = (x ∗ e)π, x, e ∈ X.

Then β defines again a bilinear DHO.
Clearly, β is symmetric. Let S be the extension of S. SetM = {e ∈ X | (x ∗

e) ∗ f = x ∗ (e ∗ f), x, f ∈ X} (in the case of a semifieldM is called the middle
nucleus). We see that M is closed under addition and the ∗-multiplication.
Then for e ∈M:

(x ∗ e)β(f) = ((x ∗ e) ∗ f)π = (x ∗ (e ∗ f))π = (x ∗ (f ∗ e))π = xβ(f ∗ e)

Thus {(e, e)|e ∈M} is a subring, and hence a subfield, of the symmetric nucleus
K0. Set G = Aut(S). Then by Theorem 5.7 G has at least |M∗| translation
groups, in particular G = N · A〈τ1,0〉, (A isomorphic to the autotopism group
of S) if |M∗| > 1.

Consider in particular the pre-semifields defined in [15]: Let X = Fmq , q a
2-power ≥ 4, and m odd. Then

x ∗ y = xy +

(
x

n∑
i=1

Ti(ζiy) + y

n∑
i=1

Ti(ζix)

)2

defines a commutative pre-semifield multiplications associated with the follow-
ing data:

1. fields X = F0 ⊃ F1 ⊃ · · · ⊃ Fn = Fq, n ≥ 1

2. trace maps Ti : X → Fi

3. by a sequence (ζ1, . . . , ζn) of elements ζi ∈ X∗

Clearly, (x ∗ e) ∗ y = x ∗ (e ∗ y) for e ∈ Fn. Thus M contains a subfield
isomorphic to Fq. Therefore S has at least |Fn| = q − 1 > 1 translation groups.

Clearly, α ∈ Gal(X : F2(ζ1, . . . , ζn)) induces an automorphism on the pre-
semifield (X,+, ∗) and in turn special autotopisms of S and S. So Aut(S)
contains a group of special autotopisms isomorphic to Gal(X : F2(ζ1, . . . , ζn)).

Example 6.4. Consider the Gold APN function f(x) = x2
k+1, (k, n) = 1 on

X = Fn2 , n even. If k is odd, then f(x) = f(xζ) where ζ ∈ X is a primitive third
root of unity. This means that f admits nontrivial group of nuclear autotopisms.
By Corollary 5.13 the automorphism group Aut(F ) of the extension F of f
contains precisely three translation groups.
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Appendix: Translation groups for DHOs in small
spaces

The n-dimensional DHOs and thus quadratic APN functions defined on n-spaces
are known for n ≤ 3 (note n > 1 by definition). The facts with respect to the
groups were, unless stated otherwise, obtained by computer.

(1) For n = 2 it is easy to see that the ambient space has to have dimension 3.
A DHO S is the dual of an ordinary hyperoval in PG(2, q), and thus, for q = 2,
unique up to isomorphism. The splitting space Y is one-dimensional, the DHO
consist of the 2-spaces which intersect Y trivially and Aut(S) = GL(3, 2)Y ' S4.
The action of this group on the DHO is permutation equivalent to the natural
action of the group S4. The Klein four group T is the unique elementary abelian
translation group, in particular the DHO is bilinear. The 3 cyclic groups of order
4 form a class of TI translation groups, each intersects T in a group of order 2.

(2) For n = 3 the DHOs S have been classified by Del Fra [4]. The dimension
of the ambient space is either 5 or 6.

There is, up to isomorphism, exactly one DHO S with an ambient space of
dimension 5. This DHO is bilinear and it admits just one elementary abelian
translation group. Note that this DHO and the 2-dimensional DHO have a
common construction (see [18, Proposition 3]).

If the ambient space has dimension 6 there are, up to isomorphism, two
different DHO s. One is the Veronesean DHO [21, 22, 25], which is splitting [29,
Lemma 3] but is the union of two orbits under its automorphism group (see [26,
Proposition 3.1] or [27, Section 5.2]). It thus can have no translation group and
therefore is not equivalent to a bilinear DHO.

The second can be realized as bilinear dimensional DHO Sβ , where β : F3
2 →

End(F3
2) is any isomorphism into the space of skew symmetric matrices. It

is also Yoshiara’s DHO S31,1 [27] which is associated with the Gold function
F8 3 x 7→ x3 ∈ F8 (see Example 6.4). The automorphism group has the
form Aut(S) ' Tβ · G, G ' GL(3, 2) (see [24, Proposition 7]). The standard
translation group Tβ forms one class of translation groups. There is a second
class C of self-centralizing, elementary abelian TI translation groups of size 7.
Each member of C intersects Tβ in a group of order 2.

We summarize:

• For 1 < n ≤ 3 any DHO with a translation group is equivalent to an
bilinear DHO. The standard translation group TB is normal in Aut(S).

• For 1 < n ≤ 3 there are bilinear DHOs having two different conjugacy
classes of translation groups in Aut(S). Each class is a class of TI sub-
groups but members from different classes intersect nontrivially. For n = 3
any translation group is elementary abelian, for n = 2 not.

The DHO classification shows that there is, up to isomorphism, exactly one
quadratic APN function f on X = Fn2 for n = 2 and one for n = 3. Both can be
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realized as Gold APN function x 7→ x3 (observe that for n = 2 the dimension
of its ambient space is only 3).

For n = 2, Aut(f) ' S4. The standard translation group is the unique
elementary abelian translation group. The 3 cyclic groups of order 4 form a
class of TI translation groups.

For n = 3, Aut(f) ' S8. There is only one orbit of translation groups. It
has length 30 and the translations are not TI groups.
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