# Halving $P S L(2, q)$ 

Jürgen Bierbrauer and Yves Edel

We show that $P S L_{2}(q), q \not \equiv 3(\bmod 4)$, contains a subset of half the cardinality of $P S L_{2}(q)$ which is uniformly 2 -homogeneous on the projective line.

## 1 Introduction

The group $P S L_{2}(q)$ is 2-transitive, in particular 2-homogeneous on the $q+1$ points of the projective line $\mathcal{P}_{1}(q)$. A set $\mathcal{S}$ of permutations will be called $\mu$-uniformly 2-homogeneous if for any unordered pairs $A, B$ of the letters, exactly $\mu$ permutations in $\mathcal{S}$ map $A$ onto $B$. If the number $\mu \neq 0$ is not specified, we speak of a uniformly 2 -homogeneous set of permutations. We are interested in the question, when there is a subset $\mathcal{S} \subset P S L_{2}(q)$ of cardinality $|\mathcal{S}|=\left|P S L_{2}(q)\right| / 2$, which is uniformly 2-homogeneous on the projective line. If $q$ is odd, then $\mu=(q-1) / 2$, if $q$ is even, then $\mu=q-1$.

Theorem $1 P S L_{2}(q)$ contains a subset $\mathcal{S}$ of cardinality $|\mathcal{S}|=\left|P S L_{2}(q)\right| / 2$, which is uniformly 2-homogeneous on the projective line, if and only if $q \not \equiv 3(\bmod 4)$.

If $q \equiv 3(\bmod 4)$, then $\mu=(q-1) / 2$ would be an odd number. This contradicts [2],Lemma 2. In case $q \equiv 1(\bmod 4)$ we construct a $(q-1) / 2$-uniformly 2 -homogeneous subset $\mathcal{S} \subset$ $P S L_{2}(q)$. More precisely we prove the following:

Theorem 2 Let $G=P S L_{2}(q), q \equiv 1(\bmod 4), i \in \mathbb{F}_{q}$ such that $i^{2}=-1, U=\{\tau \longrightarrow$ $\left.\tau+\gamma \mid \gamma \in \mathbb{F}_{q}\right\}$, $F$ a cyclic subgroup of order $(q+1) / 2$ such that $\infty$ and 0 are in different orbits under $F$. Then the following hold:

- Let $t_{\alpha}=\left(\tau \longrightarrow \alpha^{2} \tau\right)$, and $w_{\alpha}=\left(\tau \longrightarrow \frac{1}{\alpha^{2} \tau}\right)$. Let $R \subset \mathbb{F}_{q}^{*}$ such that

$$
\alpha \in R \Longleftrightarrow-\alpha \notin R
$$

Then $t_{\alpha}, \alpha \in R$ and $w_{\alpha}, \alpha \in R$ together form a set of representatives of the double cosets for $F$ and $U$.

- Choose a subset $X$ of these representatives such that

$$
\begin{aligned}
t_{\alpha} \in X & \Longleftrightarrow t_{i \alpha} \notin X \\
w_{\alpha} \in X & \Longleftrightarrow w_{i \alpha} \notin X
\end{aligned}
$$

Set $\mathcal{S}=\cup_{x \in X} F x U$. Then $\mathcal{S}$ is $(q-1) / 2-$ uniformly 2-homogeneous on the projective line.

It was shown in [1] that $P S L_{2}\left(2^{f}\right), f$ odd, may be halved in the sense of Theorem 1: If $\phi$ is the Frobenius automorphism of $\mathbb{F}_{q}$ and $\sigma_{0}$ is an involution in $\operatorname{PS} L_{2}\left(2^{f}\right)$, which commutes with $\phi$, then the set of commutators

$$
\mathcal{S}=\left\{\left[\sigma_{0} \phi, g\right] \mid g \in P S L_{2}\left(2^{f}\right)\right\}
$$

is $\left(2^{f}-1\right)$-uniformly 2 -homogeneous ( $f$ odd).
We show here that $P S L_{2}\left(2^{f}\right)$ may be halved in the sense of Theorem 1. Our proof works for all $f$.

Theorem 3 Let $G=P S L_{2}(q), q=2^{f}, F=<\rho>$ a cyclic subgroup of order $q+1$, where the generator $\rho$ is chosen such that $\rho: 0 \longrightarrow \infty \longrightarrow 1, T=\left\{m_{\lambda} \mid \lambda \in \mathbb{F}_{q}^{*}\right\} \cong Z_{q-1}$, where $m_{\lambda}=(\tau \longrightarrow \lambda \cdot \tau)$. Then the following hold:

- The elements $u_{\gamma}=(\tau \longrightarrow \tau+\gamma)$ are representatives of the double cosets for $T$ and $F$, i.e.

$$
G=\cup_{\gamma \in F_{q}} T u_{\gamma} F
$$

- Choose a subset $X$ of these representatives such that

$$
u_{\gamma} \in X \Longleftrightarrow u_{\gamma+1} \notin X
$$

Set $\mathcal{S}=\cup_{x \in X} T x F$. Then $\mathcal{S}$ is ( $q-1$ )-uniformly 2-homogeneous on the projective line.
Observe that the proof of [1],Lemma 2.1 is valid for all $q=2^{f}$. This shows that $P S L_{2}\left(2^{f}\right)$ does not contain a uniformly 2-homogeneous subset with less than $\left|P S L_{2}\left(2^{f}\right)\right| / 2$ elements.

## 2 Proof of the Theorems

### 2.1 Proof of Theorem 2

We use the notation introduced in the statement of the Theorem. Operation on the projective line will be written from the right. The generic element of the unipotent group $U$ is $(\tau \longrightarrow$ $\tau+\gamma)$. Because of the double transitivity of $G$ the group $F$ may be chosen as in the statement of Theorem 2. Recall that the non-split torus $F$ (in other words the cyclic subgroup $F$ of order $(q+1) / 2)$ acts semi-regularly. Observe $t_{\alpha}^{-1}=t_{1 / \alpha}, w_{\alpha}^{-1}=w_{\alpha}$. Assume $t_{\beta} \in F t_{\alpha} U$, equivalently $t_{\alpha} U t_{\beta}^{-1} \cap F \neq \emptyset$, or

$$
\tau \longrightarrow \frac{1}{\beta^{2}}\left(\alpha^{2} \tau+\gamma\right) \in F
$$

for some $\gamma \in \mathbb{F}_{q}$. As $\infty$ is fixed and $F$ acts semi-regularly, we conclude that $\gamma=0, \beta= \pm \alpha$. Assume $w_{\beta} \in F w_{\alpha} U$; equivalently $w_{\alpha} U w_{\beta} \cap F \neq \emptyset$, or

$$
\tau \longrightarrow \frac{\alpha^{2} \tau}{\beta^{2}\left(1+\alpha^{2} \gamma \tau\right)} \in F
$$

for some $\gamma \in \mathbb{F}_{q}$. As 0 is fixed and $F$ acts semi-regularly, we conclude $\gamma=0, \beta= \pm \alpha$. Let $\mathcal{A}_{\alpha}=F t_{\alpha} U, \mathcal{B}_{\alpha}=F w_{\alpha} U$. We have seen that the $\mathcal{A}_{\alpha}$ and $\mathcal{B}_{\alpha}$ each form $(q-1) / 2$ different double cosets. Assume $w_{\beta} \in F t_{\alpha} U$, equivalently $t_{\alpha} U w_{\beta} \cap F \neq \emptyset$, or

$$
\tau \longrightarrow \frac{1}{\beta^{2}\left(\alpha^{2} \tau+\gamma\right)} \in F
$$

for some $\gamma \in \mathbb{F}_{q}$. As this element maps $\infty$ onto 0 , we get a contradiction. The first statement of Theorem 2 is proved. Let unordered pairs $A$ and $B$ of elements of the projective line be given, let $T$ be the set of $q-1$ elements of $G$ mapping $A$ onto $B$. We shall show that for every $\alpha \in \mathbb{F}_{q}$ there is a bijection between $T \cap \mathcal{A}_{\alpha}$ and $T \cap \mathcal{A}_{i \alpha}$ and likewise a bijection between $T \cap \mathcal{B}_{\alpha}$ and $T \cap \mathcal{B}_{i \alpha}$. We have to distinguish several cases:

1. $A=\{\infty, b\}, B=\{\infty, d\}$. There is exactly one element in $\mathcal{A}_{\alpha}$ (and exactly one in $\mathcal{A}_{i \alpha}$ ) mapping $\infty \longrightarrow \infty, b \longrightarrow d$, and likewise there is exactly one element in each of the double cosets of type $\mathcal{A}$ mapping $b \longrightarrow \infty \longrightarrow d$. Consider the double cosets of type $\mathcal{B}$. No element in a double coset of type $\mathcal{B}$ can fix $\infty$, as otherwise we would have an element of $F$ mapping $\infty \longrightarrow 0$. Which elements of a double coset of type $\mathcal{B}$ afford the operation $b \longrightarrow \infty \longrightarrow d$ ? The typical element of $\mathcal{B}_{\alpha}$ is $g w_{\alpha} u(\gamma)$, where $g \in F$. This element will afford the operation if and only if $g$ maps $b$ to 0 , and $\gamma=d-\frac{1}{\alpha^{2} \infty^{g}}$. This is feasible if and only if $b$ and 0 are in the same $F$-orbit. If this is the case, every double coset of type $\mathcal{B}$ will contain exactly one such element.
2. $A=\{\infty, b\}, B=\{c, d\}$. There is an element $g t_{\alpha} u(\gamma) \in \mathcal{A}_{\alpha}$ mapping $\infty \longrightarrow c, b \longrightarrow d$ if and only if there is an element $g t_{i \alpha} u\left(\gamma^{\prime}\right) \in \mathcal{A}_{i \alpha}$ mapping $\infty \longrightarrow d, b \longrightarrow c$. Here $\gamma$ and $\gamma^{\prime}$ are uniquely determined. The situation is the same for double cosets of type $\mathcal{B}$. There
is an element $g w_{\alpha} u(\gamma) \in \mathcal{B}_{\alpha}$ mapping $\infty \longrightarrow c, b \longrightarrow d$ if and only if there is an element $g w_{i \alpha} u\left(\gamma^{\prime}\right) \in \mathcal{B}_{i \alpha}$ mapping $\infty \longrightarrow d, b \longrightarrow c$. Here $\gamma$ and $\gamma^{\prime}$ are uniquely determined.
3. $A=\{a, b\}, B=\{\infty, d\}$. As in the second case, there is an element $g t_{\alpha} u(\gamma) \in \mathcal{A}_{\alpha}$ mapping $a \longrightarrow \infty, b \longrightarrow d$ if and only if there is $g t_{i \alpha} u\left(\gamma^{\prime}\right) \in \mathcal{A}_{i \alpha}$ affording the operation $a \longrightarrow d$, $b \longrightarrow \infty$, likewise for the double cosets of type $\mathcal{B}$.
4. $A=\{a, b\}, B=\{c, d\}$. The typical element $g t_{\alpha} u(\gamma) \in \mathcal{A}_{\alpha}$ will afford the operation $a \longrightarrow c, b \longrightarrow d$ if and only if $\alpha^{2}=\frac{c-d}{a^{g}-b^{g}}, \gamma=c-\alpha^{2} a^{g}$. This is the case if and only if a corresponding element $g t_{i \alpha} u\left(\gamma^{\prime}\right) \in \mathcal{A}_{i \alpha}$ affords $a \longrightarrow d, b \longrightarrow c$, where $\gamma^{\prime}=c+\alpha^{2} b^{g}$. An analogous computation leads to the same conclusion for double cosets of type $\mathcal{B}$.

### 2.2 Proof of Theorem 3

The generator $\rho$ of $F$ is chosen such that $u_{1}=(\tau \longrightarrow \tau+1)$ inverts $F$. Write the elements of the projective line as $a_{i}$, with subscripts written $\bmod q+1$, such that $a_{0}=\infty$ and $a_{i}^{\rho}=a_{i+1}$. The operation of $u_{1}$ shows $a_{-i}=a_{i}+1$.
Let a pair $\{a, b\}$ of elements of the projective line be given, and let $g=m_{\lambda} u_{\gamma} \rho^{\nu}$ be the generic element of $T u_{\gamma} F$, where $u_{\gamma} \in X$. Then

$$
\begin{aligned}
& a^{g}=(\lambda \cdot a+\gamma)^{\rho^{\nu}} \\
& b^{g}=(\lambda \cdot b+\gamma)^{\rho^{\nu}} .
\end{aligned}
$$

Set $\lambda \cdot a+\gamma=a_{i}, \lambda \cdot b+\gamma=a_{j}$. We define a mapping $\Phi=\Phi_{a, b}: \mathcal{S} \longrightarrow G-\mathcal{S}$ by

$$
\Phi(g)=m_{\lambda} u_{\gamma+1} \rho^{\nu+i+j} .
$$

Clearly $\Phi(g) \in G-S$ and $\Phi$ is a bijective mapping. Compare the action of $g$ to the action of $\Phi(g)$ on $\{a, b\}$. By the choice of $i, j$ we have

$$
a^{g}=a_{i}^{\rho^{\nu}}=a_{\nu+i}, \quad b^{g}=a_{j}^{\rho^{\nu}}=a_{\nu+j} .
$$

We calculate:

$$
a^{\phi(g)}=\left(a_{i}+1\right)^{\rho^{\nu+i+j}}=a_{-i}^{\rho^{\nu+i+j}}=a_{\nu+j},
$$

and similarly $b^{\phi(g)}=a_{\nu+i}$. This shows that the images of the pair $\{a, b\}$ under $g$ and $\Phi(g)$ are the same.

## REFERENCES

[1] J.Bierbrauer and Tran van Trung: Halving PGL(2, $\left.2^{f}\right)$, $f$ odd: a series of cryptocodes, Designs, Codes and Cryptography 1(1991),141-148.
[2] J.Bierbrauer and Tran van Trung: Some highly symmetric authentication perpendicular arrays, Designs, Codes and Cryptography 1(1992),307-319.

Jürgen Bierbrauer, Department of Mathematics, Michigan Technological University, Houghton, MI 49931,USA.
Yves Edel,
Mathematisches Institut der Universität, Im Neuenheimer Feld 288,
69120 Heidelberg,Germany.

Eingegangen am 16. Februar 1993

