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Abstract

We use the geometric description to determine the best parameters
of quaternary additive codes of small length. Only one open question
remains for length ≤ 13. Among our results are the non-existence
of [12, 7, 5]-codes and [12, 4.5, 7]-codes as well as the existence of a
[13, 7.5, 5]−code.
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1 Introduction

Additive codes are generalizations of linear codes, see for example Chapter
17 of [2] for a general introduction and a theory of cyclic additive codes. Here
we concentrate on the quaternary case.

Definition 1. Let k be such that 2k is a positive integer. An additive qua-
ternary [n, k]-code C (length n, dimension k) is a 2k-dimensional subspace of
F2n

2 , where the coordinates come in pairs of two. We view the codewords as
n-tuples where the coordinate entries are elements of F2

2.
A generator matrix G of C is a binary (2k, 2n)-matrix whose rows form

a basis of the binary vector space C.

Definition 2. Let C be an additive quaternary [n, k]-code. The weight of
a codeword is the number of its n coordinates where the entry is different
from 00. The minimum weight (equal to minimum distance) d of C is
the smallest weight of its nonzero codewords. The parameters are then also
written [n, k, d].

The strength of C is the largest number t such that all (2k, 2t)-submatrices
of a generator matrix whose columns correspond to some t quaternary coor-
dinates have full rank 2t.

Notation for length and dimension has been chosen to facilitate com-
parison with quaternary linear codes. In fact it is clear that each linear
[n, k]-code is also an additive [n, k]-code (where k of course is an integer) and
the notations of minimum distance and strength of the linear code coincide
with the additive notions introduced above.

The geometric description of an additive [n, k]-code is based on lines in
PG(2k−1, 2). In fact, consider a generator matrix G. For each quaternary co-
ordinate i ∈ {1, 2, . . . , n} we are given points Pi, Qi ∈ PG(2k−1, 2). Let Li be
the line determined by Pi, Qi. The geometric description of code C as in Def-
inition 2 is based on this multiset of lines (the codelines) {L1, L2, . . . , Ln}.
Code C has minimum distance ≥ d if and only if for each hyperplane H of
PG(2k − 1, 2) we find at least d codelines (in the multiset sense), which are
not contained in H. Strength t means that any set of t codelines is in general
position. Duality is based on the Euclidean bilinear form, the dot product
for binary spaces. The dual of an additive [n, k]-code C is an [n, n− k]-code,
and C has strength t if and only if C⊥ has minimum distance > t.

As an example consider the following analogue of the Simplex codes:
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Definition 3. Let Sl be the additive quaternary code described by the set of
all lines in PG(l − 1, 2), l ≥ 3.

As the number of lines in PG(l − 1, 2) is (2l − 1)(2l−1 − 1)/3 it follows
that Sl is an additive [(2l − 1)(2l−1 − 1)/3, l/2, 2l−2(2l−1 − 1)]-code. This
code is optimal. In fact, concatenation yields a binary linear [(2l− 1)(2l−1−
1), l, 2l−1(2l−1 − 1)]2-code, which meets the Griesmer bound with equality.
The smallest codes of independent interest in this family are the [7, 1.5, 6]-
code S3 (geometrically the 7 lines of the Fano plane) and the [155, 2.5, 120]-
code S5.

Recall that the geometric description of linear codes is based on multisets
of points, whereas the geometric description of additive quaternary codes
uses lines. A codeline not contained in hyperplane H meets it in one point.
This motivates to consider mixed quaternary-binary codes.

Definition 4. An [(l, r), k](4,2)-code is a 2k-dimensional vector space of bi-
nary (2l+r)-tuples, where the coordinates are divided into l pairs (written on
the left) and r single coordinates. We view each codeword as an (l + r)-tuple,
where the left coordinates are quaternary, the right ones are binary.

A code [(l, r), k](4,2) is described geometrically by a multiset of l lines and r
points (codelines and codepoints) in PG(2k−1, 2). The code has strength ≥ t
if any set of t objects (codepoints or codelines) are in general position. The
definition of minimum distance (equal to the minimum weight) is obvious.
A generator matrix is a binary (2k, 2l + r)-matrix whose rows form a binary
basis of the code. The dual of an additive [(l, r), k](4,2)-code of strength t is
an additive [(l, r), l + r/2− k, t + 1](4,2)-code.

Blokhuis-Brouwer [1] determine the optimal code parameters for additive
quaternary codes of length ≤ 12, with two exceptions. We fill those gaps
proving the following:

Theorem 1. There is no additive [12, 7, 5]-code.
There is no additive [12, 4.5, 7]-code.

On the constructive side we produce a [13, 7.5, 5]-code. The following
is a check matrix, described by 13 lines in PG(10, 2), of strength 4 (the
convention is 1 = 10, 2 = 01, 3 = 11):
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

1 0 0 0 0 2 0 3 3 1 2 3 1
2 0 0 0 0 0 3 1 0 3 0 3 2
0 1 0 0 0 2 2 0 1 1 2 2 0
0 2 0 0 0 0 1 1 3 2 3 3 1
0 0 1 0 0 2 2 1 2 2 0 0 0
0 0 2 0 0 0 1 2 1 0 1 2 3
0 0 0 1 0 2 1 2 0 0 0 3 1
0 0 0 2 0 0 0 1 1 1 1 3 3
0 0 0 0 1 0 2 2 0 1 1 0 1
0 0 0 0 2 0 0 0 2 0 2 1 1
0 0 0 0 0 1 0 0 0 2 2 2 2



.

Here is a list of the largest minimum distance d for additive quaternary
[n, k, d]-codes of length n ≤ 13. The only question remaining open is the
existence of a [13, 6.5, 6]-code.

k\n 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 5 6 7 8 9 10 11 12 13

1.5 1 2 3 4 5 6 6 7 8 9 10 11
2 1 2 3 4 4 5 6 7 8 8 9 10

2.5 1 2 3 4 5 6 6 7 8 8 9
3 1 2 3 4 4 5 6 6 7 8 9

3.5 1 2 3 4 4 5 6 7 8 8
4 1 2 2 3 4 5 6 6 7 8

4.5 1 2 3 3 4 5 6 6 7
5 1 2 2 3 4 5 6 6 7

5.5 1 2 3 3 4 5 6 6
6 1 2 2 3 4 5 6 6

6.5 1 2 3 3 4 5 5− 6
7 1 2 2 3 4 4 5

7.5 1 2 2 3 4 5
8 1 2 2 3 4 4

8.5, 9 1 2 2 3 4
9.5, 10 1 2 2 3
10.5, 11 1 2 2

The geometric work happens in binary projective spaces. As we find it
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often more convenient to work with vector space dimensions we denote i-
dimensional vector subspaces by Vi (= PG(i− 1, 2)). The following obvious
observation is often useful:

Proposition 1. Let C be an additive [n, k, d]-code. Assume some i codelines
generate a subspace V2i−j. Then the subcode of C consisting of the codewords
with vanishing entry in those i coordinates is an [n− i, k − i + j/2, d]-code.

The non-existence of a [12, 7, 5]-code is proved in Section 3. In Section 2
the non-existence proof for [12, 4.5, 7] is outlined. A preliminary version of
parts of the present paper appeared in [3].

2 Nonexistence of an additive [12, 7, 5]-code

It is easier to consider the dual, a [12, 5]-code of strength 4. What is the maxi-
mum hyperplane intersection of this code C? It is impossible that there are at
most 5 lines on each hyperplane as this would produce an additive [12, 5, 7]-
code, which does not exist. It follows that there must be a hyperplane with
at least 6 codelines. There can be no 8 codelines on any hyperplane as this
would yield a [8, 4.5] code of strength 4 whose dual would be a [8, 3.5, 5]-code.
Such a code does not exist.

Lemma 1. The maximum number of lines of a [12, 5]-code of strength 4 on
a hyperplane is either 6 or 7.

In particular we find a hyperplane that contains 6 codelines. This defines
an additive [6, 4.5]-code. Its dual, a [6, 1.5, 5]-code, corresponds to using all
lines but one of the Fano plane and is therefore uniquely determined. The
following codelines can be used to describe our [6, 4.5]-code of strength 4 :

L1 = 〈v1, v2〉, L2 = 〈v3, v4〉, L3 = 〈v5, v6〉, L4 = 〈v7, v8〉,

L5 = 〈v1 + v3 + v5 + v7, v9〉, L6 = 〈v2 + v4 + v6 + v8, v9 + v1 + v4 + v5 + v6〉

We ran a computer program that determined the points completing those
lines to a (6, 1)-code of strength 4. There are 45 such points. Exactly 24
of those points are distributed on lines that complete the [6, 4.5]-code to a
[7, 4.5]-code of strength 4. There are thus 8 such lines.

Assume at first there is a hyperplane H containing 7 codelines of C. We
can choose L1, . . . , L6 above and L7 is one of the 8 lines that our computer
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search produced. The intersection with the codelines shows that this code
must be embeddable in a mixed [(7, 5), 4.5](4,2)-code of strength 4. A computer
search showed that not even a single point can be appended:

Proposition 2. There is no [(7, 1), 4.5](4,2)4-code of strength 4.

We conclude that the maximum number of codelines on a hyperplane is
6. Choose L1, . . . , L6 as above. The intersection with the remaining codelines
shows that this can be extended to a [(6, 6), 4.5](4,2)-mixed code of strength 4.
The points forming the sextuple must be from the set of 45 extension points
mentioned above. A computer search showed that there are exactly six such
sextuples. In particular [(6, 6), 4.5](4,2)-mixed codes of strength 4 and their
duals, [(6, 6), 4.5, 5](4,2)-codes do exist.

Another computer program showed that none of those six codes can be
embedded in a [12, 5]-code of strength 4.

3 Nonexistence of an additive [12, 4.5, 7]-code

The proof is geometric in nature and much more involved than in the case
of [12, 7, 5]. We work in PG(8, 2). Geometric reasoning shows the following:

Lemma 2. There are no repeated codelines. Each V6 contains at most 3
codelines and any three codelines generate V5 or V6. Any two codelines are
mutually skew.

Let M be the union of the points on the codelines. Then M is a set
of 36 points, at most 22 on each hyperplane. This describes a binary code
[36, 9, 14]2, obtained from the hypothetical [12, 4.5, 7] by concatenation. We
study the distribution of the points of M (codepoints) on subspaces as well
as the structure induced on corresponding factor spaces. The proof that
any three codelines must be in general position already involves a computer
search. It can then be shown that any two codelines are contained in a
subspace PG(4, 2) which contains 8 codepoints. The final computer search
shows that this configuration cannot be extended to a [12, 4.5, 7]-code.
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