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1 Introduction

A perpendicular array with parameters PAλ(t, k, v) is a multiset Σ of injective
mappings from a k−set C into a v−set E, which satisfies the following:

• for every t−subset U ⊆ C and every t−subset W ⊆ E the number of
elements of Σ (eventually counted with multiplicities) mapping U onto
W is λ, independent of the choice of U and W.

The notion of a perpendicular array may be viewed either as a gener-
alization of t−homogeneous permutation groups or as a t−design with an
additional structure given by ordering the blocks. We adopt here the first
of these two points of view. If we generalize the notion of a t−homogeneous
group of permutations of degree v in the sense that we do not require the
group-structure any more and that the elements are no longer permutations
but injections from a k−set into a v−set, we arrive at the notion of a PA. The
analogous procedure, when applied to t−transitive groups of permutations,
leads to the notion of an ordered design (OD). If we drop the assumption of
injectivity in the t−transitive case, we get orthogonal arrays (OA).
All these structures have been known for rather a long time. They all ap-
pear, although partly under different names, in [16]. Orthogonal arrays are
the most popular of them. OA and ordered designs are essential ingredients
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in the important work of Teirlinck ([21, 23]) on the construction of large
sets of designs. For some obscure reason perpendicular arrays have attracted
much less attention. This should not be so. Some use has been made of
PA’s in the construction of sets of mutually orthogonal latin squares. One
pertinent theorem is that a PA1(2, k, v) with a regular abelian group of au-
tomorphisms on the set of entries allows the construction of k-1 mutually
orthogonal latin squares of order v. In [17] this has been used for instance
to construct 4 mutually orthogonal latin squares of order 15. A similar con-
struction, but with a group of automorphisms of order v-1 on the entries
of an ordered design, is used in [26] for the construction of three mutually
orthogonal latin squares of order 14.
The present authors have been inspired by [19]. Stinson gives an applica-
tion of inductive PA’s (for this notion see [3]) in the cryptographical theory
of unconditional secrecy. In order to meet the requirements of uncondi-
tional authentication Stinson introduces an additional condition. PA’s satis-
fying this property were termed authentication perpendicular arrays (APA).
The present paper grew out of an attempt to develop a theory of APA’s.
Our starting-point is the observation that the defining properties of induc-
tive PA’s and of APA’s are not unrelated, but rather special cases of a
1-parameter family of homogeneity-conditions. This leads to the definition
of an s−PAλ(t, k, v), where the value s = 0 corresponds to inductive PA and
s = 1 corresponds to APA. Further a general tBD-construction for s− PA
is given in section 2. As a first application we construct

3− PA3(3, 4, 2w), w ≥ 2.

In section 3 we derive general lower bounds on the size ( equivalently: on the
parameter λ ). An s−PA is called optimal if this bound is met with equality.
For instance the family mentioned above is optimal, even as APA. The lower
bound is related to residues. The residue of an s− PA Σ with respect to an
entry e is defined as the multiset of those elements (rows) of Σ not having e in
their image. It is proved that the residue of an s−PAλ(t, k, v)(k < v, s > 0)
is an (s − 1) − PAλ(v−k)/t(t − 1, k, v − 1). Thus the residue of a 2-PA is
an APA. This justifies the definition of s − PA, even if one should only be
interested in APA or in inductive PA. In section 4 we describe an application
of s − PA in the theory of unconditional secrecy and authentication. This
is analogous to Stinson’s use of APA. In section 5 we introduce a general
method of recursively constructing s − PA if s − PA with a smaller value
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of k (and eventually also a t−design) are given. This is inspired by Tran’s
results in this direction ([27]). All the known constructions of this kind are
special cases of our theorems. We note that the same type of construction
also works for ordered designs. Section 6 explores the question when the
restriction of an s − PA to a subset of columns yields an s − PA again.
These considerations allow us to construct

APA3(3, k, q + 1)

for every prime-power q ≡ 3(mod 4) and every k, 3 ≤ k ≤ q + 1, as well
as APA2(2, 5, 6) and APA2(2, 11, 12). Most of these arrays are optimal. In
section 7 we investigate more closely the affine group AGL1(q) in odd char-
acteristic. Our method yields the construction of APA1(2, k, q) whenever k
is an odd divisor of q − 1, and of

APA1(2, p
m, pn)

for every odd prime p and 1 ≤ m ≤ n. The former result is not new ( see
[10]). Stinson has constructed APA1(2, 3, v) for all odd v > 5 (see [18]). The
next largest case where APA1(2, k, v) may exist occurs when k = 5 and v
is odd. We construct here APA1(2, 5, p) for all primes p ≡ 3(mod 4), p > 7.
Moreover we are able to apply a theorem of R.M.Wilson’s ([28]) and obtain
the existence of APA1(2, k, q), k odd, for all prime-powers q ≡ 3(mod 4), q >
2k(k−1). In section 8 a link is established, under certain conditions, between
APA1(2, k, q) and skew Room k-spaces (better known as Room k-cubes).
As a corollary we obtain that APA1(2, 3, 5), APA1(2, 5, 7), APA1(2, 7, 9) and
2 − PA1(3, 5, 8) do not exist. We also obtain a short and conceptual proof
of Dinitz’ theorem ([8]) stating the existence of skew Room k-spaces of side
q whenever q is an odd prime-power and k is an odd divisor of q-1.
It is clear that the case k = v of multisets of permutations plays a special
role in the theory. The design- aspect vanishes in this case. These sets
of permutations can be viewed as substitutes for t−homogeneous groups of
permutations. Recall that as a corollary of the characterization of the finite
simple groups all the t−homogeneous groups of permutations of degree v
(where 2 ≤ t ≤ (v + 1)/2) are known. These sets of permutations have
been studied in a series of recent papers ( see [1, 2, 4, 5, 6, 6, 20]). Here we
concentrate on the case k < v. Note however that cases k < v and k = v are
closely related. The tBD-construction shows how sets of permutations and
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partially balanced designs may be brought together to construct s−PA with
k < v. Furthermore it is shown in section 3 that each optimal PA(bk/2c, k, k)
allows the construction of a certain family of optimal s−PA satisfying k < v.

2 Basic facts

Definition 1 Let C and E be finite sets,|C| = k, |E| = v.

A (C,E)−array Σ is defined as a mapping Σ from the set of all the
functions :C −→ E into the non-negative integers. Thus Σ assigns a
weight to every mapping f : C −→ E. If this weight is 0, we interpret
this as the function f being absent from the array. Let us visualize
Σ as an array with C as set of columns and such that every function
f : C −→ E contributes Σ(f) rows. We call E the set of entries. If
Σ(f) > 0, we say that f belongs to Σ. Σ will be called injective if all
the functions belonging to Σ are injective (Teirlinck calls such arrays
rowwise simple).

•• Let Σ be a (C,E)−array, U ⊆ C,W ⊆ E. Let ΣW
U denote the restriction

of Σ to the set U of columns and to the rows f satisfying f(U) ⊇ W.
Put

ΣU = ΣE
U ,Σ

W = ΣW
C .

• Let Σ be a (C,E)−array, W ⊆ E, |W | = i. Then W is uniformly
distributed in Σ if

– f(C) ⊇ W for every f ∈ Σ, and

– for every i-subset U of C, the number of rows of Σ with the el-
ements of W in the columns of U (formally:

∑
f(U)=W Σ(f)) is

independent of the choice of U.

Definition 2 Let Σ be an injective (C,E)-array, 0 ≤ u ≤ w. Σ satisfies
property P (u,w) if for all E1, E2 ⊆ E, |E1| = u, |E2| = w − u,E1 ∩ E2 = ∅,
the cardinality of ΣE1∪E2 is independent of the choice of E1, E2, and the set
E2 is uniformly distributed in ΣE1∪E2 .
In words: The number of (injective) functions f ∈ Σ having a given w−set
E1∪E2 in the image and mapping a given (w−u)−set U onto the (w−u)-set
E2 is a constant λ(u,w), independent of the choice of U,E1 and E2.
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Definition 3 Let Σ be an injective (C,E)-array, 0 ≤ s ≤ t, |C| = k, |E| = v.
If Σ satisfies properties P (u,w) for all w ≤ t, u ≤ min(s, w), then Σ will be
called an

s− PAλ(t, k, v),

where λ > 0 is the number of rows of Σ having the elements of a fixed t-set
of entries in a fixed t-set of columns.

Arrays satisfying P (0, t) are called perpendicular arrays PAλ(t, k, v), the
0−PAλ(t, k, v) are exactly the inductive PAλ(t, k, v), and the 1−PAλ(t, k, v)
are exactly Stinson/Teirlincks’s authentication perpendicular arrays
APAλ(t, k, v) (see [20]). Obviously an s− PAλ(t, k, v), s > 0, is also an s′ −
PAλ(t, k, v), for all 0 ≤ s′ ≤ s. The conditions P (u,w) are not independent.

Lemma 1 Let Σ be an injective (C,E)−array.

1. Let 0 < u ≤ w. Then P (u,w) implies P (u− 1, w − 1).

2. Let 0 ≤ u < w, 2(w − u) ≤ k + 1. Then P (u,w) implies P (u,w − 1).

Proof. 1. Let E1, E2 ⊆ E, |E1| = u − 1, |E2| = w − u,E1 ∩ E2 = ∅. Choose
e ∈ E, e /∈ E1 ∪ E2. Then E2 is uniformly distributed in ΣE1∪E2∪{e} because
of property P (u,w). Let U be a set of w−u columns. The number µ of rows
of ΣE1∪E2∪{e} with E2 in the columns of U is independent of the choice of U.
It follows that the number of rows of ΣE1∪E2 having the elements of E2 in
the columns of U is µ · (v−w+ 1)/(k−w+ 1), independent of the choice of
U. Thus E2 is uniformly distributed in ΣE1∪E2 .
2. The case u = 0 of perpendicular arrays is proved in [19]. Our proof will
use the same method. We may assume u > 0. Let A∪B ⊆ E, |A| = u, |B| =
w − u,A ∩ B = ∅. Let further J be a (w − u)-set of columns. We know
that the number λ(u,w) of rows f of Σ satisfying f(C) ⊇ A ∪ B, f(J) = B
is independent of the choice of J. Observe that by 1. the corresponding
number λ(u − 1, w − 1) is defined. Let now E1, E2 ⊆ E, |E1| = u, |E2| =
w − u− 1, E1 ∩ E2 = ∅. Count the rows f of Σ satisfying

f(C) ⊇ E1 ∪ E2, f(J) ⊇ E2.

Then f(J) = E2 ∪ {e}, where either e ∈ E − E1 ∪ E2 or e ∈ E1. We count
(v−w+ 1) · λ(u,w) rows of the first type and u · λ(u− 1, w− 1) rows of the
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second type. Counting the other way around, we see that every (w − u)-set
J of columns yields an equation∑
J ′⊂J,|J ′|=w−u−1

x(J ′, E1, E2) = (v − w + 1) · λ(u,w) + u · λ(u− 1, w − 1) = c.

Here x(J ′, E1, E2) denotes the number of rows f of Σ satisfying f(C) ⊇
E1 ∪ E2, f(J ′) = E2. We saw above that the right-hand side is a constant

c, independent of the choice of E1 and E2. This yields a system of
(

k
w−u

)
equations for

(
k

w−u−1

)
unknowns. The matrix of coefficients is the inclusion-

matrix between the (w−u−1)−subsets and the (w−u)−subsets of a k−set.
By a well-known theorem of Kantor’s (see [12]), this matrix has maximal

rank. If 2(w−u) ≤ k+1, then
(

k
w−u−1

)
≤
(

k
w−u

)
and the rank of the inclusion-

matrix is
(

k
w−u−1

)
. It follows that the system has exactly one solution, namely

x(J ′, E1, E2) = c/(w − u).

Observe further that the conditions P (u, u) are empty.

Corollary 1 Let Σ be an injective (C,E)-array.

• If P (0, t), P (1, t), . . . P (s, t), P (s, t − 1), . . . P (s, s + 1) hold, then Σ is
an s− PAλ(t, k, v).

• If 2(t − s) ≤ k + 1 and P (0, t), P (1, t), . . . P (s, t) hold, then Σ is an
s− PAλ(t, k, v).

• A (t− 1)− PAλ(t, k, v) is also a t− PAλ(t, k, v).

If v = k, then obviously the condition P (0, w) implies the condition
P (u,w) for every u > 0. More generally we get

Theorem 1 Let Σ be a (v − k) − PAλ(t, k, v), v − k ≤ t. Then Σ is a t −
PAλ(t, k, v).

Proof. Use induction over d = v − k. The case d = 0 is trivial. So let
d > 0, v − k ≤ t, let Σ be an s − PAλ(t, k, v), v − k ≤ s < t. We want to
show that Σ is an (s+1)−PAλ(t, k, v). It suffices to establish the validity of
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property P (s+1, t). Let E1, E2 ⊆ E, |E1| = s+1, |E2| = t−s−1, E1∩E2 = ∅.
Choose e ∈ E1. We have

ΣE = ΣE−{e} − rese(Σ)E−{e}.

Here rese(Σ), the residue of Σ with respect to entry e, consists of the rows of
Σ, which do not contain e. Residues will be studied in the next section. We
shall see in Theorem 4 that rese(Σ) is an (s − 1) − PA(t − 1, k, v − 1). By
induction it is an s− PA(t− 1, k, v − 1). Here we have used the convention
of omitting λ if the value of parameter λ is not specified. E2 is uniformly
distributed in rese(Σ)E−{e}. Further E2 is uniformly distributed in ΣE−{e}

because of property P (s, t− 1). We are done.

The following Theorem gives a rather general method of construction for
arrays s−PAλ(t, k, v) with arbitrary s. It uses t-wise balanced designs. Here
a t-wise balanced design (tBD) with parameters t− (v, L, λ) is a multiset of
subsets ( called blocks) of a fixed ground-set of cardinality v such that the
cardinalities of blocks are in the set L of natural numbers and every set of t
points is contained in exactly λ blocks. Here the blocks have to be counted
with their multiplicities. If | L |= 1, then we have a not necessarily simple
t-design.

Theorem 2 (tBD-construction) Assume there is a t-wise balanced design
with parameters t − (v, L, λ) and for every l ∈ L there is an array s −
PAµ(t, k, l). Let the design be defined on the v-set E. Construct an injective
(C,E)-array Σ, where |C| = k, by replacing every block B of the design by a
copy of the s− PAµ(t, k, l) defined on B. Then Σ is an s− PAλ·µ(t, k, v).

Proof. Property P (0, t) holds by construction.
1.Let 0 < w < t. We want to show that P (0, w) holds.Fix a w-set U of

columns and a set Y of w entries. We have to show that the number x of
rows f of Σ satisfying f(U) = Y is independent of the choice of U and Y.
Let B ⊇ Y be a block of the design, |B| = l. The contribution of B to x is

µ ·
(
l

t

)
/

(
l

w

)
.

It follows

x = µ ·
∑

B block,B⊇Y

(
|B|
t

)
/

(
|B|
w

)
.
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Count pairs (T,B), |T | = t, Y ⊆ T ⊆ B,B block. Counting in two ways we
get (

v − w

t− w

)
· λ =

∑
B block,B⊇Y

(
|B| − w

t− w

)
=

(
t

w

)∑(
|B|
t

)
/

(
|B|
w

)
.

It follows

x = µλ

(
v − w

t− w

)
/

(
t

w

)
.

Thus Σ satisfies P (0, w).
2. Let us prove P (u,w), where w ≤ t, 0 ≤ u ≤ min(s, w). The procedure

is analogous to the above. Let E ⊇ Y = E1 ∪ E2, |E1| = u, |E2| = w − u,
fix a (w − u)-set U of columns and denote by x the number of rows f of
Σ satisfying f(C) ⊇ Y, f(U) = E2. The contribution of a block B ⊇ Y of
cardinality l to x is(

k

w

)
·
µ
(

l
t

)
(

l
w

) /( k

w − u

)
= µ ·

(
k
w

)
(

k
w−u

) ·
(

l
t

)
(

l
w

) .
Upon using the identity proved in 1. we get

x = µ ·

(
k
w

)
(

k
w−u

) ∑
B⊇Y

(
|B|
t

)
(
|B|
w

) = µ ·

(
k
w

)
(

k
w−u

) · (v − w

t− w

)
· λ/

(
t

w

)
.

This generalizes Stinson’s design-construction: if a design t−(v, k, λ) and
an APAµ(t, k, k) exist, then there is an APAλ·µ(t, k, v) (see [19]). We give a
first application of the tBD-construction.

Theorem 3 There is a

3− PA6(3, 4, 2w + 1)

for every w ≥ 2, w 6= 3, and a

3− PA3(3, 4, 2w)

for every w ≥ 2.
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Proof. As an ODλ(t, k, v) clearly is a t− PAt!λ(t, k, v), it suffices in the case
of odd v to quote Teirlinck’s construction of OD1(3, 4, v) for every 4 ≤ v 6= 7
(see [24]).
Let v = 2w. By [11] there is a 3BD on v points with block-sizes 4 and 6.
By the 3BD-construction it suffices to construct a 3 − PA3(3, 4, 4) and a
3 − PA3(3, 4, 6). The alternating group A4 is certainly 3-homogeneous on 4
points, hence is a 3− PA3(3, 4, 4). The following table gives representatives
for the 12 row-orbits of a 3 − PA3(3, 4, 6) under the action of the group
generated by ρ = (∞)(0, 1, 2, 3, 4) on the set E = {∞, 0, 1, 2, 3, 4} of entries:

∞ 0 4 2
∞ 0 3 4
0 ∞ 1 2
0 ∞ 3 1
0 4 ∞ 3
0 2 ∞ 4
0 4 1 ∞
0 2 3 ∞
0 1 2 3
0 4 3 2
0 3 1 4
0 2 4 1

By Corollary 1 it suffices to check properties P (0, 3), P (1, 3) and P (2, 3). The
group < ρ > of automorphisms has only 4 orbits on 3-subsets of entries.

3 Bounds, optimality and residues

Definition 4 Let Σ be an s − PAλ(t, k, v), Y an i-set of entries, where
0 < i ≤ min(s, v − k). The residue resY (Σ) of Σ with respect to Y is the
(C,E − Y )−subarray of Σ consisting of those rows of Σ whose set of entries
is disjoint from Y.

Theorem 4 Let Σ be an s − PAλ(t, k, v), Y an i-set of entries, where 0 <
i ≤ min(s, v − k). Then resY (Σ) is an

(s− i)− PAresi(λ)(t− i, k, v − i),
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where

resi(λ) = λ ·
(
v − k

i

)
/

(
t

i

)
.

Proof. It suffices to prove the Theorem for i = 1. In that case res(λ) =
res1(λ) = λ · (v − k)/t. So let E ⊇ Y = E1 ∪ E2, |E1| = u ≤ s − 1, |E2| =
w − u, |Y | = w ≤ t− 1, and let e ∈ E − Y. We have

rese(Σ) = Σ− Σe.

The set E2 is uniformly distributed in ΣY as Σ has property P (u,w). It is
uniformly distributed in ΣY ∪{e} as Σ has property P (u+ 1, w + 1). Thus E2

is uniformly distributed in rese(Σ)Y .

We shall repeatedly make use of the following identity which was derived
by R.M.Wilson from block-intersection numbers of designs (see [30]):

Lemma 2 (Block-intersection identity) Let 0 < t ≤ k ≤ v, i + j ≤ v.
Then the following holds:

j∑
r=0

(−1)r

(
j

r

)( k
i+r

)
(

v
i+r

) =

(
v−i−j
k−i

)
(

v
k

) .

Definition 5 Let Σ be an s− PAλ(t, k, v). Put

λ(0, t) = λ, λ(0, w) = λ(0, t)

(
v

t

)
/

(
v

w

)
, λ(u,w) = λ(0, w)

(
k

w

)
/

(
k

w − u

)
,

where 0 ≤ u ≤ w ≤ t. For 0 < i ≤ min(s, v − k) let resi(λ) be the number
defined in Theorem 4. We consider resi(λ) as the λ−parameter of resY (Σ)
as in Theorem 4. Therefore we put

resi(λ)(0, w) = resi(λ)

(
v − i

t− i

)
/

(
v − i

w

)

for every 0 ≤ w ≤ t− i.
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Lemma 3 In the situation of the foregoing Lemma, for every w ≤ t− i the
following hold:

resi(λ)(0, w) = λ(0, w + i)

(
v − k

i

)
/

(
w + i

i

)
.

resi(λ)(0, w) =
i∑

j=0

(−1)j

(
i

j

)
λ(j, w + j).

Proof. The first equation reduces to a standard identity between binomial
coefficients. After substitution of the definitions and factoring out obvious
common factors, the second equation becomes

i∑
j=0

(−1)j

(
i

j

)(
k

w + j

)
/

(
v

w + j

)
=

(
k
w

)(
v−k

i

)
(

v
w+i

)(
w+i

i

) .
Use the block-intersection identity to simplify the left-hand side. It remains
to prove (

v

k

)(
k

w

)(
v − k

i

)
=

(
v

w + i

)(
w + i

i

)(
v − w − i

k − w

)
.

Both sides count triples (W,K, I) of subsets of cardinalities w, k, and i, re-
spectively, of a fixed v-set satisfying K ⊇ W,K ∩ I = ∅.

If Σ is an s− PAλ(t, k, v), then λ(u,w), 0 ≤ w ≤ t, 0 ≤ u ≤ min(w, s) is
the number of rows of Σ containing a fixed w-set Y of entries and such that
a fixed (w−u)-subset of Y is in a fixed set of w−u columns. Necessary con-
ditions for the existence of an s−PAλ(t, k, v) are that the relevant numbers
λ(u,w) and resi(λ)(u,w) be integers.

Definition 6 Let 0 < t ≤ k ≤ v. Put

µo(t, k, v) = µo(t, v) = LCM(

(
v

i

)
|i = 1, . . . t)/

(
v

t

)
.

For 0 < s ≤ t put

µs(t, k, v) = min{λ|resi(λ) ≡ 0(mod µ0(t− i, v− i)); i = 0, . . .min(s, v−k)}.

Let Σ be an s− PAλ(t, k, v). We know that λ ≡ 0(mod µs(t, k, v)). We shall
call Σ optimal if λ = µs(t, k, v).
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Optimality may be expressed in various different ways:

Theorem 5 Let (s, t, k, v, λ) be a quintuple of natural numbers, where 0 ≤
s ≤ t ≤ k ≤ v. Then the following are equivalent:

1. λ(u,w) ∈ ZZ, 0 ≤ w ≤ t, 0 ≤ u ≤ min(w, s).

2. λ(0, w) ·
(

k+1
u

)
/
(

w
u

)
∈ ZZ, 0 ≤ w ≤ t, 0 ≤ u ≤ min(w, s).

3. resi(λ) ≡ 0(mod µ0(t− i, v − i)), i = 0, . . .min(s, v − k).

4. resi(λ)(0, w) ∈ ZZ,w = 0, . . . t− i, i = 0, . . .min(s, v − k).

Proof The equivalence of 1. and 4. follows from the inclusion-exclusion
identity in Lemma 3. The equivalence of 3. and 4. follows from the first
identity in Lemma 3. It remains to prove that 1. and 2. are equivalent. We
first show 1. −→ 2. The definition shows

λ(u,w) = λ(u− 1, w) · ( k + 1

w − u+ 1
− 1) (u > 0).

If λ(u,w) and λ(u − 1, w) are integers, then λ(u − 1, w) · k+1
w−u+1

∈ ZZ. We
shall prove by induction that

e(i, u, w) = λ(u− i, w) ·
(
k + 1

i

)
/

(
w − u+ i

i

)
∈ ZZ,

(0 ≤ i ≤ u ≤ min(w, s), 0 ≤ w ≤ t). Express λ(u − i, w) in terms of
λ(u− i− 1, w), if i < u. This yields the equation

e(i, u, w) = e(i+ 1, u, w)− e(i, u− 1, w).

This proves our claim by induction on i. Setting i = u we get the statement in
2. The same equation shows that this process is reversible. We have proven
the equivalence of 1. and 2.

It is easy to calculate the numbers µs(t, k, v) for small parameter-values.
As an example we mention

µ1(3, 4, 2w + 1) = 6, µ1(3, 4, 2w) = 3.

It follows that the arrays constructed in Theorem 3 are optimal as APA.
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Definition 7 Let Σ be an s− PAλ(t, k, v), 0 ≤ w ≤ t, 0 ≤ u ≤ min(w, s),
u = u+ + u−. Define λ(u+, u−;w) to be the number of rows Z of Σ satisfying

1. Z contains a fixed (w − u−)−set Y of entries.

2. Z is disjoint from a fixed u−−set of entries.

3. Z contains a fixed (w−u)−set Y ′ ⊆ Y of entries in a given (w−u)−set
of columns.

Lemma 4 Let Σ be an s − PAλ(t, k, v), 0 ≤ w ≤ t, 0 ≤ u ≤ min(w, s), u =
u+ + u−. Then

λ(u+, u−;w) =
u−∑
i=0

(−1)i

(
u−
i

)
λ(u+ + i, w − u− + i) = λ ·

(
v
t

)(
v−w

k+u−−w

)
(

v
k

)(
k

w−u

) .

Proof. The first equation follows from the principle of inclusion and exclusion.
It follows

λ(u+, u−;w) =
u−∑
i=0

(−1)i

(
u−
i

)
·

λ
(

v
t

)
(

v
w−u−+i

) ·
(

k
w−u−+i

)
(

k
w−u

) =

= λ ·

(
v
t

)
(

k
w−u

) · u−∑
i=0

(−1)i

(
u−
i

)(
k

w−u−+i

)
(

v
w−u−+i

) .

The last sum can now be calculated by Lemma 2.

The inclusion/exclusion-identity in Lemma 4 shows that the seemingly
sharper conditions that all the numbers λ(u+, u−;w) be integers are auto-
matically satisfied if the conditions of Theorem 5 are met. The same is true
for the conditions resi(λ) ≡ 0(mod µs−i(t− i, v− i)), i = 0, . . .min(s, v− k).

A central problem in the theory is the construction of
optimal 0− PA(bk/2c, k, k). The number of rows of such an array is

λ∗(k) = LCM(

(
k

j

)
|j = 1, 2, . . . k).

We draw a first consequence from the existence of such an array:

13



Theorem 6 Assume an (optimal) 0− PAλ(bk/2c, k, k) exists, where

λ = µ0(bk/2c, k) = λ∗(k)/

(
k

bk/2c

)
.

Then arrays with the following parameters exist:

t− PAλ(t, k, k + i), λ = µi(t, k, k + i),

where
i = 0, . . . dk/2e; t = bk/2c+ i, . . . k.

Proof. An optimal 0−PA(bk/2c, k, k) is a t−PAλ∗(k)/(k
t)

(t, k, k) for every

k ≥ t ≥ bk/2c. As µ0(t, k) = λ∗(k)/
(

k
t

)
in these cases, this is optimal. Use

Theorem 2 with the complete design

t− (k + i, k,

(
k + i− t

i

)
).

This yields
t− PAλ(t, k, k + i),

where

λ = λi,t,k = λ∗(k)

(
k + i− t

i

)
/

(
k

t

)
.

We claim λi,t,k = µi(t, k, k+i), i.e. the array is optimal as an i−PA(t, k, k+i)
for the parameter-range in question. For i = 0 this is obvious. Use induction
on i, where i > 0. We have res1(λi,t,k) = λi,t,k · i

t
= λi−1,t−1,k. By induction

λi−1,t−1,k = µi−1(t− 1, k, k + i− 1) =

= LCM(µ0(t− 1− j, k + i− 1− j)

(
t− 1

j

)
/

(
i− 1

j

)
|j = 0, 1, . . . i− 1).

Here we use [Theorem 5,3.] The parameters have been chosen such that
µ0(t− 1− j, k + i− 1− j) = λ∗(k + i− 1− j). Setting r = j + 1, we get

λi−1,t−1,k = LCM(λ∗(k + i− r) ·

(
t
r

)
(

i
r

) · i
t
|r = 1, 2, . . . i).

As λi,t,k = t
i
· λi−1,t−1,k and λ∗(k + i− r) · (t

r)
(i

r)
|µi(t, k, k + i), it follows

14



λi−1,t−1,k|µi(t, k, k + i). Equality follows.

Optimal arrays 0 − PAλ(bk/2c, k, k) are known to exist for k ≤ 6. The
present authors succeeded in constructing (optimal) 0 − PA3(3, 7, 7) and
0−PA4(4, 8, 8). Details will be given elsewhere. We apply Theorem 6 to the
0− PAλ(bk/2c, k, k), k ≤ 8.

Corollary 2 The following arrays exist and are optimal:
APA1(1, 3, 3) APA1(2, 3, 3) APA3(3, 3, 3) APA2(2, 4, 4)
APA3(3, 4, 4) APA12(4, 4, 4) APA1(2, 5, 5) APA1(3, 5, 5)
APA2(4, 5, 5) APA10(5, 5, 5) APA3(3, 6, 6) APA4(4, 6, 6)
APA10(5, 6, 6) APA60(6, 6, 6) APA3(3, 7, 7) APA3(4, 7, 7)
APA5(5, 7, 7) APA15(6, 7, 7) APA105(7, 7, 7) APA4(4, 8, 8)
APA5(5, 8, 8) APA10(6, 8, 8) APA35(7, 8, 8) APA280(8, 8, 8)
APA2(2, 3, 4) APA3(3, 3, 4) APA6(3, 4, 5) APA12(4, 4, 5)
APA3(3, 5, 6) APA4(4, 5, 6) APA10(5, 5, 6) APA12(4, 6, 7)
APA20(5, 6, 7) APA60(6, 6, 7) APA12(4, 7, 8) APA15(5, 7, 8)
APA30(6, 7, 8) APA105(7, 7, 8) APA20(5, 8, 9) APA30(6, 8, 9)
APA70(7, 8, 9) APA280(8, 8, 9) 2− PA3(3, 3, 5) 2− PA12(4, 4, 6)

2− PA6(4, 5, 7) 2− PA10(5, 5, 7) 2− PA30(5, 6, 8) 2− PA60(6, 6, 8)
2− PA30(5, 7, 9) 2− PA45(6, 7, 9) 2− PA105(7, 7, 9) 2− PA60(6, 8, 10)

2− PA105(7, 8, 10) 2− PA280(8, 8, 10) 3− PA10(5, 5, 8) 3− PA60(6, 6, 9)
3− PA60(6, 7, 10) 3− PA105(7, 7, 10) 3− PA140(7, 8, 11) 3− PA280(8, 8, 11)

4− PA105(7, 7, 11) 4− PA280(8, 8, 12)

Remark that 2−PA3(3, 3, 5), 2−PA6(4, 5, 7) and 2−PA10(5, 5, 7) are optimal
asAPA, 3−PA10(5, 5, 8), 3−PA60(6, 7, 10) and 3−PA105(7, 7, 10) are optimal
as 2-PA, and 4− PA105(7, 7, 11) is optimal as 3-PA.

What happens if two of the parameters t, k, v are equal? If k = v, we are in
the case of multisets of permutations of a k-set. The value of the parameter
s is then irrelevant. A 0 − PAλ(t, k, k) is also a t − PAλ(t, k, k) and may
be described as a uniformly t-homogeneous set of permutations on k letters.
The theory of 0−PAλ(t, k, k) generalizes the theory of t-homogeneous groups
of permutations. We refer to [1, 2, 4, 5, 20]. Stinson’s design construction
for APA’s shows how these multisets of permutations may be used in the
construction of more general perpendicular arrays.
In the special case t = k = v, a 0− PAb(k, k, k) is equivalent to a
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0 − PAλ(bk/2c, k, k) with b = λ ·
(

k
bk/2c

)
rows. Such an array is optimal if

b = λ∗(k).
In the next chapter we will make use of s− PAλ(k, k, v).

Theorem 7 Let s ≥ bk/2c. Then an s− PAλ(k, k, v) exists if and only if a
0− PAλ/( k

bk/2c)
(bk/2c, k, k) exists.

Proof. Let Σ be an s−PAλ(k, k, v). The properties P (0, k), . . . P (s, k) show
that for every k-set F of entries the array ΣF is a 0 − PAµ(s, k, k) with λ

rows, i.e. λ = µ ·
(

k
s

)
. As s ≥ bk/2c, a 0−PA(s, k, k) is also a 0−PA(t, k, k)

for every 1 ≤ t ≤ k. In particular ΣF is a 0− PAλ/( k
bk/2c)

(bk/2c, k, k) (and a

0− PAλ(k, k, k)).
Assume a 0−PAλ/( k

bk/2c)
(bk/2c, k, k) or equivalently a 0−PAλ/(k

s)
(s, k, k) or

equivalently a 0− PAλ(k, k, k) exists. Use the design-construction with the
complete design k − (v, k, 1). This yields k − PAλ(k, k, v).

Corollary 3 If bk/2c ≤ s ≤ k ≤ 8, then (optimal)

s− PAλ∗(k)(k, k, v)

exist for all v ≥ k.

Proof. As k ≤ 8, we may use our (optimal) k−PAλ∗(k)(k, k, k) again. The
preceding Theorem yields the arrays given in the statement of the Corollary.
It also follows that λ∗(k) is the minimum value of λ. How about optimality?

We have λ(u, k) = µs(k, k, v)/
(

k
u

)
. It follows from [Theorem 5, 1.] that λ∗(k)

divides µs(k, k, v).

In particular we get thatAPA1(1, 1, v), 2−PA2(2, 2, v) and 3−PA3(3, 3, v)
always exist and are optimal as APA.

4 An application in cryptography

We use the model of a secrecy and authentication-system based on an injec-
tive (C,E)-array Σ as described in [19]. Thus the columns are interpreted
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as source states, the rows as keys and the entries as messages. The source is
assumed to be a stationary probability-space, i.e. every source state c occurs
with a fixed probability Pr(c). Each key is an injective mapping from the
source states into the messages. Each key is used with the same probability
1/b. If row σ is chosen as key, then source state (column) c is encrypted into
σ(c) ∈ E. Once a key has been chosen it will be used for a certain number of
messages. It was shown in [19] that a 0−PAλ(t, k, v) yields perfect t-fold se-
crecy. We consider authentication. Let us speak of a spoofing attack of order
w − u and strength u if the opponent observes w − u distinct messages and
then sends u more messages himself. His goal is to have all of his messages
accepted. The following is obvious:

Proposition 1 Let Pd (the probability of deception) be the probability of
success of a spoofing attack of order w − u and strength u. If the opponent
follows an optimal strategy, then

Pd ≥
(
k − w + u

u

)
/

(
v − w + u

u

)
.

Theorem 8 If Σ is an s − PAλ(t, k, v), then the opponent’s probability Pd
of success in a spoofing attack of order w − u and strength u is

Pd =

(
k − w + u

u

)
/

(
v − w + u

u

)

whenever w ≤ t, u ≤ min(s, w).

Proof. Let E0 ⊂ E be the (w − u)-set of messages observed by the
opponent, E1 the u-set of messages inserted into the channel by the opponent,
E0∩E1 = ∅. Clearly the probability p of success of the attack is a conditional
probability:

p =

∑
T :T (C)⊇E0∪E1

Pr(T )Pr(T−1(E0))∑
T :T (C)⊇E0

Pr(T )Pr(T−1(E0))
.

Here T runs through the keys. Further Pr(T ) = 1/b by construction. Thus
the denominator is 1

b
λ(0, w − u)

∑
Y ⊆C,|Y |=w−u Pr(Y ) = 1

b
λ(0, w − u). The

numerator is

1

b

∑
Y ⊆C,|Y |=w−u

Pr(Y )|{T |T (Y ) = E0, T (C) ⊇ E1}|.
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Property P (u,w) shows that this simplifies to 1
b

∑
Y ⊆C,|Y |=w−u Pr(Y )λ(u,w) =

1
b
λ(u,w). It follows

p =
λ(u,w)

λ(0, w − u)
.

By Definition 5 we have

p =

(
v

w−u

)(
k
w

)
(

v
w

)(
k

w−u

) =

(
k − w + u

u

)
/

(
v − w + u

u

)
.

As this holds for every choice of E1, we are done.

We conclude that an s − PAλ(t, k, v) yields the best possible protection
against spoofing attacks if the same key is used for no more than t messages
and the opponent inserts no more than s messages into the channel while
the same key is being used for encryption. All this is independent of the
probability-distribution on the source states. The case s = 1, corresponding
to APA’s has been discussed in [19].

5 Blowing-up

Theorem 9 Assume an s − PAλ(t, k, v) and an x − PAµ(y, l, v − k) exist,
where x = min(l, s), y = min(l, t). Then there is an

s− PAλµ(v−k
y )(t, k + l, v).

Proof. Let A be an s− PAλ(t, k, v), defined on the set E of entries. For
every row Z of A let B(Z) be an x − PAµ(y, l, v − k) defined on the set

E − Z of entries. Define an array C(Z) with k + l columns and µ ·
(

v−k
y

)
rows, where the restriction of each row to the first k coordinates equals Z,
and the restriction of C(Z) to the last l columns equals B(Z). Define the
array C as the union of C(Z) over all rows Z of A. We claim that C is an
s− PAλµ(v−k

y )(t, k + l, v).

Let E1, E2 ⊆ E, |E1| = s, |E2| = t − s, E1 ∩ E2 = ∅. Further let S be a
(t − s)-set of columns, S1 the intersection of S with the k first columns of
C, put |S1| = n. Denote by x = x(S) the number of rows of C containing
E1 ∪ E2, and with the elements of E2 in the columns of S. We have to show
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x(S) = λµ
(

v−k
y

)(
k+l

t

)
/
(

k+l
t−s

)
. Use the notation of section 3, where λA(u,w)

and λB(u,w) denote the parameters of the arrays A and B(Z), respectively.
As a natural generalization of Definition 7 denote by λ(U+, U−;W ;S) the
number of rows Z (of a given array) satisfying

• W − U− ⊆ Z

• Z ∩ U− = ∅

• The entries in W − (U+ ∪ U−) occur in the given set S of columns.

Put

xm =
∑

F1⊆E1,|F1|=m

∑
F2⊆E2,|F2|=n

λA(F1, (E1 − F1) ∪ (E2 − F2);E1 ∪ E2;S1)·

·λB(s−m, t−m− n).

As (s−m)+(t− s−n) ≤ l, we have to consider the range t− l−n ≤ m ≤ s.
Thus

x(S) =
s∑

m=t−l−n

xm.

Fix m. Use the principle of inclusion and exclusion. We get

xm = λB(s−m, t−m−n) ·
s−m∑
i=0

t−s−n∑
j=0

(−1)i+j

(
s

m

)(
s−m

i

)(
t− s

n+ j

)(
k − n

j

)
·

·λA(m+ i,m+ n+ i+ j).

Upon reordering terms and substituting the value of λA(m+ i,m+n+ i+ j)
we obtain

xm = λ ·
(
v

t

)(
s

m

)
λB(s−m, t−m− n)

t−s−n∑
j=0

(−1)j

(
t−s
n+j

)(
k−n

j

)
(

k
n+j

) ·

·
s−m∑
i=0

(−1)i

(
s−m

i

)(
k

m+ n+ i+ j

)
/

(
v

m+ n+ i+ j

)
.
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The last sum can be calculated by Lemma 2. We get

xm =
λ ·
(

v
t

)(
s
m

)
(

v
k

) λB(s−m, t−m−n)·
t−s−n∑
j=0

(−1)j

(
t−s
n+j

)(
k−n

j

)
(

k
n+j

) (
v − (n+ s+ j)

k − (m+ n+ j)

)
.

Use
(k−n

j )
( k

n+j)
=

(n+j
n )

(k
n)

and
(

t−s
n+j

)(
n+j
n

)
=
(

t−s
n

)(
t−s−n

j

)
. It follows

xm =
λ ·
(

v
t

)(
s
m

)(
t−s
n

)
(

v
k

)(
k
n

) λB(s−m, t−m−n)
t−s−n∑
j=0

(−1)j

(
t− s− n

j

)(
v − (n+ s+ j)

k − (m+ n+ j)

)
.

Substitute
(

v−s
k−m

)
·
(

k−m
m+j

)
/
(

v−s
m+j

)
for the last binomial number above. Upon

reordering terms and making use of Lemma 2 again, we get

xm = λ ·

(
v
t

)(
s
m

)(
t−s
n

)(
v−t

k−m−n

)
(

v
k

)(
k
n

) λB(s−m, t−m− n).

Substitute the value of λB(s−m, t−m− n) as given in Definition 5:

xm = λµ·
(
v − k

y

) (
v
t

)(
t−s
n

)
(

v
k

)(
k
n

)(
l

t−s−n

) ·( s
m

)(
v − t

k −m− n

)(
l

t−m− n

)
/

(
v − k

t−m− n

)
.

The last terms simplify:
(

v−t
k−m−n

)(
l

t−m−n

)
/
(

v−k
t−m−n

)
=
(

v−t
k−t

)(
l+k−t

k−m−n

)
/
(

l+k−t
k−t

)
.

After substituting this expression and simplifying again (
(

v
t

)(
v−t
k−t

)
/
(

v
k

)
=(

k
t

)
), we get

xm = λµ ·
(
v − k

y

) (
k
t

)(
t−s
n

)
(

k
n

)(
l

t−s−n

)(
l+k−t
k−t

)( s
m

)(
l + k − t

k −m− n

)
.

By a well-known identity

s∑
m=t−l−n

(
s

m

)(
l + k − t

k −m− n

)
=

(
l + k + s− t

k − n

)
.

We get

x(S) =
s∑

m=t−l−n

xm = λµ ·
(
v − k

y

)(k
t

)(
t−s
n

)(
l+k+s−t

k−n

)
(

k
n

)(
l

t−s−n

)(
l+k−t
k−t

) .
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After simplification we obtain

x(S) = λµ

(
v − k

y

)(
k + l

t

)
/

(
k + l

t− s

)
= λC(s, t),

as desired.

Theorem 10 Assume an s − PAλ(t, u, k), an x − PAν(y, l, v − k) and a
design t− (v, k, µ) exist, where x = min(l, s), y = min(l, t). Then there is an

s− PAλµν(v−k
y )(t, u+ l, v).

Proof. Let D be a design t − (v, k, λ), defined on the set E. For each
block D of D let A(D) be an s − PAλ(t, u, k) defined on D and B(D) an
x − PAν(y, l, v − k) defined on E − D. For every row Z of A(D) define an

array C(Z,D) with u+ l columns and ν ·
(

v−k
y

)
rows, where the restriction of

each row to the first u coordinates equals Z, and the restriction of C(Z,D) to
the last l columns equals B(D). Define the array C as the union of C(Z,D)
over all blocks D of D and all rows Z of A(D). We claim that C is an
s− PAλµν(v−k

y )(t, u+ l, v). The proof is very similar to the proof of the pre-

ceding Theorem, but it is easier.
As before let E1, E2 ⊆ E, |E1| = s, |E2| = t − s, E1 ∩ E2 = ∅. Further let S
be a (t− s)-set of columns, S1 the intersection of S with the k first columns
of C, put |S1| = n. Denote by x = x(S) the number of rows of C containing
E1 ∪ E2, and with the elements of E2 in the columns of S. We have to show
x(S) = λµν

(
v−k

y

)(
u+l

t

)
/
(

u+l
t−s

)
. Let λD(i, j), i+ j ≤ t, be the number of blocks

of the designD intersecting a given (i+j)-set in a fixed i-set. By a well-known
theorem we have

λD(i, j) = b(D)

(
v − i− j

k − i

)
/

(
v

k

)
,

where i + j ≤ t and b(D) denotes the number of blocks. With the notation
of the proof of the foregoing theorem put

xm =
∑

F1⊆E1,|F1|=m

∑
F2⊆E2,|F2|=n

λD(m+n, t−n−m)λA(m,m+n)λB(s−m, t−m−n).
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We have to calculate x(S) =
∑

m xm. Fix m. By substituting the values of
the λ−parameters and reordering terms we get

xm = λµν

(
v − k

y

)
·

(
t−s
n

)(
v
t

)
(

v
k

)(
u
n

)(
l

t−s−n

) ·
(

s
m

)(
v−t

k−m−n

)(
u

m+n

)(
l

t−m−n

)
(

k
m+n

)(
v−k

t−m−n

) .

This simplifies to

xm = λµν

(
v − k

y

)
·

(
t−s
n

)(
u
t

)
(

u
n

)(
l

t−s−n

)(
l+u−t

l

) · ( s
m

)(
l + u− t

u−m− n

)
.

As
∑

m

(
s
m

)(
l+u−t

u−m−n

)
=
(

l+u+s−t
u−n

)
, we get

x(S) =
∑
m

xm = λµν

(
v − k

y

)
·

(
t−s
n

)(
u
t

)
(

u
n

)(
l

t−s−n

)(
l+u−t

l

) · (l + u+ s− t

u− n

)
.

This expression is easily simplified. We get

x(S) = λµν

(
v − k

y

)(
u+ l

t

)
/

(
u+ l

t− s

)
= λC(s, t),

as desired.

Theorem 10 is applicable even if l = 0. In that case one of the ingredients
degenerates to a 0 − PA1(0, 0, v − k), which should be interpreted as the
empty array. We obtain:

Corollary 4 If an s−PAλ(t, u, k) and a design t− (v, k, µ) exist, then there
is an

s− PAλµ(t, u, v).

Case s = 1 of this Corollary is Tran’s generalization of
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Stinson’s design-construction (see [27]). In case l = 1 we may use the ex-
istence of 1 − PA1(1, 1, v) for every v and get as a Corollary of Theorem
10:

Corollary 5 If an s−PAλ(t, u, k) and a design t− (v, k, µ) exist, then there
is an

s− PAµλ(v−k)(t, u+ 1, v).

The special case s = 1, k = u of this Corollary is Tran’s theorem [27],2.8.
Upon specializing to s = 1, k = u, v = k + 1 and the complete design we get
[27],2.2:

Corollary 6 If there is an APAλ(t, k, k), then there is an
APAλ(k+1−t)(t, k + 1, k + 1).

It is worth noting that this Corollary may produce optimal APA in non-
trivial situations. As an example, when applied to an APA1(3, 5, 5) we get
an (optimal) APA3(3, 6, 6). An APA1(3, 5, 5) is the same as an APA1(2, 5, 5)
and can be found as a subset of the group AGL2(5) of order 20 (see [19]).
Remark that APA3(3, 6, 6) has been constructed before ([13, 2]). Three more
such situations occur in cases t ∈ {4, 5}. We use the notation A −→ B to
denote that the (eventual) existence of array A entails the existence of B :

APA2(4, 9, 9) −→ APA12(4, 10, 10)

APA1(4, 15, 15) −→ APA12(4, 16, 16)

APA2(5, 9, 9) −→ APA10(5, 10, 10).

All the parameters listed above are optimal, but none of these arrays has been
constructed that far. Observe further that APA2(4, 9, 9) and APA2(5, 9, 9)
are different names for the same structure.

Case l = 1 of Theorem 9 yields:

Corollary 7 The existence of s− PAλ(t, k, v) implies the existence of

s− PAλ(v−k)(t, k + 1, v).
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This last Corollary appears to be new even in the cases s = 0 and s = 1
of inductive PA’s and APA’s, respectively. It has some interesting conse-
quences:

Proposition 2 1. If for some (necessarily odd) k there is an
APA1(2, k, k + 2), then an (optimal) APA2(2, k + 1, k + 2) and an
APA2(2, k + 2, k + 2) exist.

2. If there is an APA1(3, 6x+ 5, 6x+ 8), then there is an (optimal)
APA3(3, 6x+ 6, 6x+ 8).

3. If there is an APA1(3, 6x+ 5, 6x+ 11), then there is an (optimal)
APA6(3, 6x+ 6, 6x+ 11).

4. If there is an APA3(3, 6x+ 5, 6x+ 7), then there is an (optimal)
APA6(3, 6x+ 6, 6x+ 7) and an APA6(3, 6x+ 7, 6x+ 7).

5. If there is an APA4(4, 5, 8), then there is an (optimal)
APA12(4, 6, 8).

6. If there is an APA2(4, 5, 11), then there is an (optimal)
APA12(4, 6, 11).

Another application of Theorem 9 yields:

Corollary 8 • If there is an s− PAλ(t, k − 2, k), then there is an
s− PA2·λ(t, k, k).

• If there is an s− PAλ(t, k − 3, k), then there is an s− PA3·λ(t, k, k).

We mention some variants of our main theorems in this section:

Theorem 11 Assume an s− PAλ(t, u, k) and a design t− (v, k, µ) exist.

1. If in addition an x− PAν(y, l, k − u) exists, where
x = min(l, s), y = min(l, t), then there is an

s− PAλµν(k−u
y )(t, u+ l, v).
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2. If in addition an x− PAν(y, l, v − u) exists, where
x = min(l, s), y = min(l, t), then there is an

s− PAλµν(v−u
y )(t, u+ l, v).

3. If in addition there is an x− PAν(y, l, v − u) containing an
x−PAχ(y, l, v−k), then there is an s−PAλµν(v−u

y )(t, u+l, v) containing
an
s− PAλµχ(v−k

y )(t, u+ l, v).

Proof.

1. Application of Theorem 9 yields an s − PAλν(k−u
y )(t, u + l, k). Apply

then the design-construction.

2. The design-construction yields s − PAλµ(t, u, v). Apply Theorem 9 to
get the result.

3. Containment of two arrays is to be interpreted in the usual multiset-
sense. Under the present assumption the constructions of Theorem 10
and of 1. above yield arrays with the parameters in question, which
are contained in each other. The (multiset-)difference yields an

s− PAλµ{ν(v−u
y )−χ(v−k

y )}(t, u+ l, v).

We note the following Corollary to case 1. of the preceding Theorem:

Corollary 9 Assume an s−PAλ(t, u, k) and a design t−(v, k, µ) exist. then
there is an

s− PAλµ(k−u)(t, u+ 1, v).

This is better than Corollary 5 if k − u < v − k.
The constructions of Theorems 9 and 10 also work for ordered designs.

The proofs are similar but much easier. We shall omit them here:

Theorem 12 • If an ODλ(t, k, v) and an ODµ(y, l, v − k) exist, where
y = min(t, l), then there is an

ODλµ(v−k
y )·y!(t, k + l, v).
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• If an ODλ(t, u, k), a design t− (v, k, µ) and an ODν(y, l, v − k) exist,
where y = min(t, l), then there is an

ODλµν(v−k
y )·y!(t, u+ l, v).

6 Restriction

In this section we study conditions on a set L of columns of an s − PA Σ
which ensure that the restriction ΣL of Σ to the set L of columns is again an
s− PA.

Definition 8 Let Σ be an s−PAλ(t, k, v). If for every set L of columns the
restriction ΣL is an x−PA(y, l, v), where x = min(l, s), y = min(l, t), |L| = l,
then we say that Σ has the restriction-property, short: property (R).

It is obvious that an ODλ(t, k, v) is a t−PAλ·t!(t, k, v) with property (R).
We draw an immediate consequence: as the affine group
AGL(1, q) = {τ −→ ατ + β|0 6= α ∈ IFq, β ∈ IFq} is an OD1(2, q, q) and an
APA2(2, q, q) with property (R), restriction always works.

Corollary 10 If q is a prime-power and 2 ≤ k ≤ q, then an APA2(2, k, q)
exists.

As

µ1(2, k, v) =
{

1 if k · v odd
2 otherwise,

this is optimal except when k and q both are odd.

Theorem 13 Let Σ be an s−PAλ(t, k, v). Then the following are equivalent:

• Σ has property (R).

• For every u ≤ w ≤ t, w − u ≤ s, every w-set W of entries and every
w-set L of columns, the array ΣW

L is a 0− PA(w − u,w,w).

(Here we omit parameter ”λ” when we are not interested in its value.)
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Proof. Let Σ have property (R), let u,w, L,W as above. It follows that
ΣL is an x− PA(w,w, v), where x = Min(w, s). By definition of an s− PA
every u-subset of W is uniformly distributed in ΣW

L . It follows that the mul-
tiset ΣW

L of permutations is a
PA(w − u,w,w).
The converse is rather obvious.

Corollary 11 If an s− PAλ(t, k, v) has property (R), then we have

λ(0, w) ≡ 0(mod

(
w

u

)
µ0(w − u,w))

for every 0 ≤ u ≤ w ≤ t, w − u ≤ s.

Definition 9 Let Σ be an s−PAλ(t, k, v). Define H = H(Σ) as the group of
permutations on the columns of Σ which induce automorphisms of Σ. Some-
times H is called the conjugate-invariant group of Σ.

Corollary 12 Let Σ be an s − PAλ(t, k, v). For every subset L of columns
of Σ denote by H(Σ)L the group of permutations of L induced by the set-
stabilizer of L in the group H(Σ).
If H(Σ)L contains the alternating group on L for every L,|L| ≤ t and
|H(Σ)L| = 2 for |L| = 2, then Σ has property (R).

We apply this to the group Σ = PSL2(q), which is an APA3(3, q+1, q+1)
if q ≡ 3(mod 4). As PSL2(q) is a subgroup of H(Σ) and induces Z3 on triples,
Z2 on pairs of columns, we can apply the preceding Corollary and obtain:
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Theorem 14 If q is a prime-power, q ≡ 3(mod 4), then PSL2(q) is an
APA3(3, q + 1, q + 1) with property (R). It follows that

APA3(3, k, q + 1)

exist for every 3 ≤ k ≤ q + 1.

When is this optimal? The following values of the µ1− function are easily
calculated:

µ1(3, 2l, 2w) =
{

1 if w ≡ l ≡ 1(mod 3)
3 otherwise.

µ1(3, 2l, 2w + 1) =
{

2 if w ≡ 2(mod 3), l ≡ 1(mod 3)
6 otherwise.

µ1(3, 2l + 1, 2w) =
{

1 if w ≡ 1(mod 3), l ≡ 2(mod 3)
3 otherwise.

µ1(3, 2l + 1, 2w + 1) =
{

1 if w ≡ l ≡ 2(mod 3)
3 otherwise.

As PGL2(q) is an OD1(3, q + 1, q + 1) and thus an APA6(3, q + 1, q + 1)
with property (R) for every prime-power q, we obtain the following optimal
APA’s:

Theorem 15 The following arrays exist:

• APA6(3, 2l, 2
f + 1), l ≥ 2, f ≥ 1, which is optimal except when

{f even, l ≡ 1(mod 3)}.

• APA3(3, k, q+1), 3 ≤ k ≤ q+1, q prime− power, q ≡ 3(mod 4), which
is optimal except when {q ≡ 7(mod 12), k ≡ 2(mod 3)}.

We concentrate on APA’s with t = 2 now.

Definition 10 Let Σ be an APAλ(2, k, v). The transitive kernel C0(Σ) is the
set of columns c with the property that for every column c′ 6= c the restriction
Σ{c,c′} is an ODλ/2(2, 2, v).

Thus column c belongs to the transitive kernel if for every pair of columns
one of which is c every ordered pair of entries occurs the same number of times.
This number is then necessarily λ/2. Hence a nontrivial transitive kernel can
exist only if λ is even.
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Theorem 16 Let Σ be an APAλ(2, k, v) with set C of columns. For every
c ∈ C the following are equivalent:

• c ∈ C0(Σ)

• The restriction ΣC−{c} is an APAλ(2, k − 1, v).

Proof. Let {a, b} be a pair of entries, c′ 6= c a column of Σ. There are

exactly
(

k
2

)
λ rows of Σ containing a and b. Property P (1, 2) shows that there

are exactly (k− 1)λ/2 rows of Σ containing b and having a in column c′. As-
sume now ΣC−{c} is an APAλ(2, k−1, v). The same argument, when applied
to ΣC−{c}, shows that there are exactly (k− 2)λ/2 rows of ΣC−{c} containing
b and having a in column c′.
We conclude that exactly (k− 1)λ/2− (k− 2)λ/2 = λ/2 rows of Σ have a in
column c′ and b in column c. Thus Σ{c,c′} is an ODλ/2(2, 2, v). This argument
is clearly reversible.

Corollary 13 Let Σ be an APAλ(2, k, v) with set C of columns, L ⊆ C0(Σ)
a set of columns contained in the transitive kernel. Then ΣC−L is an
APAλ(t, k − |L|, v).

We specialize to arrays APA2(2, k, k), equivalently 0 − PA2(2, k, k). In
case v = k we may identify the set of columns with the set of entries. We
view an APAλ(t, k, k) as a multiset of permutations of a k-set.

Proposition 3 (Double-coset construction) Let E be a k-set,
H a permutation-group of order k-1 on E having one fixed point c and an
orbit of length k-1. Assume there is a permutation σ of E such that

Σ = H ∪HσH

is an APA2(2, k, k). (Equivalently: Σ = HΣH)
Then the column corresponding to c is contained in the transitive kernel.

Proof. It is easily seen that for every column c′ 6= c and every pair a, b
of entries there is a row of Σ having a in column x and b in column c′. As
the number of rows of Σ is k(k−1), it follows that Σ{c,c′} is an OD1(2, 2, k).
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In [5] the double-coset construction has been used to get an APA2(2, 6, 6).
The present authors constructed an APA2(2, 12, 12) using the same method
[7]. By the preceding Proposition the transitive kernel is nonempty in both
cases. We conclude:

Corollary 14 There exist (optimal)

APA2(2, 5, 6)

and
APA2(2, 11, 12)

7 The affine group

Let G = AGL1(q), where q is a prime-power. We know that G is an
APA2(2, q, q). This is optimal if q is a power of 2.

Definition 11 Let q be an odd prime-power. A half-system of IFq is a subset
U ⊂ IF ∗

q satisfying
|{x,−x} ∩ U | = 1

for every 0 6= x ∈ IFq.

The total number of half-systems of IFq is clearly 2(q−1)/2. If U is a half-
system and 0 6= α ∈ IF ∗

q , then α · U is a half-system, too. Furthermore the
set U−1 of reciprocals is a half-system if U is. Remark that the set IF ∗2

q is a
half-system if and only if q ≡ 3(mod 4).
It was shown in [5] that

EU(G) = {τ −→ ατ + β|α ∈ U, β ∈ IFq}

is an APA1(2, q, q) if and only if U is a half-system of IFq.
We want to study the question when the restriction of EU(G) to a set of k
columns is an APA1(2, k, q). Recall that this is conceivable only if k is odd.

Definition 12 • Let U be a half-system of IFq, K ⊆ IFq. Define a directed
graph, more specifically a tournament Γ(K,U) with K as set of vertices,
where the ordered pair (c, c′) is an edge if and only if c− c′ ∈ U.
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• Call a directed graph Γ balanced if for every vertex x indegree and
outdegree of x are the same.

Lemma 5 Let G = AGL1(q), q odd, U a half-system of IFq, K ⊆ IFq. Then
the following are equivalent:

• The restriction EU(G)K is an APA1(2, k, q).

• The tournament Γ(K,α · U−1) is balanced for every 0 6= α ∈ IFq.

Proof. Restrictions of PA’s are certainly PA’s. We only have to take
care of property P (1, 2). Put K = {τ1, . . . τk}, k odd, let a, b ∈ IFq, a 6= b.
Consider the system of equations

uτi + β = a

uτj + β = b

(where β ∈ IFq, u ∈ U, i 6= j).Fix i. Property P (1, 2) holds if and only if there
are exactly (k − 1)/2 values of j for which a solution (u, β) exists. Equiva-
lently we demand that (τi − τj)/(a− b) ∈ U−1 for (k − 1)/2 values of j 6= i,
and consequently (τi− τj)/(a− b) ∈ −U−1 for the remaining (k−1)/2 values
of j 6= i. Equivalently we demand that the tournament Γ(K, (a− b)U−1) be
balanced. As this has to hold for every pair a, b, we arrive at the claim of
the Lemma.

Remark that Γ(K,U) is balanced if and only if Γ(K,−U) is. In case
q ≡ 3(mod 4) we may take U = IF ∗2

q . Then U−1 = U and {αU,−αU} =
{IF ∗2

q ,−IF ∗2
q } for every α ∈ IF ∗

q . In this case the criterium of the preceding
Lemma simplifies:

Corollary 15 Let q be a prime-power, q ≡ 3(mod 4), U = IF ∗2
q , K ⊆ IFq,

|K| = k. Then the following are equivalent:

• EU(G)K is an APA1(2, k, q).

• The tournament Γ(K, IF ∗2
q ) is balanced.

We quote a theorem of R.M.Wilson’s ([28]):
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Theorem 17 Let q be a prime-power, q−1 = e·f,H0, H1, . . . He−1 the cosets
of the subgroup of order f ( and index e) of IF ∗

q . For some natural number
k and for 1 ≤ i < j ≤ k let C(i, j) ∈ {H0, H1, . . . He−1} be given. Then the
following holds:
If q > ek(k−1), then there is an ordered k-tuple (x1, x2, . . . , xk) of elements
xj ∈ IFq satisfying xi − xj ∈ C(i, j), 1 ≤ i < j ≤ k.

If we apply this in the situation of the preceding Corollary we get:

Theorem 18 Let q ≡ 3(mod 4) be a prime-power, k odd, q > 2k(k−1). Then
there is a k-set K ⊂ IFq such that (EIF ∗2

q
(AGL1(q)))K is an APA1(2, k, q).

Theorem 17 may as well be applied when q ≡ 1(mod 4). Let q = 2it+ 1,
where t is odd, T the subgroup of order t of IF ∗

q . Choose the half-system U as
a union of cosets of T, i.e. U = TU. As T has odd order, such a half-system
certainly exists. Let K ⊂ IFq, |K| = k. The condition that Γ(K,α · U−1) be
balanced for every 0 6= α ∈ IFq will certainly be satisfied if for every x ∈ K
the set of differences x− y, y ∈ K, y 6= x is equally distributed on the cosets
of T. We apply Theorem 17 and get:

Theorem 19 Let q = 2it + 1 be a prime-power, t odd, T the subgroup of
order t of IF ∗

q , k ≡ 1(mod 2i). If q > 2ik(k−1), then for every half-system U of
IFq satisfying TU = U there is a set K ⊂ IFq, |K| = k such that EU(G)K is
an APA1(2, k, q).

This generalizes Theorem 18. If k|(q − 1) or k|q we can be more precise.
The following notation will be handy: If U is a half-system of IFq, put

χU(a) =


0 if a = 0.
1 if a ∈ U.
−1 if a ∈ −U.

The values of χU are to be considered as integers.

Theorem 20 Let q be an odd prime-power, k an odd divisor of q-1, K the
subgroup of order k of IF ∗

q , U a half-system of IFq satisfying KU = U.
Then EU(G)K is an APA1(2, k, q).

32



Proof. We have to check that Γ(K,α · U−1) is balanced for every
0 6= α ∈ IFq. Put V = α · U−1. Then KV = V as K is a group. Let

x ∈ K, put ψx =
∑

y∈K χV (x − y). We have to show that ψx = 0. The
property KV = V shows that ψx = ψzx for every z ∈ K. As K is a group
we get ψx = ψy for every y ∈ K. It follows kψx =

∑
y,z∈K χV (y − z). As

χV (y − z) = −χV (z − y), the sum vanishes. Thus ψx = 0.

The same method can be used to handle the case k|q.

Theorem 21 Let q be an odd prime-power, k > 1 a divisor of q, A a subgroup
of order k of the additive group of IFq, and U an arbitrary half-system.
Then EU(G)A is an APA1(2, k, q).

Proof. Let a ∈ A, put ψa =
∑

b∈A χU(a − b). We have to show ψa = 0.
Let c ∈ A. Then ψa =

∑
b∈A χU((a+ x)− (b+ x)) = ψa+x, hence ψa = ψb for

a, b ∈ A. Thus kψa =
∑

b,c∈A χU(b− c) = 0, consequently ψa = 0.

We conclude that

APA1(2, p
m, pn)( m ≤ n)

exist for every odd prime p.

Theorem 22 For every prime p ≡ 3(mod 4), p ≥ 11 there exists a 5-set
K ⊂ IFp such that (EIF ∗2

q
(AGL1(q)))K is an APA1(2, 5, p).

Proof. By Theorem 18 only the primes p < 220 are in doubt. It is easily
seen that the construction doesn’t work for p = 7. We shall see in the next
section that an APA1(2, 5, 7) does not exist. Case p = 11 is covered by The-
orem 19. We may therefore assume p ≥ 19. Four cases will be distinguished,
corresponding to the congruence of p mod 24. In each case we give a table
with two columns. The first column contains quintuples K of integers, the
second column gives sufficient conditions which ensure that the tournament
Γ(K, IF ∗2

q ) is balanced. Here K denotes the set K, where each element is
read mod p. The entries ”lQ” and ”lN” stand for ”l is a quadratic residue
mod p” and ”l is a quadratic non-residue mod p”, respectively.
As an example, the first row of the first table says that forK = {0, 1, 5, 6,−4}
the above condition is met for all primes p ≡ 23(mod 24) for which 5 is a
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quadratic non-residue. It is of course easy to translate statements ”lQ”
and ”lN” into statements concerning the congruence of p mod l, using the
quadratic reciprocity-law.

• Case 2Q, 3Q, equivalently p ≡ 23(mod 24), p = 23, 47, 71, . . . .

0,1,5,6,-4 5N
0,1,4,7,-24 7N,31N
0,1,4,7,-31 5Q,7N,31Q,19N
0,1,2,-5,21 5Q,7N,19Q,13N
0,1,-6,7,8 7N,13Q

0,1,-10,11,-11 5Q,7Q,11N
0,1,-12,13,-13 7Q,13N
0,1,-16,17,-17 11Q,17N
0,1,-22,23,-23 5Q,11Q,23N,p 6= 23
0,1,-40,41,-41 5Q,7Q,41N
0,1,-52,53,-53 5Q,7Q,53N

0,1,-187,188,-188 5Q,7Q,11Q,17Q,47N,p 6= 47
0,1,-94,95,-95 5Q,7Q,47Q,19N,p 6= 47
0,1,-28,29,-29 5Q,7Q,19Q,29N

0,1,-110,111,-111 5Q,7Q,11Q,13Q,17Q,37N
0,1,-92,93,-93 5Q,23Q,37Q,47Q,31N,p 6= 23, 47
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• Case 2Q, 3N, equivalently p ≡ 7(mod 24), p = 7, 31, 79, . . . .

0,1,-2,3,-3 5Q
0,1,2,-8,-9 5N,11N
0,1,2,-4,-25 5N,7Q,13Q
0,1,2,-4,28 5N,7N,13Q
0,1,2,-4,13 13N,17Q
0,1,3,4,-16 5N,17N,19Q
0,1,3,4,-22 11Q,13N,23N
0,1,3,5,-29 5N,17N,29N
0,1,2,-4,27 13N,31Q,p 6= 31
0,1,4,5,-32 5N,11Q,37N
0,1,5,-4,-43 11Q,13N,43N
0,1,3,5,-40 5N,41Q,43Q

0,1,3,-10,-44 5N,11Q,13N,17N,47Q
0,1,3,5,-48 5N,17N,53N,p 6= 7
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• Case 2N, 3Q, equivalently p ≡ 11(mod 24), p = 11, 59, 83, . . . .

0,1,2,-2,-5 5Q,7N
0,1,2,-2,5 5N,7N
0,1,2,-2,6 5Q
0,1,-1,5,-6 5N,7Q,11Q
0,1,3,-7,-10 5N,7Q,11N,13N
0,1,3,-7,-17 5N,7Q,17Q
0,1,3,-7,-23 5N,7Q,13Q,23Q
0,1,3,-4,-16 5N,7Q,17N,19N
0,1,3,-7,31 5N,7Q,19Q,31N
0,1,3,-7,-34 5N,7Q,17N,37N
0,1,4,5,-28 5N,7Q,11N,29Q
0,1,4,5,-39 5N,11N,13Q,43N
0,1,4,5,-40 5N,11N,41Q

• Case 2N, 3N, equivalently p ≡ 19(mod 24), p = 19, 43, 67, . . . .

0,1,2,3,5 5Q
0,1,2,3,10 5N,7N
0,1,2,3,-13 5N,7Q,13N
0,1,2,-3,14 5N,7Q,13Q,17Q
0,1,2,-3,-34 5N,7Q,17N,31N
0,1,2,4,12 5N,11Q
0,1,2,4,-25 13Q,29Q
0,1,2,-4,15 5N,7Q,13Q,19N,p 6= 19
0,1,2,-4,-27 5N,7Q,29N,23Q
0,1,4,-4,-36 5N,37N
0,1,4,-4,-42 5N,7Q,23N,43N,p 6= 19, 43
0,1,2,-6,59 5N,7Q,13Q,19Q,29N,59Q,p 6= 19
0,1,5,-4,-45 5N,23N,41Q
0,1,5,-4,-57 5N,19Q,29N,31Q,53Q,p 6= 19
0,1,5,-5,48 5N,43Q,53N,47Q,p 6= 43
0,1,5,-5,56 5N,7Q,11N,17N,61N

It remains to be checked that there is no prime p, 19 ≤ p < 220 which
satisfies one of the following

• 2Q,3Q,5Q,7Q,11Q,13Q,17Q,19Q,23Q,29Q,31Q,37Q,41Q,47Q,53Q
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• 2Q,3N,5N,11Q,13N,17N,19N,23Q,29N,31N,37Q,41N,43Q,47N,53Q

• 2N,3Q,5N,7Q,11N,13Q,17N,19Q,23N,29N,31Q,37Q,41N,43Q

• 2N,3N,5N,7Q,11N,13Q,17N,19Q,23N,29N,31Q,37Q,41N,43Q,47N,
53N,59N,61Q

A little computer-program checks this in a few seconds.

A computer-search shows that many more APA1(2, k, q) of the form
EU(G)K exist than those which we have been able to explain theoretically.
The most interesting sporadic example is an APA1(2, 15, 27). This is the first
example with k > v/2, k 6= v.

8 Room spaces

We establish a link between APA1(2, ∗, ∗) and Room spaces.

Definition 13 • Let S be a set of n+1 elements. A Room square of
side n with set S of symbols is an (n, n)-array F which satisfies the
following properties:

1. Every cell of F either is empty or contains an unordered pair of
symbols.

2. Each symbol occurs exactly once in each row and column of F.

3. Each unordered pair of symbols occurs in precisely one cell of F.

• A Room square is standardized if for some symbol ∞ the entries in the
diagonal are the unordered pairs {∞, x}, x ∈ S − {∞}.

• A Room square is skew if it is standardized and if for each pair of cells
with coordinates (i, j) and (j, i),j 6= i, precisely one is empty.

• A Room d-space (usually called a Room d-cube) is a d-dimensional ar-
ray of side n each 2-dimensional projection of which is a Room square.
A Room space is skew if each 2-dimensional projection is skew.

Theorem 23 1. If there is an APA1(2, k+ 2, v) a restriction of which is
an APA1(2, k, v), then there is a skew Room k-space of side v (k ≥ 3).
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2. If there is an APA1(2, v−2, v), then there is a skew Room (v−2)-space
of side v.

Proof.

1. Let Σ be an APA1(2, k + 2, v) with set E = {1, 2, . . . v} of entries and
set C of columns, c1, c2 two columns of Σ such that ΣC−{c1,c2} is an
APA1(2, k, v). Define a k-dimensional array F of side v with set

S = E ∪ {∞} of symbols in the following way:

• F (i, i, . . . i) = {∞, i}, i = 1, 2, . . . v.

• Each row (a, b, x1, x2, . . . xk) of Σ contributes a non-empty cell

F (x1, x2, . . . , xk) = {a, b}. Here c1, c2 have been chosen as the first
two columns. The remaining cells of F are empty.

We claim that F is a skew Room k-space. Clearly F is standardized.
Consider a 2-dimensional projection Fx,y corresponding to columns x
and y. Property P (0, 2) and λ = 1 show that Fx,y is skew and that
each unordered pair of symbols occurs in precisely one cell of Fx,y. It
remains to show that each symbol occurs exactly once in each row and
column of Fx,y. This is clear by construction if the symbol is ∞. Let
a ∈ E, a 6= i ∈ E. The number of rows of Σ containing a and i is(

k+2
2

)
. Property P (1, 2) shows that there are exactly (k + 1)/2 rows

of Σ containing a and with i in column x. The same argument, when
applied to ΣC−{c1,c2}, shows that there are (k − 1)/2 rows of ΣC−{c1,c2}
containing a and with i in column x. We conclude that the number of
rows of Σ with i in column x and a in column c1 or in column c2 is
(k+ 1)/2− (k− 1)/2 = 1. This shows that entry a occurs exactly once
in row i of Fx,y. Entry i is to be found in cell (i, i).

2. Let Σ be an APA1(2, v − 2, v). Define F in the following way:

• F (i, i, . . . i) = {∞, i}, i = 1, 2, . . . v.

• Each row (x1, x2, . . . xv−2) of Σ contributes a non-empty cell
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F (x1, x2, . . . , xv−2) = E−{x1, x2, . . . xv−2}. The remaining cells of
F are empty.

An argument very similar to the one above shows that each symbol
occurs exactly once in each row and column of each 2-dimensional pro-
jection. In order to show that each unordered pair of symbols occurs in
precisely one cell of F, we have to see that each such pair is disjoint from
exactly one row of Σ, equivalently that the design given by the rows of
Σ is the complete design. This is indeed true as follows from the fact
that the residue with respect to one entry is a 0−PA1(1, v− 2, v− 1).
Alternatively we may invoke a theorem of Wilson’s ([29]).

It is well-known (see [9]) that Room (v − 2)-spaces of side v do not exist
for 5 ≤ v ≤ 9. We conclude:

Corollary 16 APA1(2, 3, 5), APA1(2, 5, 7), APA1(2, 7, 9) and
2− PA1(3, 5, 8) do not exist.

It is in fact an easy exercise to prove the nonexistence of APA1(2, 3, 5)
directly. The nonexistence of 2 − PA1(3, 5, 8) follows from the fact that its
residue would be an APA1(2, 5, 7) ( see Theorem 4). We may use our method

to construct skew Room spaces. As in the previous section putG = AGL1(q),
where q is an odd prime-power.

Definition 14 Let L ⊆ IFq −{0, 1}, L = {τ1 . . . , τk}, U a half-system of IFq.
Define a k-dimensional array F (L,U) as follows:

• F (i, i, . . . i) = {∞, i}, i = 1, 2, . . . q.

• Each element τ −→ uτ + β of G, where u ∈ U, β ∈ IFq, yields a cell

F (uτ1 + β, . . . , uτk + β) = {β, u+ β}

This is the construction of the preceding Theorem. Note that because of
the 2-transitivity of G in its action on the columns there is no restriction in
choosing the columns indexed by 0 and 1 to yield the entries of the array.
Instead of looking for APA’s we ask the more modest question when F (L,U)
is a Room space.
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Proposition 4 Let G = AGL1(q), q an odd prime-power, U a half-system
of IFq, L ⊆ IFq − {0, 1}. Then the following are equivalent:

• F (L,U) is a skew Room k-space of side q.

• For every τ ∈ L we have ( 1
τ
− 1)U = U.

Proof. Let Σ = EU(G). As in the proof of the preceding Theorem we see
that only one condition is in doubt. For every τ ∈ L the column cτ indexed
by τ has to satisfy the following:
for every entry a ∈ IFq the union of the entries of Σ in columns c0 and c1 and
in the rows with entry a in cτ is exactly IFq −{a}. Thus a column cτ violates
the condition if and only if for some a, b ∈ IFq, a 6= b and u1, u2 ∈ U we have

u1τ + β1 = a, β1 = b

u2τ + β2 = a, u2 + β2 = b,

equivalently u1τ = u2τ − u2, equivalently ( 1
τ
− 1)u1 = −u2. Put N(U) =

{α|α ∈ IF ∗
q , αU = U}. We have seen that F (L,U) is a Room space if and

only ( 1
τ
− 1) ∈ N(U) for every τ ∈ L.

We may choose K to be a subgroup of odd order of IF ∗
q and U to be a

union of cosets of K. The preceding Proposition yields:

Corollary 17 Let q be an odd prime-power, t an odd divisor of q− 1. Then
there is a skew Room t-space of side q.

This is a well-known Theorem of Dinitz ([8]). Unfortunately our method
does not yield more. This is due to the obvious fact that for every half-
system U the set N(U) as defined in the proof of the Proposition above is a
subgroup of odd order of IF ∗

q .
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