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Abstract

In [5] an extension construction of (n+1)-dimensional dual hyperovals
using n-dimensional bilinear dual hyperovals was introduced. Related to
this construction, is a construction of APN functions in dimension n+ 1
using two APN functions in dimension n. In this paper we show that
the isomorphism problem for the (n + 1)-dimensional extensions can be
reduced to the isomorphism problem of the initial n-dimensional objects.
The automorphism problem can be reduced in an analogous way.

1 Introduction

In [5] we introduced a construction that transforms any symmetric, bilinear n-
dimensional dual hyperoval over F2 into an (n+ 1)-dimensional dual hyperoval
over F2. Taniguchi [7] shows that this construction can be generalized in a
straightforward way to any bilinear n-dimensional dual hyperoval over F2. He
uses this construction to provide new examples of simply connected DHOs — we
use the abbreviation DHO for ”dimensional dual hyperoval”. We also showed
that given an APN function defined in an n-dimensional F2-space one can define
an APN function in an (n+ 1)-dimensional F2-space. This construction can be
easily generalized to a construction using two (not necessarily different) APN
functions instead of one.

In [5] these extension constructions were considered in detail for the special
case of DHOs that are extensions of symmetric DHOs, and for the special case of
APN functions that are extensions of one quadratic APN function. This led to
DHOs and APN functions with many translation groups. In [5] the isomorphism
and automorphism problem for the dimensional dual hyperovals and the APN

∗The research of this author was partly supported by Research Programme G.0140.09N of
the Research Foundation - Flanders (FWO).
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functions in the special cases were also treated. In the present paper we discuss
these questions without the restrictions made in [5].

In the next section we introduce basic notions and describe the extension
constructions. These constructions guarantee, for bilinear DHOs as well as for
quadratic APN functions, the existence of a large elementary abelian subgroup
N of the automorphism group, which will be crucial for the further investigation
of the extensions.

In Section 3 we introduce the notion of an extension group of a DHO or an
APN function. The existence of an extension group characterizes those DHOs or
APN functions that are extensions. Indeed it will turn out later that extension
groups are just conjugates of the group N introduced in Section 2. We also
present a detailed study of the embedding of the group N in the automorphism
group.

In Section 4 we consider the isomorphism problem. Theorems 4.1 and 4.3
provide the complete answer. We characterize bilinear extensions of bilinear
DHOs (Theorem 4.2) and quadratic extensions of APN functions (Theorem 4.4).
Finally we show that the extension construction is the source of large numbers
of inequivalent APN functions of degree three (see Proposition 4.8 and Exam-
ple 4.9).

In Section 5 it is shown that any two extension groups of a DHO or an APN
function have the same size of the intersection and that they are conjugate in
the group, which they generate.

In Section 6 we show that those DHOs or APN functions that have many
extension groups are obtained as multiple extensions and present examples with
this property. Moreover we give a direct construction of the k-fold extension,
for k > 2, as well as some of its automorphisms.

Automorphism groups are treated in Section 7 (Theorems 7.1 and 7.3). The
group theoretic notation follows standard texts such as [1]. A survey article on
dimensional dual hyperovals is Yoshiara [9].

2 Definitions, preliminary results, extensions

We start with with dimensional dual hyperovals

2.1 Extensions of bilinear DHOs

Definitions and preliminary results. (a) A set S of n-dimensional subspaces
of a finite dimensional F2-vector space U is called a dual hyperoval of rank n1

– we use the symbol DHO as an abbreviation – if |S| = 2n, dimS ∩ S′ = 1
and S ∩ S′ ∩ S′′ = 0 for three different S, S′, S′′ ∈ S. We call 〈S | S ∈ S〉 the
ambient space of the DHO and say S is ambient in U or ambient in its defining
space, if U coincides with the ambient space. Of course, for properties of a
DHO only the ambient space is important, however for proof theoretic purposes

1One also speaks of dimensional dual hyperovals. However the notion ”dimension” is not
used uniformly, compare for instance [5] and [9]
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overspaces also come into play. If Y is a subspace of U , such that Y ⊕ S = U
for all S ∈ S, then the DHO splits over Y . Two DHOs are isomorphic, if there
exists an isomorphism of the ambient spaces that maps one DHO onto the other.
An automorphism is an isomorphism of a DHO ambient in its defining space
on itself. The automorphisms form the automorphism group of the DHO. A
subgroup T of the automorphism group of S is a translation group, if T acts
regularly on S, such that the DHO splits over CU (T ) = {u ∈ U | uτ = u, τ ∈
T}.

(b) Let X,Y be finite dimensional F2-spaces with dimX = n, and let β :
X → Hom(X,Y ) be a monomorphism, such that

Sβ = {Se | e ∈ X}, Se = {(x, xβ(e)) | x ∈ X},

is a DHO in U = X ⊕ Y . Then Sβ is called a bilinear DHO (i.e. the mapping
X × X 3 (x, e) 7→ xβ(e) ∈ Y is bilinear). We also say that β defines Sβ .
The elements τe ∈ GL(U), e ∈ X, satisfying (x, y)τe = (x, y + xβ(e)) are
automorphisms, and form a translation group. Conversely, it is shown in [5],
that a DHO ambient in its defining space with a translation group is always
bilinear. The mapping βo : X → Hom(X,Y ), defined by xβo(e) = eβ(x),
defines a bilinear DHO Sβo too, the DHO opposite to Sβ . We call β or Sβ
symmetric, if β = βo.

(c) Let β : X → Hom(X,Y ) and β′ : X → Hom(X,Y ) define DHOs. A
triple (λ, µ, ρ), where λ, µ ∈ GL(X), ρ ∈ GL(Y ) is called an isotopism from β
to β′, if λ◦β′(eµ) = β(e)ρ for all e ∈ X. In this case we write β ∼ β′. Isotopisms
from β to β are called autotopisms; they form a group in the obvious manner,
the autotopism group of β. If (λ, µ, ρ) is an autotopism of β, then (µ, λ, ρ) is
an autotopism of βo. Moreover, if (λ, µ, ρ) is an isotopism from β to β′, then
diag(λ, ρ) : U → U is an isomorphism from Sβ onto Sβ′ , which maps Se ∈ Sβ
onto Seµ ∈ Sβ′ . Here we use the following convention for the representation of
linear operators.

Convention. The space U = X ⊕ Y is identified with X × Y and elements in
α ∈ GL(U) are written in the form(

α11 α12

α21 α22

)
with α11 ∈ End(X), α12 ∈ Hom(X,Y ), α22 ∈ End(Y ), and α21 ∈ Hom(Y,X),
i.e. (x, y)α = (xα11 + yα21, xα12 + yα22). This convention will also be gener-
alized in the obvious way. From [5] we take the following, slightly generalized
construction (see also [7]).

Theorem 2.1. Let X,Y be finite dimensional F2-spaces, let β : X → Hom(X,Y )
define a bilinear DHO S = Sβ. Set X = F2 ⊕X and Y = X ⊕ Y . For e ∈ X
define two subspaces of X ⊕ Y by

S0,e = {(b, be, be+ x, (be+ x)β(e)) | (b, x) ∈ X},
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S1,e = {(b, be+ x, be, (be+ x)βo(e)) | (b, x) ∈ X},

and set S = Sβ = {Sa,e | (a, e) ∈ X}. The following hold.

(a) The set S is a DHO in X ⊕ Y .

(b) For e ∈ X set

n1,e =


1 e

1
1 β(e)

1

 , n0,e =


1 e

1 βo(e)
1

1

 .

Then Na = {na,e | e ∈ X}, a = 0, 1, are elementary abelian 2-subgroups
of Aut(S). The group Na fixes all elements in Sa = {Sa,e | e ∈ X} and
it acts regularly on Sa+1. In particular, S0,en1,f = S0,e+f and S1,en0,f =
S1,e+f . Moreover, N = N0 ×N1 is an elementary abelian group of order
|X|2.

(c) Let α = (λ, µ, ρ) be an autotopism of β. Then uα = diag(1, µ, λ, ρ), is an
automorphism of S. The group L0 = {uα | α autotopism of β} ≤ Aut(S)}
is isomorphic to the autotopism group of β.

(d) Let φ = (λ, µ, ρ) be an isotopism from β to βo. Then

τ =


1

µ
λ

ρ


is an automorphism of S which normalizes N and interchanges S0 and
S1.

(e) X⊕Y is the ambient space of S if and only if X⊕Y is the ambient space
of S.

Proof. For assertions (a)-(d) the proof of [5, Thm. 5.1] carries over after replac-
ing equations of the form xβ(e) = eβ(x) by xβ(e) = eβo(x) where necessary.

For (e) we first we observe that S = Sβ and So = Sβo have the same ambient
spaces since

〈S〉 = 〈(x, 0), (0, xβ(e)) | x, e ∈ X〉 = 〈(x, 0), (0, eβo(x)) | x, e ∈ X〉 = 〈So〉.

In particular 〈S〉 = 〈So〉 = X ⊕Y0, where Y0 =
∑
e∈X Imβ(e). For the ambient

space of S we have 〈S〉 = 〈(1, 0, 0, 0), (0, 0, x, xβ(e)), (0, x, 0, xβ0(e)) | x, e ∈ X〉,
which shows 〈S〉 = F2 ⊕X ⊕X ⊕ Y0. This implies assertion (e).

Definition. We call the DHO S of Theorem 2.1 the extension of S.
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Remark 2.2. Let 1 6= ν ∈ N . Then we have rk (ν+1) ≥ n and if 1 6= ν ∈ N0∪
N1 then even rk (ν + 1) = n holds. Here we use that rkβ(e) = rkβo(e) = n− 1
for 0 6= e ∈ X.

Notation. With the notation of the preceding theorem we set

L =

{
L0〈τ〉, β ∼ βo,

L0, β 6∼ βo.

Proposition 2.3. Let β : X → Hom(X,Y ) and β′ : X → Hom(X,Y ) define
bilinear DHOs. The following hold.

(a) Sβ is isomorphic to Sβo .

(b) Let β be isotopic to β′. Then Sβ are Sβ′ isomorphic.

(c) Let γ define a symmetric DHO and assume that β is isotopic to γ. Then
Sβ is a bilinear DHO.

Proof. (a) The operator

τ =


1

1
1

1


defines an isomorphism of Sβ onto Sβo .

(b) Let (λ, µ, ρ) be an isotopism from β onto β′. Define α = diag(1, µ, λ, ρ).
A typical element (a, ae, (ae+ x)β(e)) of S0,e (as a subspace of Sβ) is mapped
onto

(a, aeµ, (ae+ x)λ, (ae+ x)ρ) = (a, aeµ, (ae+ x)λ, (aex)λβ′(eµ)),

which is an element in S0,eµ (as a subspace of Sβ′). Similarly,

α : Sβ 3 S1,e 7→ S1,eλ ∈ Sβ′ ,

which shows the claim.

(c) By (b) we have Sβ ' Sγ . Now [5, Theorem 3.2] completes the proof.

2.2 Extensions of APN functions

Definitions and preliminary results. (a) Let X and Y be two finite dimen-
sional F2-spaces and let f : X → Y be a function. We call f normed if f(0) = 0
and the set Sf = {(x, f(x)) | x ∈ X} ⊆ U = X ⊕ Y is called the graph of f .
The space 〈Sf 〉 is the ambient space of f . Usually 〈x+ y | x, y ∈ Sf 〉 is a proper
subspace of the ambient space, but if f is normed both spaces coincide. We say
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X ⊕ Y is ambient to f or f is ambient in its defining space, if f is normed and
X ⊕ Y is the ambient space. Mostly we will consider normed functions that
are ambient in their defining space, however for proof theoretic purposes also
non-ambient functions also come into play.

Two functions fi : X → Y are equivalent, if there exists an affine transfor-
mation Γ of X ⊕ Y with Sf1 = Sf0Γ. We also say that Γ is an isomorphism
from f0 to f1. An automorphism is an isomorphism of a function on itself. The
automorphisms form the automorphism group Aut(f) of the function f . With
respect to automorphism groups we will usually only consider functions that are
ambient in their defining space. Then the automorphism group acts faithfully
on the graph Sf (see [5, Sec. 2]).

A function f : X → Y is an APN function, if for each 0 6= x0 ∈ X and each
y0 ∈ Y the equation f(x + x0) + f(x) = y0 has at most two solutions. Note
that if x is one solution, then x+ x0 is the second solution. We call dimX the
rank of the APN function. If not otherwise stated, we will always assume, that
APN functions are normed. From [3, Thm. 5] we take:

Lemma 2.4. (Four-sum-condition) The normed function f : X → Y is APN,
if and only if for every four every quadruple s1, . . . , s4 ∈ Sf we have s1 + s2 +
s3 + s4 6= 0.

We denote elements of AGL(U) by symbols τ = τ + cτ with τ ∈ GL(U),
cτ ∈ U if

uτ = uτ + cτ , u ∈ U.

We call the linear transformation τ the linear part of τ and cτ the translation
part. By [5, Lemma 2.1] we know that for an APN function f , with U ambient
to f , the restriction of the epimorphism φ : AGL(U) → GL(U), τ 7→ τ , to the
group Aut(f), is a group monomorphism. By A(f) we denote the image of φ
of Aut(f) and call it the linear part of the automorphism group.

In the sequel we will frequently use the isomorphism

Aut(f) ' A(f)

and switch back and forth between these groups whenever it is con-
venient.

For a function f : X → Y we associate a mapping βf : X ×X → Y by

βf (x, x′) = f(x+ x′) + f(x) + f(x′) + f(0)

and call f quadratic, if and only if βf is a (symmetric) bilinear mapping. If
f is quadratic, we also identify βf with an element of Hom(X,Hom(X,Y )) by
defining

xβf (y) = βf (x, y).

We recall a basic connection between quadratic APN functions and alternating
DHOs (see [5, Thm. 2.4], [6], or [10]): If f is a quadratic (ambient) APN
function, then βf defines an alternating DHO, and if β defines an alternating
DHO, then there exists a quadratic APN function, such that β = βf .
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(b) Let fi : X → Y , i = 0, 1, be two functions. A triple (λ, ρ, γ), where
λ ∈ GL(X), ρ ∈ GL(Y ), and γ ∈ Hom(X,Y ) is called an isotopism from f0 to
f1, if

f1(xλ) = f0(x)ρ+ xγ;

we then write f0 ∼ f1. Then

φ =

(
λ γ

ρ

)
∈ GL(U)

is an isomorphism from Sf0 to Sf1 . Isotopisms from f to f are called auto-
topisms; they form a group in the obvious manner, Autop(f), the autotopism
group of f . Again we will only consider autotopisms of functions ambient in
their defining spaces.

(c) Let U be an F2-space, Y a subspace and φ, ψ ∈ GL(U) that fix Y . We
say that φ and ψ are linked (with respect to Y ), if φY = ψY . Let U = X⊕Y , let
fi : X → Y , 0 ≤ i ≤ 3, be APN functions, and let φ : f0 → f2 and φ′ : f1 → f3

be isotopisms. Then we say that the pair (f0, f1) is isotopically linked to the pair
(f2, f3), if φ and φ′ are linked (with respect to Y ). In the case where f2 = f1

and f3 = f0 we simply say that f0 and f1 are isotopically linked.

From [5] we take (with minimal changes) the following construction.

Theorem 2.5. Let X,Y be finite dimensional F2-spaces and let fi : X → Y ,
i = 0, 1, be two APN functions. Set X = F2 ⊕ X and Y = X ⊕ Y . Then
F = Ff0,f1 : X → Y defined by

F (a, x) = (ax, (a+ 1)f0(x) + af1(x))

is an APN function. Moreover, 〈SF 〉 = X ⊕ Y , if and only if 〈Sfi〉 = X ⊕ Yi,
i = 0, 1, such that Y = Y0 + Y1.

Proof. The APN property of F has the same simple verification as in [5, Theo-
rem 5.3]. For the ambient spaces we observe that

〈SF 〉 = (F2 ⊕ 0⊕ 0⊕ 0) +W0 +W1

with

W0 = {(0, x, 0, y) | (x, y) ∈ 〈Sf0〉}, W1 = {(0, x, x, y) | (x, y) ∈ 〈Sf1〉}.

Hence 〈SF 〉 = X ⊕ Y if and only if X ⊆ 〈Sf0〉 ∩ 〈Sf1〉 and Y = (〈Sf0〉 ∩ Y ) +
(〈Sf1〉 ∩ Y ).

Definition. We call the function Ff0,f1 of Theorem 2.5 the extension of f0 and
f1. If fi, i = 0, 1, are ambient in X ⊕ Y , we also call Ff0,f1 fully ambient (in
X ⊕ Y ).

Usually we will only consider fully ambient extensions. However sometimes
we will also need to use extensions that are ambient in their defining space, but
not fully ambient.
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Proposition 2.6. Let f0, f1 : X → Y be two APN functions. The following
hold.

(a) Ff0,f1 is equivalent to Ff1,f0 .

(b) Let αi, i = 0, 1, be affine operators from X to Y . Then Ff0,f1 is equivalent
to Ff0+α0,f1+α1

.

(c) Let Ff0,f1 be quadratic. Then f0 and f1 are quadratic, βf0 = βf1 and
Ff0,f1 is equivalent to Ff0,f0 .

Proof. (a) The operator τ ∈ AGL(X ⊕ Y ) defined by

τ = τ + cτ , τ =


1

1 1
1

1

 , cτ = (1, 0, 0, 0),

interchanges the graphs of Ff0,f1 and Ff1,f0 .

(b) Let αi be the linear part of αi and ai its translation part. Set

τ = τ + cτ , τ =


1 a0 + a1

1 α1

1 α0 + α1

1

 , cτ = (0, 0, 0, a1),

A typical element (a, x, ax, af0(x)+(a+1)f1(x)) of the graph of Ff0,f1 is mapped
onto

(a, x, ax, a(f0(x) + xα0 + a0) + (a+ 1)(f1(x) + xα1 + a1)),

which is an typical element of the graph of Ff0+α0,f1+α1
.

(c) Set B = βFf0,f1 , β0 = βf0 , and β1 = βf1 . A computation shows that

B((a, x), (b, x′)) = (ax′ + bx, (a+ b+ 1)β0(x, x′) + (a+ b)β1(x, x′)).

Set ∆ = B((a, x), (b0 + b1, x0 + x1)) + B((a, x), (b0, x0)) + B((a, x), (b1, x1)),
which is by assumption 0 for all (a, x), (b0, x0), (b1, x1). Now ∆ = (0, Q + P )
with

Q = (a+ b0 + b1 + 1)β0(x, x0 +x1) + (a+ b0 + 1)β0(x, x0) + (a+ b1 + 1)β0(x, x1)

and

P = (a+ b0 + b1)β1(x, x0 + x1) + (a+ b0)β1(x, x0) + (a+ b1)β1(x, x1).

Setting a = b0 = b1 = 0 shows that β0 is bilinear and setting a = 1, b0 = b1 = 0
shows that β1 is bilinear too. This shows that

∆ = (0, b0(β0(x, x0) + β1(x, x0)) + b1(β0(x, x1) + β1(x, x1)))

and β0 = β1 follows. Assume first that f0 and f1 are normed. By [5, Thm. 2.4]
we obtain f1 = f0+α where α ∈ Hom(X,Y ). Apply part (b) of this proposition.
In the general case we can apply part (b) of this proposition and reduce this
case to the normed case.
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A transformation and some automorphisms. Let F = Ff0,f1 : X → Y
be the extension of two normed, APN functions fi : X → Y and assume that F
is ambient in X ⊕ Y . We apply the linear transformation

τ =


1

1
1 1

1


to the graph of F . Then S := SF τ has a more symmetric appearance S = S0∪S1

with

S0 = {(0, x, 0, f0(x)) | x ∈ X}, S1 = {(1, 0, x, f1(x)) | x ∈ X}.

Suppose that φ =

(
λ γ

ρ

)
∈ Autop(f0) and φ′ =

(
µ δ

ρ

)
∈ Autop(f1)

is a pair of linked autotopisms. Set

Φφ,φ′ =


1

λ γ
µ δ

ρ

 .

Then Φφ,φ′ is an automorphism of F , which fixes S0 and S1. Also

L0 = {Φφ,φ′ | φ ∈ Autop(f0), φ′ ∈ Autop(f1), φ linked to φ′}

is obviously a subgroup L0 ≤ Aut(F ) ∩A(F ).

Finally assume that there exist linked isotopisms φ =

(
λ γ

ρ

)
from f0

to f1 and φ′ =

(
µ δ

ρ

)
from f1 to f0, i.e. f0 and f1 are isotopically linked.

Define Ψφ,φ′ = Ψφ,φ′ + cψ by

Ψφ,φ′ =


1

λ γ
µ δ

ρ

 , cΨ = (1, 0, 0, 0).

Then Ψφ,φ′ is an automorphism of F , which interchanges S0 and S1. If Ψϕ,ϕ′

is an automorphism to the linked pair ϕ,ϕ′ too, then

Ψφ,φ′ ◦Ψϕ,ϕ′ = Φφ◦ϕ,φ′◦ϕ′ .

We set

L =

{
L0 = L0, if f0 and f1 are not isotopically linkend,
L0〈Ψφ,φ′〉, if f0 and f1 are isotopically linkend.
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Note that the definition of L is independent of the choice of Ψφ,φ′ .

We now assume in addition that f0 and f1 are quadratic. For i ∈ F2

and e ∈ X define ni,e = ni,e + ci,e, where

n0,e =


1 e f1(e)

1
1 β1(e)

1

 , n1,e =


1 e f0(e)

1 β0(e)
1

1

 ,

βi = βfi , and c0,e = 0, c1,e = (0, e, 0, f0(e)). Then ni,e ∈ Aut(F ). The groups
N i = {ni,e | e ∈ X} are elementary abelian of order |X|. Moreover, N i fixes Si
pointwise and acts regularly on Si+1. The group N = N0 × N1 is elementary
abelian too. A routine verification shows that the group L normalizes N . The
two subgroups N i, i = 0, 1, are normalized by L0 too, while elements in L−L0

interchange both groups under conjugation.

Remark 2.7. Let 1 6= ν ∈ N . Then we have rk (ν+1) ≥ n and if 1 6= ν ∈ N0∪
N1, then even rk (ν+1) = n holds. Here we use that rkβ0(e) = rkβ0(e) = n−1
for 0 6= e ∈ X.

We add two observations on APN functions. Firstly we give an intrinsic
characterization for isotopic APN functions to be isotopically linked.

Lemma 2.8. Let f0, f1 : X → Y be two APN functions and let φ : f0 → f1 be
an isotopism. The following are equivalent:

(a) There exists α ∈ Autop(f0), such that φ2 and α are linked with respect to
Y .

(b) f0 and f1 are isotopically linked.

Proof. (a)⇒(b) Set ρ = φY and let αY = ρ2. Define φ′ : f1 → f0 by φ′ = φ−1◦α.
Then φ′Y = ρ−1ρ2 = ρ and (b) follows.

(b)⇒(a) Let φ′ : f1 → f0 be linked to φ i.e. ρ = φY = φ′Y . Then we have
α = φ ◦ φ′ ∈ Autop(f0) and ρ2 = αY = φ2

Y .

Let f be a quadratic APN function and β = βf the associated bilinear form.
If f is not ambient in its defining space, the ambient space of f and the ambient
space of the DHO defined by β can be different. However if f is ambient, such
unwanted side effects do not occur:

Lemma 2.9. Let X, Y be finite dimensional F2-spaces.

(a) Let β : X → Hom(X,Y ) be a monomorphism defining an alternating DHO
that is ambient in X ⊕ Y . Let f : X → Y be a quadratic APN function,
such that β = βf . Then f is ambient in X ⊕ Y .

(b) Let f : X → Y be a quadratic APN function, such that f is ambient in
X ⊕ Y . Set β = βf . Then β : X → Hom(X,Y ) is a monomorphism
defining an alternating DHO that is ambient in X ⊕ Y .
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Proof. (a) By assumption xβ(e) = f(x + e) + f(x) + f(e), x, e ∈ X, which
shows that

∑
e∈X Imβ(e) ⊆ Y ∩ 〈Sf 〉. By assumption we have also X ⊕ Y =

〈X(e) | e ∈ X〉, where X(e) = {(x, xβ(e)) | x ∈ X}. As X = X(0), we get
Y =

∑
e∈X Imβ(e) ⊆ 〈Sf 〉. But then X ⊆ 〈Sf 〉 too.

(b) Set Y0 =
∑
e∈X Imβ(e) ⊆ Y . We claim Y = Y0, which in turn implies

the assertion. The DHO defined by β lies in X ⊕ Y0. By [5, Thm. 2.4], there
exists a quadratic APN function g : X → Y0, such that βg = β = βf and
f = g + δ for some δ ∈ Hom(X,Y ). Clearly, the DHO defined by β has the
ambient space X⊕Y0 and by (a) this is the ambient space of g too. If we define
δ ∈ GL(X ⊕ Y ) by (x, y)δ = (x, xδ + y), we see that 〈Sg〉 = 〈Sf 〉δ. Hence
dimX + dimY0 = dim〈Sg〉 = dim〈Sf 〉 = dimX + dimY . Thus Y = Y0.

3 Extension groups

Motivated by the properties of the group N of the last section we introduce the
notion of an extension group. We shall show that the existence of an extension
group characterizes extensions of bilinear DHOs and extensions of quadratic
APN functions (Theorem 3.2). The main result of this section (Theorem 3.6)
states that extension groups form a conjugacy class in the automorphism group
of the DHO (or the APN function) and that an extension group is weakly
closed in every Sylow 2-subgroup of the automorphism group, which contains
this extension group.

From now on we use the label (DHO) and speak of the DHO case, if we
work with a dual hyperoval. We use the label (APN) and speak of the APN
case, if we work with an APN function.

Definition. Let S ⊆ U be a DHO of rank n+1 over F2 or the graph of an APN
function F of rank n + 1 ambient in its defining space. Let E = 〈E0, E1〉 be a
subgroup of Aut(S) (DHO) (or of A(F ) (APN)). Set Ti = FixS(Ei) (DHO) and
Ti = FixS(Ei) (APN) and set further Vi = 〈S ∩ S′ | S, S′ ∈ Ti, S 6= S′〉 (DHO)
and Vi = 〈x+ y | x, y ∈ Ti〉 (APN), i = 0, 1. We call E a weak extension group
if:

(E1) S = T0 ∪ T1 is a partition and |Ti| = 2n for i = 0, 1.

(E2) Ei (DHO) respectively Ei (APN) acts regularly on Tj , {i, j} = {0, 1}.

(E3) Set CU (E) = Y . Then V0 + V1 + Y has codimension 1 in U and the
dimension (V0 + V1 + Y )/Y = 2n.

If, in addition,

(E4) Y = V0 ∩ V1

holds, we call E an extension group.

Remark 3.1. (a) Clearly, E0 and E1 intersect trivially and the two groups
centralize each other, i.e. E = E0 × E1. Also V0 ∩ V1 ⊆ Y, as Ei centralizes
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Vi. We justify the name “extension group” by proving the reconstruction result
Theorem 3.2 below. Note that the group N of the last section, which acted
on the extension of a DHO or the graph of two APN functions is indeed an
extension group in the case of a DHO. In the case of the extension Ff0.f1 of two
quadratic APN functions fi, i = 0, 1, the group N is a weak extension group.
Moreover, N is actually an extension group if and only if Ff0,f1 is fully ambient.

(b) In [5] we defined translation groups for DHOs and APN functions, which
lie ambient in their defining space. We need slight generalizations of the basic
results of translation groups in the non-ambient case. Let S be a DHO (not
necessarily ambient) in U . Let T be a subgroup of GL(U), such that (1) Sτ = S,
τ ∈ T , (2) T acts regularly on S, and (3) DHO splits over CU (T ). We call T a
translation group of the DHO. Let S = Sf ⊆ U = X ⊕ Y be the graph of the
normed APN function f : X → Y (f not necessarily ambient in U = X ⊕ Y ).
Let T be a subgroup of AGL(U) and T its the linear part. We call T or T a
translation group if (1) T ' T , (2) T acts regularly on S, and (3) S is a set of
coset representatives for CU (T ). If dimU/CU (T ) ≥ 4, it is then not difficult to
show that in both cases the group T still satisfies Hypothesis A of [5, Section 3].
Then by [5, Thm. 3.1] T is elementary abelian and T has a quadratic action on
U . Also Theorems 3.2 and 3.5 of [5] are still true, i.e. DHOs with a translation
group are bilinear and APN functions with a translation group are quadratic.

Theorem 3.2. Let E be a weak extension group with S, U , etc. being as in the
definition, and assume in addition that n ≥ 4. Then the weak extension group
E = E0 × E1 is elementary abelian of order 22n. Moreover:

(a) (DHO) S is the extension of a bilinear DHO Sβ in V0 of rank n and E is
an extension group. Moreover, V0 is the ambient space of Sβ.

(b) (APN) S = SF , where F = Ff0,f1 is the extension of quadratic APN
functions f0 and f1. Moreover, E is an extension group, if and only if F
is fully ambient.

Proof. (a) DHO case. Since V0 + V1 + Y is a proper subspace, there exist
Si ∈ Ti, i = 0, 1, such that v 6∈ V0 + V1 + Y , where S0 ∩ S1 = 〈v〉. As E acts
transitively on the pairs (S, S′) ∈ T0 × T1, we see S ∩ S′ 6⊆ V0 + V1 + Y for all
such pairs. So if {i, j} = {0, 1} and S ∈ Ti, then

(S ∩ Vi)− 0 =
⋃

S′∈Ti−{S}

((S ∩ S′)− 0) and S − (S ∩ Vi) =
⋃
S′∈Tj

((S ∩ S′)− 0)

are partitions. As an immediate consequence we observe, that Di = {S ∩ Vi |
S ∈ Ti}, i = 0, 1, is a DHO in Vi and thus in Vi + Y too.

Pick S ∈ Ti, i = 0, 1. Then S ∩ Y =
⋂
τ∈Ej (S ∩ Y )τ ⊆

⋂
τ∈Ej Sτ = 0,

{i, j} = {0, 1}, by the basic properties of a DHO. Hence dim(Vi + Y )/Y ≥ n,
i = 0, 1, as dimS∩Vi = n. Then dim(V0+V1+Y )/Y = 2n implies V0+V1+Y =
(S0 ∩ V0)⊕ (S1 ∩ V1)⊕ Y and the DHO Di in Vi + Y splits over Y . Also as E0

acts regularly on D1, we see that E0 induces a translation group on this DHO.
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By [5, Theorem 3.2] (here we need n ≥ 4) and (b) of Remark 3.1 there exist
homomorphisms τ : S0 ∩ V0 → E0 and β : S0 ∩ V0 → Hom(S1 ∩ V1, Y ), such
that the restriction of the element τe ∈ E0 to V1 + Y = (S1 ∩ V1)⊕ Y has with
respect to this decomposition, the form(

1 β(e)
1

)
and with respect to the decomposition U = 〈v〉⊕ (S0∩V0)⊕ (S1∩V1)⊕Y (note
that E0 acts regularly on S0− (S0 ∩ V0) = v+ (S0 ∩ V0)) we get the description

τe =


1 e

1
1 β(e)

1

 .

By symmetry there are homomorphisms τ ′ : S1 ∩ V1 → E1, and β′ : S1 ∩ V1 →
Hom(S0∩V0, Y ), such that a typical element τ ′f ∈ E1 is represented in the form

τ ′f =


1 f

1 β′(f)
1

1

 .

Since τe and τ ′f commute, we get fβ(e) = eβ′(f), i.e. β′ = βo. The identification
S0 ∩ V0 ' S1 ∩ V1 ' Fn2 shows that S is the extension of D0.

Let (S0 ∩ V0) ⊕W , W ⊆ Y , be the ambient space of β. Then the ambient
space of βo is (S1∩V1)⊕W . Thus 〈v〉⊕ (S0∩V0)⊕ (S1∩V1)⊕W is the ambient
space of S. The last assertion follows too.

(b) APN case. We choose the notation so that 0 ∈ T0. In particular
V0 = 〈T0〉. Since V0 + V1 + Y is a proper subspace of U , then (using the
definition of the ambient space), there is a v ∈ S − (V0 + V1 + Y ). This forces
v ∈ T1 and T1 lies in the flat v + V1, respectively v + T1 ⊆ V1. As E0 fixes T0

pointwise, we have E0 = E0 and T1 = {vτ | τ ∈ E0}.
Define Ri by Vi+Y = Ri⊕Y . Suppose 1 6= τ ∈ E0 such that y = vτ+v ∈ Y .

Let 1 6= τ ′ ∈ E0, τ ′ 6= τ and set u = v+ vτ ′. Then vττ ′ = vτ ′+ yτ ′ = v+u+ y.
This implies v + vτ + vτ ′ + vττ ′ = 0, which is in conflict with the four-sum-
condition. We conclude that

2n = |{v + vτ | τ ∈ E0}| = |{v + t+ Y | t ∈ T1}|.

Since T0 = {0σ | σ ∈ E1}, we have T0 = {cσ | σ ∈ E1}, where σ = σ + cσ.
Suppose 1 6= σ ∈ E1, such that cσ ∈ Y . Pick σ′ ∈ E1, σ′ 6= 1, σ. Then

cσσ′ = 0σσ′ = cσσ
′ + cσ′ = cσ + cσ′ .

But then 0 = 0 + cσ + cσ′ + cσσ′ , contradicting the four-sum-condition. Again

2n = |{cσ | σ ∈ E1}| = |{t+ Y | t ∈ T0}|.
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Write w ∈ V0 as w = xw + yw, xw ∈ R0, yw ∈ Y and define f0 : R0 → Y by
f0(x) = ycw , where cw ∈ T0 is the unique element with xcw = x. Then T0 is the
graph of f0. The four-sum-condition shows that f0 is an APN function. More-
over E1 is a translation group on T0, i.e. f0 is quadratic and E1 is elementary
abelian by Remark 3.1 (b) and [5, Theorem 3.5].

Similarly, write w ∈ V1 as w = zw + yw, where zw ∈ R1 and yw ∈ Y . Define
f1 : R1 → Y by f1(z) = ycw , where v+cw is the unique element in T1, such that
zcw = z. Then T1+v is the graph of f1 and f1 is APN by the four-sum-condition.
Define φ : E0 → AGL(V1) by

wφ(τ) = wτ + vτ + v.

Then
wφ(τ)φ(τ ′) = wττ ′ + vττ ′ + vτ ′ + vτ ′ + v = wφ(ττ ′),

i.e. φ is a homomorphism, and is, in fact, a monomorphism as the vτ + v’s are
pairwise different. Moreover φ(E0) induces a translation group on the graph
of f1. Thus f1 is quadratic too and E0 is elementary abelian. Identifying Ri
with Fn2 we observe that S is the graph of the extension of f0 and f1. The last
assertion of (b) follows from Theorem 2.5.

Remark 3.3. With respect to extension groups there is a significant difference
between the DHO case and the APN case. For DHOs the notion of a weak
extension group and the notion of an extension group coincide, which is not
true in the APN case. If an extension F = Ff0,f1 is quadratic however, then
by Theorem 4.4 both functions f0 and f1 are ambient in Fn2 ⊕ Y , i.e. F is fully
ambient and therefore N is an extension group (and thus by Theorem 3.6 every
weak extension group is an extension group).

Lemma 3.4. Weak extension groups of a DHO or an APN function are self-
centralizing in the automorphism group.

Proof. We assume the notation of the definition of an extension group. Pick
σ ∈ CAut(S)(N) (DHO), respectively σ ∈ CAut(f)(N) (APN). Then this element

leaves both E-orbits (DHO), respectively both E-orbits (APN), {T0, T1} as a
set invariant. Clearly, this element does not interchange both sets. We can now
adjust σ (DHO) or σ (APN) by some element in E (DHO), respectively in E
(APN), such that this element has fixed points in T0 and T1. Now E (DHO),
respectively E (APN), acts on the set of fixed points of σ, respectively σ, in T .
We deduce that σ, respectively σ, fixes T pointwise. We conclude that σ = 1
(as T is ambient in the defining space) and the proof is complete.

Remark 3.5. For the remainder of this section X,Y will denote F2-spaces with
dimX = n and dimY = m. We set X = F2 ⊕X, Y = X ⊕ Y , and U = X ⊕ Y .
We will consider simultaneously two situations:

DHO The monomorphism β : X → Hom(X,Y ) defines a bilinear DHO Sβ
ambient in X ⊕ Y . We denote by S = Sβ the extension of Sβ .
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APN f0, f1 : X → Y denote normed, quadratic APN functions ambient in
X ⊕ Y and F = Ff0,f1 : X → Y will be the extension of f0 and f1.
Moreover S = SF will be the graph of F .

So in both cases the group N of Section 2 is an extension group (and not
only a weak extension group). For the remainder of this section we denote
by G the automorphism group of the extension (DHO) or the linear part of the
extension (APN). The subgroups N , N0, N1, L, . . . etc. and the symbols S0

and S1 will have the same meaning as Subsections 2.1 and 2.2 (more precisely
in the APN case we refer to the more symmetric representation of the graph
introduced after Proposition 2.6). In particular we set

W0 = 0⊕X ⊕ 0⊕ Y, W1 = 0⊕ 0⊕X ⊕ Y,

and U0 = W0 ∩W1. We assume in addition

n ≥ 4.

The following characterization of the group N will be important.

Theorem 3.6. With the assumptions of Remark 3.5 the following hold: Any
weak extension group in G is conjugate to N (and is therefore an extension
group), and N is the only (and thus normal) extension group in every Sylow
2-subgroup of G that contains N .

Corollary 3.7. Let G (DHO), respectively G (APN), be transitive on S. Then
NG(N), respectively NG(N), is transitive too.

Proof. We only treat the DHO case; the APN case is completely similar. We
have |G : GS | = 2n+1 for S ∈ S. Let T be a Sylow 2-subgroup of G containing
N . By Sylow’s theorem we can also assume that T ∩ GS = TS ∈ Syl2(GS).
Then T is transitive: Otherwise |T : TS | = 2n, which implies

|T | = |G|2 = |G : GS |2 · |GS |2 = 2n+1 · |TS | = 2 · |T |,

a contradiction (here k2 denotes here the 2-part of the number k). Since T ≤
NG(N) by Theorem 3.6, the proof is complete.

We prove the theorem by a series of lemmas.

Lemma 3.8. Let S ⊆ U be the extension of a DHO of rank n or the graph
of the APN function F , which is the extension of APN functions of rank n.
Assume in either case that the extension is ambient in its defining space. Let σ
(DHO), respectively σ (APN), be an automorphism that fixes the set {S0,S1}.
Then one of the following hold:

(a) σ, respectively σ, fixes S0 and S1 and

σ =


1 σ12 σ13 σ14

σ22 σ24

σ33 σ34

σ44
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with σ22, σ33 ∈ GL(X), σ44 ∈ GL(Y ), σ12, σ13 ∈ X, σ14 ∈ Y , and
σ24, σ34 ∈ Hom(X,Y ).

(b) σ, respectively σ, interchanges S0 and S1 and

σ =


1 σ12 σ13 σ14

σ23 σ24

σ32 σ34

σ44


with σ23, σ32 ∈ GL(X), and all other σij are as in (a).

Proof. The automorphism σ (DHO) or the linear part σ (APN) either fixes both
W0 and W1 or interchanges them (according as to whether or not σ respectively
σ fixes or interchanges S0 or S1). Therefore U0 is σ-invariant. Decompose U =
〈u0〉⊕W ′0⊕W ′1⊕U0, where Wa = W ′a⊕U0, (a = 0, 1), and U = 〈u0〉⊕(W0+W1).
If σ fixes W0 and W1 we get assertion (a) and the other case leads to assertion
(b).

Lemma 3.9. The normalizer of N in G is

NG(N) = N · L = H,

where H (DHO) respectively H (APN) is the stabilizer of the set {S0,S1} in G
respectively in G.

Proof. We begin with the DHO case. As NG(N) permutes the N -orbits we have
N · L ≤ NG(N) ≤ H.

Assume now that σ ∈ H. We want to show, that σ lies in N · L. Using the
action of N on S we can modify σ if necessary by some element in N , such that
either σ fixes S0,0 ∈ S0 and S1,0 ∈ S1,0 or that σ interchanges these two spaces.

Consider the first case. By the assumption and Lemma 3.8 σ fixes the
decomposition U = (S0,0 ∩ S1,0) ⊕ S′0 ⊕ S′1 ⊕ U0, where S′a = 〈Sa,0 ∩ S | S ∈
Sa〉 (a = 0, 1). So, with respect to this decomposition, we may write σ =
diag(1, µ, λ, ρ) with µ, λ ∈ GL(X), ρ ∈ GL(Y ) as S′0 = 0 ⊕ X ⊕ 0 ⊕ 0, S′1 =
0⊕0⊕X⊕0, and U0 = 0⊕0⊕0⊕Y . The element (b, x, be, (be+x)β(e)) ∈ S0,e

is mapped by σ onto (b, xµ, beλ, (be+ x)β(e)ρ), which must lie in S0,eλ. Hence
(be+ x)β(e)ρ = (beλ+ xµ)β(eλ), which implies that (λ, µ, ρ) is an autotopism
of β, i.e. σ ∈ L.

In the second case we see that σ is represented with respect to the decom-
position U = S0,0 ∩ S1,0 ⊕ S′0 ⊕ S′1 ⊕ U0 as

σ =


1

λ
µ

ρ

 .

This time S0,e will be mapped onto some S1,e′ and a similar computation as
before shows that (λ, µ, ρ) is an isotopism of β onto β0. Again we have σ ∈ L.
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We turn to the APN case. As in the DHO case N · L ≤ NG(N) ≤ H.
Assume that σ ∈ H. We want to show that σ normalizes N . Suppose first that
this element fixes S0 and S1. We can adjust this element by some element from
N, so that σ fixes (1, 0, 0, 0) and (0, 0, 0, 0) too. Hence σ = σ ∈ A(F ) and this
element has the shape of assertion (a) of Lemma 3.8. As σ fixes (1, 0, 0, 0) we
also have σ1i = 0 for i = 2, 3, 4. Apply σ to a typical element of S0 and we get

(0, x, 0, f0(x))σ = (0, xσ22, 0, f0(x)σ44 + xσ24),

which shows f(xσ22) = f0(x)σ44 +xσ24 for all x ∈ X. Hence φ =

(
σ22 σ24

σ44

)
is an autotopism of f0. Considering the other orbit, we similarly obtain that

φ′ =

(
σ33 σ34

σ44

)
is an autotopism of f1. In particular φ and φ′ are linked.

Hence σ = Φφ,φ′ ∈ L0.
Assume now that σ interchanges the two sets. Adjusting this element by

some element in N , we can also assume that σ interchanges (1, 0, 0, 0) and
(0, 0, 0, 0). This implies that cσ = (1, 0, 0, 0) and σ has the shape of assertion
(b) of Lemma 3.8. Now

(0, x, 0, f0(x))σ = (1, 0, xσ23, 0, f0(x)σ44 + xσ24),

which implies that f1(xσ23) = f0(x)σ44 + xσ24. Thus φ =

(
σ23 σ24

σ44

)
is an

isotopism from f0 to f1. Similarly, we obtain an isotopism φ′ =

(
σ32 σ34

σ44

)
from f1 to f0. This implies that σ = Ψφ,φ′ ∈ L.

Lemma 3.10. The following statements hold.

(a) Let τ be a non-identity element in N0 ∪ N1. Then CG(τ) ≤ NL0. In
particular N is the only group conjugate to N that contains τ .

(b) NG(Ni) = NL0 for i = 0, 1.

(c) Let E = E0 × E1 be a weak extension group and assume that 1 6= τ ∈
E0 ∪ E1 normalizes N . Then τ normalizes Ni and fixes Si, i = 0, 1.

(d) CG(Ni) = N for i = 0, 1.

Proof. We work mainly in the DHO case and comment only on the APN case
when necessary.

(a) Let 1 6= τ ∈ N0 and σ ∈ CG(τ). In this case σ fixes S0 = FixS(τ) and
S1 = S − S0. Hence σ ∈ NG(N) = NL by Lemma 3.9 and thus even σ ∈ NL0.
Assertion (a) follows by symmetry.

(b) Let σ ∈ G normalize N0. Then σ fixes S0 = FixS(N0) and S1 = S − S0.
Again the assertion follows by Lemma 3.9.

(c) As τ normalizes the group N , it either fixes S0 and S1 or it interchanges
these sets. But τ has precisely 2n fixed-points in S, which rules out the second
case. Thus τ must normalize N0 and N1.
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(d) By (a) we have N ≤ CG(τ) ≤ NL0. We first consider the DHO case.
Assume that uα = diag(1, µ, λ, ρ) ∈ CL0

(N0) and e ∈ X. A computation shows
1 e

µ µβo(e)
λ

ρ

 = uαn0,e = n0,euα =


1 eλ

µ βo(e)ρ
λ

ρ

 .

Thus λ = 1 and α = diag(1, µ, ρ) is an autotopism of β, such that β(eµ) = β(e)ρ
for e ∈ X. Hence kerβ(eµ) = kerβ(e)ρ = kerβ(e) which implies µ = 1 and
then ρ = 1. Therefore CL0

(N0) = 1 and (b) follows by symmetry.
Assume now the APN case and let Φφ,φ′ ∈ CL0

(N0), with Φφ,φ′ as in sub-
section 2.6. The equation Φφ,φ′n0,e = n0,eΦφ,φ′ shows that e = eµ, f1(e) =
f1(e)ρ+ eδ, and µβ1(e) = β1(e)ρ for all e ∈ X. This shows that µ = 1. We con-
clude from the equation β1(e) = β1(e)ρ, that ρ|Im β(e) = 1Im β(e) for all e ∈ X.
By Lemma 2.9 Y = 〈Imβ1(e) | e ∈ X〉. This implies that ρ = 1. Therefore
δ = 0 must hold too, i.e. Φφ,φ′ = 1. The assertion follows by symmetry.

Lemma 3.11. Let E = E0 ×E1 be a weak extension group that normalizes N .
Then E = N .

Proof. We treat only the DHO case, the APN case is completely similar. By
(c) of Lemma 3.10 Ei fixes the orbits of N . This shows that E and N have
the same orbits. Assume that FixS(E0) = S0. Then E0 ≤ CG(N1) = N and
therefore E0 = N0. The assertion follows by symmetry.

Proof. (Theorem 3.6) Let S a Sylow 2-subgroup, which contains the extension
group N and the weak extension group E.

Claim. The extension group N is normal in S.

Assume that N is not normal, i.e. NS(N) < S. Then NS(N) < NS(NS(N))
by a basic result on p-groups. Pick γ ∈ NS(NS(N))−NS(N). Then Nγ 6= N ,
and Nγ is normal in NS(N)γ = NS(N). So N and Nγ normalize each other.
By Lemma 3.11 N = Nγ , a contradiction. The claim follows.

By Lemma 3.11 we also obtain E = N . The proof is complete.

4 Isomorphisms

In this section we solve the isomorphism problem for extensions of bilinear
DHOs and extensions of quadratic APN functions. We also characterize those
extensions of DHOs and APN functions that have a translation group. Finally,
we will show that the number of inequivalent extensions obtained form the
isotopes of one quadratic (Gold) APN function grows exponentially with the
dimension.

We will assume in this section that extensions are ambient in their defining
spaces.
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4.1 DHO case

Theorem 4.1. Let X and Y be finite dimensional F2-spaces, with dimX ≥ 4,
and let β, β′ : X → Hom(X,Y ) define bilinear DHOs ambient in X ⊕ Y . The
following are equivalent:

(a) β′ is isotopic to β or βo.

(b) Sβ′ is isomorphic to Sβ or Sβo .

(c) Sβ′ and Sβ are isomorphic.

Proof. The implication (a)⇒(b) is trivial, whereas (b)⇒(a) is [5, Theorem 3.12].
The implication (a)⇒(c) follows from Proposition 2.3. We have to show the
implication (c)⇒(b).

We index objects associated with β by a subscript β and objects associated
with β′ by an index β′. Set Gβ = Aut(S) and Gβ′ = Aut(S ′). Let φ ∈ GL(U),

where U = X ⊕ Y, be an isomorphism from S onto S ′. Then Gβ′ = φ−1Gβφ.
Using Theorem 3.6 φ can be chosen in such a way that Nβ′ = φ−1Nβφ.

So φ fixes or interchanges the two subspaces W0 and W1 from Lemma 3.8.
Thus φ has a shape as described in that lemma. In fact, as Sβ and Sβo are
isomorphic, we may assume that φ fixes the two spaces and we can represent
φ in form (a) of that lemma (replace a symbol σij by φij). We can now argue
exactly as in the proof of Lemma 3.9 and obtain the equation

φ−1
33 β(e)φ44 = β′(eφ22)

for all e ∈ X. Hence β and β′ are isotopic and therefore the implication (c)⇒(b)
follows.

Theorem 4.2. Let X and Y be finite dimensional F2-spaces, with dimX ≥ 4,
and let β : X → Hom(X,Y ) define a bilinear DHO ambient in X ⊕ Y . The
following are equivalent:

(a) There exists some γ ∈ GL(X), such that β̃ : X → Hom(X,Y ) defined by

xβ̃(e) = xγβ(e) defines a symmetric DHO.

(b) There exists some γ ∈ GL(X) such that (γ−1, γ,1) is an isotopism from
β to βo.

(c) Sβ is isomorphic to a bilinear DHO.

Proof. (a) ⇔ (b) Assume (b), i.e. that (γ−1, γ,1) is an isotopism from β to βo,
i.e. xβ(e) = xγ−1βo(eγ) for all x, e ∈ X. Hence

xγβ(e) = eβo(xγ) = eγγ−1βo(xγ) = eγβ(x),

i.e. β̃ is symmetric and assertion (a) holds. Clearly, the argument can be
reversed.
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(a)⇒(c) By assumption φ = (γ,1,1) is an isotopism which maps β onto β̃
and S β̃ is bilinear by [5]. The assertion follows from Proposition 2.3.

(c)⇒(b) By assumption Aut(S), where S = Sβ , contains a translation group
T and since all translation groups are conjugate (use [5, Thm. 3.11]), we may
assume that N and T lie in a common Sylow 2-subgroup of the automorphism
group. Again by [5, Thm. 3.11] T is normalized by N and as both groups are
self-centralizing (Lemma 3.4), we have

[N,T ] = N ∩ T = CN (T ) = CT (N).

Since T acts regularly on S, we have |T | = 2n+1 and T ∩ Na = 1, a = 0, 1.
Thus |N ∩ T | ≤ 2n. Hence N is a proper subgroup of NT . By a basic result
on p-groups there exists τ ∈ NNT (N) − T . We may adjust τ by an element in
N , i.e. we may assume τ ∈ T − (N ∩ T ). Clearly, τ leaves the set {S0,S1} of
N -orbits invariant.

Assume that τ fixes the sets S0 and S1 and therefore normalizes Na, a =
0, 1. This implies that [τ,Na] ≤ Na ∩ T = 1 and thus τ ∈ CG(N) = N , a
contradiction. Therefore τ interchanges both orbits, i.e. S0,0τ = S1,e. Now n0,e

moves S1,0 onto S1,e. So, replacing τ by n0,eτn0,e if necessary, we may even
assume S0,0τ = S1,0. Use Lemma 3.8 to see that τ has, with respect to the
decomposition (S0,0 ∩ S1,0)⊕ S′0 ⊕ S′1 ⊕U0 (here Sa,0 = (S0,0 ∩ S1,0)⊕ S′a), the
shape

τ =


1

γ
γ−1

ρ


and, as rk (1 + τ) = n (see [5, Thm. 3.2]), we also see that ρ = 1. The
the typical element (b, be, be + x, (be + x)β(e)) of S0,e is mapped under τ onto
(b, (be+x)γ−1, beγ, (be+x)β(e)), which must lie in S1,eγ . So there exists y ∈ X
with (be + x)γ−1 = beγ + y. Hence (be + x)β(e) = (be + x)γ−1βo(eγ) and
assertion (b) follows.

4.2 APN case

Theorem 4.3. Let fi : X → Y be quadratic APN functions for i = 0, . . . , 3
with dimX ≥ 4. Set F = Ff0,f1 and F ′ = Ff2,f3 . Assume moreover that F and
F ′ are fully ambient. The following are equivalent:

(a) F and F ′ are equivalent.

(b) (f0, f1) is isotopically linked to (f2, f3) or (f3, f2).

Proof. (a)⇒(b) We index objects associated with F by a subscript F and objects
associated with F ′ by an index F ′. Let Φ ∈ AGL(U), where U = X ⊕ Y, map
SF onto SF ′ . Then GF ′ = Aut(F ′) = Φ−1Aut(F )Φ = Φ−1GFΦ. According to
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Theorem 3.6 we can adjust Φ by some element in GF such that NF ′ = Φ−1NFΦ.
Considering the orbits, we see that

{S0,F ,S1,F }Φ = {S0,F ′ ,S1,F ′}.

Assume first that S0,FΦ = S0,F ′ and S1,FΦ = S1,F ′ . We can further adjust Φ
with some element from NF ′ , such that Φ fixes (0, 0, 0, 0) and (1, 0, 0, 0). Then
Φ ∈ GL(U) and we can argue as in the proof of Lemma 3.8 to see that this
operator has the shape

Φ =


1 Φ12 Φ13 Φ14

Φ22 Φ24

Φ33 Φ34

Φ44

 .

The same computation as in the proof of Lemma 3.9 shows, that φ =

(
Φ22 Φ24

Φ44

)
is an isotopism from f0 to f2 and φ′ =

(
Φ33 Φ34

Φ44

)
is an isotopism from f1

to f3.
The case where S0,FΦ = S1,F ′ and S1,FΦ = S0,F ′ leads similarly to linked

iosotopisms φ : f0 7→ f3 and φ′ : f1 7→ f2.
The implication (b)⇒(a) follows by the obvious construction of an equiva-

lence operator Φ with the help of linked isotopisms φ and φ′.

Assertion (c) of Proposition 2.6 can be generalized to:

Theorem 4.4. Let X and Y be finite dimensional F2-spaces and let f0, f1 :
X → Y be quadratic APN functions, with dimX ≥ 4. Set F = Ff0,f1 and
assume that F is ambient in its defining space. The following are equivalent:

(a) f0 and f1 are ambient in X ⊕ Y (i.e. F is fully ambient) and there exist
γ ∈ GL(X) and ε ∈ Hom(X,Y ) such that f1(x) = f0(xγ) + xε for x ∈ X.

(b) f0 and f1 are isotopic and every isotopism from f0 to f1 is linked to an
an autotopism of f0.

(c) Ff0,f1 is equivalent to the quadratic APN function Ff0,f0 .

(d) Ff0,f1 is equivalent to a quadratic APN function.

Proof. The implication (c)⇒(d) is trivial.

(a)⇒(b) By assumption ψ =

(
γ ε

1

)
is an isotopism from f0 to f1. Let

φ =

(
µ δ

ρ

)
be an arbitrary isotopism from f0 to f1. Then the autotopism

φ ◦ ψ−1 of f0 is linked to φ.
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(b)⇒(c) Suppose φ =

(
µ δ

ρ

)
: f0 7→ f1 is an isotopism. Then φ is linked

with an autotopism of f0 of the form

(
τ α

ρ

)
. Define

σ =


1

τ α
µ δ

ρ

 .

A computation shows that S0σ = S0 and

S1σ = {(1, 0, xµ, f0(xµ)) | x ∈ X}.

Hence σ is an equivalence map from Ff0,f1 onto Ff0,f0 .
(d)⇒(a) Suppose now that F is quadratic and ambient. By Lemma 2.9

there exist subspaces Y0, Y1 of Y , such that Y = Y0 + Y1 and 〈Sfi〉 = X ⊕ Yi,
i = 0, 1. By [5] Aut(F ) possesses a translation group T and by [5, Thm. 3.11]
all translation groups are conjugate, self-centralizing, and normal in any Sylow
2-subgroup that contains the translation group. We may therefore choose T ,
such that T and N lie in a common Sylow 2-subgroup of the automorphism
group. In particular N normalizes T , NT is a 2-group, and CT (N) = T ∩ N
(as T is self-centralizing). As T has a regular action on S, we have T ∩Ni = 1,
i = 0, 1. Thus |T ∩N | ≤ 2n, i.e. T ∩N is a proper subgroup of T and N < NT .
By a basic result on p-groups there exists τ ∈ NNT (N)−N . We may adjust τ
with an element in N , i.e. we may assume τ ∈ T−(N∩T ). Then Siτ ∈ {S0,S1},
i = 0, 1.

Assume, Siτ = Si, i = 0, 1. Then τ normalizes Ni and hence [Ni, τ ] ≤
Ni ∩ T = 1, i.e, τ ∈ CA(F )(N) = N or τ ∈ T ∩N , a contradiction.

Hence S0τ = S1, i.e.

(0, 0, 0, 0)τ = (1, 0, e, f1(e)), e ∈ X.

As (1, 0, 0, 0)n0,e = (1, 0, e, f1(e)), we see (0, 0, 0, 0)n0,eτn0,e = (1, 0, 0, 0), or if
we replace τ by n0,eτn0,e, we may assume that (0, 0, 0, 0)τ = (1, 0, 0, 0), i.e. cτ =
(1, 0, 0, 0). With respect to the decomposition U = 〈(1, 0, 0, 0)〉⊕W ′0⊕W ′1⊕U0

(with W ′0,W
′
1 as in the proof of Lemma 3.8) τ has the shape

τ =


1

γ ε
γ−1 δ

ρ

 .

But, arguing as in the proof of Theorem 4.2, we see that ρ = 1. Thus S0τ =
{(1, 0, xγ, f0(x) + xε) | x ∈ X} and S1τ = {(0, xγ−1, 0, f1(x) + xδ) | x ∈ X}.
Therefore for all x ∈ X

f1(xγ) = f0(x) + xε, f0(xγ−1) = f1(x) + xδ.

This implies xβ1(eγ) = xβ0(e) with βi = βfi . By Lemma 2.9 Y0 =
∑
e∈X Imβ0(e) =∑

e∈X Imβ1(e) = Y1. We conclude that Y = Y0 = Y1. Assertion (a) follows.
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4.3 Counting APN functions

Definition. (a) Let G be a finite group with subgroups H,K. Define [H : G :
K] to be the number of double cosets of the form HxK, x ∈ G. Furthermore,
we write [H : G : K]0 for the number of sets of the form HxK ∪ Hx−1K (so
that, in the case H = K, these are the equivalence classes of the relation that is
obtained by the natural action of the inversion map on the set of double cosets).

(b) Let f : X → Y be a quadratic APN function. We denote by Af the

restriction of Autop(f) to Y . So if

(
λ γ

ρ

)
∈ Autop(f), then ρ ∈ Af .

Remark 4.5. A lower bound for [H : G : K] is b |G||H||K|c and b |G|
2|H||K|c is a lower

bound of [H : G : K]0.

Theorem 4.6. Let f, g : X → Y be quadratic APN functions, f 6∼ g.

(a) There exist precisely [Ag : GL(Y ) : Af ] pairwise inequivalent APN func-
tions of the form Ff,gα, α ∈ GL(Y ).

(b) There exist precisely [Af : GL(Y ) : Af ]0 pairwise inequivalent APN func-
tions of the form Ff,fα, α ∈ GL(Y ).

Proof. (a) Suppose Ff,gα ∼ Ff,gβ , where α, β ∈ GL(Y ). By Theorem 4.3 there
exist ρ ∈ GL(Y ), λ, µ ∈ GL(X), and γ, δ ∈ Hom(X,Y ) with

f(xλ) = f(x)ρ+ xγ, g(xµ)α = g(x)βρ+ xδ,

for x ∈ X. This implies(
λ γ

ρ

)
∈ Autop(f),

(
µ δα−1

βρα−1

)
∈ Autop(g).

Thus ρ ∈ Af ∩ β−1Agα or equivalently AgαAf = AgβAf . So Ff,gα ∼ Ff,gβ
implies that AgαAf = AgβAf . Since the arguments can be read backwards we
get assertion (a).

(b) Suppose Ff,fα ∼ Ff,fβ , where α, β ∈ GL(Y ). By Theorem 4.3 there
exist ρ ∈ GL(Y ), λ, µ ∈ GL(X), and γ, δ ∈ Hom(X,Y ) with

(1) f(xλ) = f(x)ρ+ xγ, f(xµ)α = f(x)βρ+ xδ,

or
(2) f(xλ) = f(x)βρ+ xγ, f(xµ)α = f(x)ρ+ xδ.

Case (1) leads as in (a) to AfαAf = AfβAf . In case (2) we see that(
λ γ

βρ

)
,

(
µ δα−1

ρα−1

)
∈ Autop(f),

which implies that AfαAf = Afβ
−1Af . Again all arguments can be reversed.
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Remark 4.7. For α, β ∈ GL(Y ) one observes that Ffα,gβ ∼ Ff,gβα−1 . Hence
Theorem 4.6 counts all APN functions of type Ffα,gβ and Ffα,fβ .

Proposition 4.8. Let dimX = n ≥ 7 and let f : X → Y = X be a Gold APN

function (i.e. f(x) = x2k+1, (n, k) = 1). Then there exist at least

23+(n−5
2 )

n−2∏
i=2

(2i − 1)

inequivalent APN functions of the form Ff,fα, α ∈ GL(X).

Proof. From [2] we deduce that Af is a subgroup of C2n−1 · Cn. So

[Af : GL(Y ) : Af ]0 ≥ 2(n2)
n∏
i=2

(2i − 1)/(2n − 1)2 · n2 · 2,

which leads, together with Theorem 4.6, to the assertion.

Example 4.9. A recent study [11] shows that there are more than 470 quadratic
APN functions f : F7

2 → F7
2 such that |Af | = 1. Hence there are more than(

471

2
+

(
471

2

))
|GL(7, 2)| = 18, 097, 231, 719, 038, 976, 000

inequivalent APN functions f : F8
2 → F14

2 , one of degree 2 and the others of
degree 3.

5 Groups generated by extension groups

In this section the symbol S denotes the extension of a bilinear DHO Sβ in
the DHO case, while in the APN case this symbol denotes the graph of the
extension F = Ff0,f1 of quadratic APN functions f0 and f1. We shall assume in
both cases that S is ambient in the defining space, and in the APN case we also
assume that F is fully ambient. In particular, by Theorem 3.6, weak extension
groups are actually extension groups. Also set G = Aut(S) in the DHO case,
while in the APN case we have G = Aut(F ) and G = A(F ) is the linear part of
G. Denote by C the conjugacy class of extension groups in G (see Theorem 3.6,
i.e.

C = {Nγ | γ ∈ G}.

We assume that S admits more than one extension group and collect results
about groups that are generated by more than one extension group. Our main
purpose is to show:

Theorem 5.1. Let S be an (n+ 1)-dimensional DHO or the graph of an APN
function of rank n + 1, n ≥ 4. Then any two extension groups M , N are con-
jugate in 〈M,N〉 and their intersection has size |M ∩N | = 2n−1. In particular
C is a conjugacy class in 〈C〉.
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For our proofs Timmesfeld’s result on weakly closed TI subgroups [8] will
be instrumental. A first application of this theorem leads to the structure of
〈N,Nγ〉, Nγ ∈ C−{N}, if |N ∩Nγ | is maximal (Lemma 5.4). In a second appli-
cation we determine the the structure of the group generated by the conjugates
of N0 in the stabilizer of a point of S (Lemma 5.9). As a consequence we will
see that |N ∩Nγ | has the same size for all Nγ ∈ C −{N} (Lemma 5.10). Then,
by a somewhat tedious induction, we will obtain in Section 7 the structure of
〈C〉 (Theorem 7.11).

Lemma 5.2. Let Q ≤ N be a subgroup with Q∩N0 = Q∩N1 = 1 and |Q| < 2n.
Then CM/Q(N/Q) = N/Q, where M is the common normalizer of Q and N in
G.

Proof. Let γQ lie in CG/Q(N/Q). Hence [N, γ] ≤ Q, in particular γ ∈ NG(N).
We can adjust γ by some element in N , such that γ ∈ L.

DHO case. We first consider the DHO case.
Case 1. γ ∈ L0. Hence

γ =


1

µ
λ

ρ

 .

Pick ν ∈ N , i.e.

ν =


1 e e1 ∗

1 βo(e1)
1 β(e)

1

 .

Then

γ−1νγ =


1 eµ e1λ ∗

1 µ−1βo(e1)ρ
1 λ−1β(e)ρ

1

 ,

so that

[γ, ν] =


1 e(µ+ 1) e1(λ+ 1) ∗

1 ∗
1 ∗

1

 .

Choose ν with e1 = 0. Then [γ, ν] ∈ N0∩Q = 1. As we can choose e arbitrarily
we get µ = 1. Similarly λ = 1. But then we also have ρ = 1 and γ = 1.

Case 2. γ ∈ L− L0. Hence

γ =


1

µ
λ

ρ

 .
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Now we have

γ−1νγ =


1 e1λ eµ ∗

1 λ−1β(e)ρ
1 µ−1βo(e1)ρ

1

 ,

so that

[γ, ν] =


1 e+ e1λ e1 + eµ ∗

1 βo(e1) + λ−1β(e)ρ
1 β(e) + µ−1βo(e1)ρ

1

 .

Choose, for an arbitrary e ∈ X, the element e1 = eµ. Then

[γ, ν] ∈ N0 ∩Q = 1.

This implies that e+ e1λ = 0 or λ = µ−1.
Next take arbitrary e and e1 = 0. Then

[γ, ν] =


1 e eµ ∗

1 λ−1β(e)ρ
1 β(e)

1

 ∈ Q
and |Q| ≥ 2n, which is excluded.

APN case. We now assume the APN case and distinguish again the cases
γ ∈ L0 and γ ∈ L− L0.

In the first case we have (for the linear part)

γ =


1

µ δ
λ ω

ρ


and the linear part ν of a typical element ν ∈ N is represented as

ν =


1 e e1 ∗

1 β0(e1)
1 β1(e)

1

 .

A quick computation shows that

[γ, ν] =


1 e(µ+ 1) e1(λ+ 1) ∗

1 ∗
1 ∗

1


(as in the DHO case). The same argument as in the DHO case leads to γ = 1.
In a similar way Case 2 can be adapted to the APN situation, leading to the
contradiction |Q| ≥ 2n.
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5.1 Groups generated by two extension groups

Lemma 5.3. Let Nγ be in C − { N}. Set Q = N ∩Nγ .

(a) Q ∩Ni = 1 for i = 0, 1.

(b) Assume that Q has maximal order. Then |Q| < 2n and N/Q is a self-
centralizing TI subgroup in H/Q, H = 〈N,Nγ〉.

Proof. We start with the DHO case.
(a) As Nγ 6≤ NG(N) (see Theorem 3.6) we have by Lemma 3.9, that the

N -orbits {S0,S1} are different from the Nγ-orbits {S0γ,S1γ}. Assume that σ,
with 1 6= σ, is in (N0 ∪ N1) ∩ Q. Then Nγ leaves invariant the set of fixed
points of σ that are S0 or S1. But then N and Nγ would have the same orbits,
a contradiction. Thus Q ∩Ni = 1 for i = 0, 1 and |Q| ≤ 2n.

(b) By (a) Q acts fixed point freely on S and |Q| ≤ 2n. Assume |Q| =
2n. Then Q would have the orbits {S0,S1}. But as Q ≤ Nγ we conclude
by symmetry that {S0γ,S1γ} = {S0,S1}, a contradiction. This implies that
|Q| < 2n. By Lemma 5.2 N/Q is self-centralizing in H/Q.

Finally, Q ≤ Z(H), i.e. H ≤ NG(Q). By the choice of Nγ , the group N/Q
has the TI property in H/Q.

In the APN case we argue with N and N
γ

instead of N and Nγ . Then all
the arguments from the DHO case can be repeated.

Lemma 5.4. Assume Nγ ∈ C − {N}, such that |N ∩Nγ | is maximal, and set
H = 〈N,Nγ〉, Q = N ∩ Nγ , R = NN (Nγ), R1 = NNγ (N), and P = O2(H).
The following hold:

(a) P = RR1, Q = R ∩ R1 has order 2n−1 and |P | = 23n−1. The group P is
transitive on S.

(b) H/P ' SL(2, 2)) ' Sym(3).

(c) |Ni∩P | = |Nγ
i ∩P | = 2n−1, i = 0, 1. The group P0 = (N0∩P )(Nγ

0 ∩P )Q
is elementary abelian of order 23n−3. This group is characteristic in P .

(d) The set of orbits of the group P0 is {Si ∩ Sjγ | i, j = 0, 1} and each orbit
has length 2n−1.

(e) The group H/P acts faithfully on P/P0.

Proof. By Lemmas 5.2 and 5.3 N/Q is a self-centralizing TI subgroup in H/Q.
By [8, p. 243], we have that N/Q is weakly closed in CH/Q(τQ) for τ ∈ N −Q
(i.e. Nσ/Q ≤ CH/Q(τQ), σ ∈ H implies N = Nσ). Clearly, as Q ≤ R ∩ R1 we
have Q = R ∩R1. Also H = 〈Nσ | σ ∈ H〉 (see [8, (2.5), (2.14)] and [5, Lemma
4.3]).

DHO case. Since {S0σ,S1σ} 6= {S0,S1} for σ ∈ H with N 6= Nσ, the
group H is transitive on S.
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Assume first that NN (Nσ) = Q for all elements σ ∈ H with Nσ 6= N . Then
N/Q is strongly closed in CH/Q(τQ) for every element τ ∈ N −Q (see [8, Proof
of (2.14)] or [5, Lemma 4.3]). By [8, (2.5)] we get that H/Q ' L2(q), Sz(q) or
(H/Q)/Z(H/Q) ' U3(q), q ≥ 2n+1. But as Q acts fixed point freely and since
|H : HS | = 2n+1, we see that H/Q has a proper subgroup of 2-power index,
which is impossible (see the proof of [5, Lemma 4.4]). In particular Q > 1 holds.

So we may assume that R > Q. We apply [8, (2.14)] to H/Q and obtain
that H/O2(H) ' D2k, k odd, L2(q), or Sz(q), q a 2-power. Moreover, we have
O2(H) = P = RRγ . As we have seen, H is transitive on S. We distinguish the
cases HSP < H and H = HSP , S ∈ S.

Case HSP < H. As we have noticed, L2(q) and Sz(q) do not have proper
subgroups of 2-power index, i.e. H/O2(H) ' D2k, k odd. Since the dihedral
group Dk contains for every divisor k0 of k a subgroup Dk0 , we may assume
that we have chosen γ in such a way that k is a nontrivial prime. Then a cyclic
subgroup of H of order k has a fixed point on S, i.e. k divides the order of HSP .
Hence |H : HSP | = 2. Then P is not transitive: Otherwise 2n+1 = |HSP :
(HSP )S | = |HSP : HS | and 2n+1 = |H : HS | = |H : HSP | · |HSP : HS | = 2n+2,
a contradiction.

As |P ∩ N | = 22n−1, N0 and N1 cannot not both be contained in P ∩ N .
Assume N0 6⊆ P ∩ N and pick S ∈ S0. Then |N ∩ P : (N ∩ P )S | = |N ∩ P :
N0 ∩ P | ≥ 22n−1/2n−1 = 2n. This implies that S0 lies in one of the P -orbits.
As H is transitive all P -orbits have the same length, i.e. {S0,S1} is the set of
P -orbits. By symmetry, we have {S0γ,S1γ} = {S0,S1}, a contradiction.

Case HSP = H. Let ρ be in H such that Nρ 6= N . Note that the elements
of 〈N0 ∩P,Nρ

0 ∩P 〉 fix all elements in S0 ∩S0ρ 6= ∅. Thus [N0 ∩P,Nρ
0 ∩P ] ≤ Q

fix these elements too, i.e. [N0 ∩ P,Nρ
0 ∩ P ] = 1. By Lemma 5.3, (N0 ∩ P ) ∩

(Nρ
0 ∩P ) = 1, and as N0Q/Q∩Nρ

0Q/Q = 1, we get (N0 ∩P )(Nρ
0 ∩P )∩Q = 1,

and we see that (N0 ∩ P )(Nρ
0 ∩ P )Q = (N0 ∩ P ) × (Nρ

0 ∩ P ) × Q elementary
abelian. Hence, P0 = 〈Q,Nρ

0 ∩P | ρ ∈ H〉 is a normal, elementary abelian group
of H.

The group P is transitive, as

2n+1 = |H : HS | = |HSP : HS | = |P : (HS ∩ P )| = |P : PS |.

Consider the 2-group T = PN = NRρ. Then N is normal in T , i.e. T stabilizes
the set {S0,S1}. The transitivity of T shows that there exists a ν′ ∈ Rρ such
that Sν′0 = S1 and Sν′1 = S0. Write ν′ = σν with σ ∈ L − L0 and ν ∈ N . In
particular

σ =


1

µ
λ

ρ

 , ν =


1 ∗ ∗ ∗

1 ∗
1 ∗

1

 .

As (ν′)2 = 1, we deduce that λ = µ−1 and ρ2 = 1. Moreover, [N0, ν
′] ≤ R < P

and |[N0, ν
′]| = |N0|, N0∩ [N0, ν

′] = 1 by Lemma 5.3. Thus N = [N0, ν
′]×N0 =

[N0, ν
′]×N1 and NP = N0P .
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Assume that |NP/P | = 2a. Then, a = 1 if H/P ' D2k and if 2a = q, if
H/P ' SL(2, q) or H/P ' Sz(q) (note that we have NP/P = Ω1(T/P ) for
N ≤ T ∈ Syl2(H)). If H/P ' SL(2, q) or H/P ' Sz(q), then by [8, (3.2)] P/Q
is the direct sum of natural H/P -modules, i.e. |P/Q| ≥ 22a in the first case and
|P/Q| ≥ 24a in the second case.

We claim a < n. Otherwise, N0 ∩ P = 1: Let T be a Sylow 2-subgroup
of H that contains N . Then NH(T ) = TC, with a cyclic group C of order
2a − 1 (as H/P is isomorphic to SL(2, 2a) or Sz(2a)), which acts regularly by
conjugation on Ω1(T/P ) − 1. We know, that N0 6≤ P and N0 is normalized
by C as NH(T ) ≤ NH(N). This implies Ω1(T/P ) = [N0, C]P/P and hence
|[N0, C]P/P | = 2a ≥ 2n, i.e. N0 ∩ P = 1. So we have |Nρ ∩ P | ≤ 2n for all
ρ ∈ H and H/P ' SL(2, q) or H/P ' Sz(q), q = 2n. Since, P/Q = R/Q×Rγ/Q
we have 22n ≤ |P/Q| ≤ |N/Q|2 = 22n

|Q|2 , which forces |Q| = 1, a contradiction.

Hence |N0 ∩ P | = 2n−a > 1 and as [N0 ∩ P, ν′] ≤ Q, we have |Q| ≥ 2n−a.
Also P is non-abelian, since [(N0 ∩ P ), ν′] 6= 1. By the modular law R =
P ∩ N = [N0, ν

′] × (N0 ∩ P ). Since P/Q = (R/Q)(Rγ/Q), we get |P/Q| =

|R/Q| · |Rγ/Q| ≤ 22n−a

|Q| ·
22n−a

|Q| ≤ 22n. Clearly, [N0, ν
′] ∩ P0 and N0 ∩ P are

contained in P0, so that |P0/Q| ≥ |(N0 ∩ P )/Q| · |(Nγ
0 ∩ P )/Q| ≥ 22n−2a and

finally
1 < |P/P0| ≤ 22a

holds (P/P0 6= 1, as P is non-abelian).
As P/P0 contains a natural H/P -module, this immediately rules out the

possibility that H/P ' Sz(2a). Assume next that H/P ' SL(2, 2a). Then
P/P0 is the natural SL(2, 2a)-module and NγP/P is a Sylow 2-subgroup of
H/P . As before there exists a cyclic group C of order 2a − 1, such that CP/P
normalizes NγP/P and which acts regularly on NγP/P − 1 and on RγP0/P0−
1 = {(ν′)κP0/P0 | κ ∈ C}. Since the elements in P0 ≤ NH(N0) leave the sets
S0 and S1 fixed, and as RγP0/P0 − 1 = {(ν′)κP0/P0 | κ ∈ C}, all elements in
Rγ − P0 interchange the two sets, forcing |RγP0/P0| = 2, a contradiction. So
we have a = 1, |Q| = |[N0 ∩ P, ν′]| = 2n−1, (Lemma 5.3) and |P/P0| = 4.

We finally claim that k = 3, i.e. H/P ' SL(2, 2) ' Sym(3). Let C ≤ H be
a cyclic group of order k, such that CP/P is the unique subgroup of index 2 in
H/P . The group C acts on the four group P/P0. Hence there exists a subgroup
C0 of C, with |C : C0| ≤ 3, which acts trivially on P/P0. By [8, (3.1)] we know
CP/Q(σ) = RρQ/Q for σ ∈ Nρ − P . For 1 6= ρ ∈ C0 we have N 6= Nρ and

NP/P = (NP/P )ρ = NρP/P 6= NP/P,

a contradiction.
Assertions (a), (b) and the first two statements of (c) are now clear. If

σ ∈ P −P0, then |CP0
(σ)| ≤ 22n−2, which shows that P0 is the only elementary

subgroup of P of maximal order. So (c) holds. Clearly, P0 fixes every set
Si,Siγ, i = 0, 1 and Q acts regularly on each intersection Si ∩ Sjγ, i, j = 0, 1.
This implies (d). We have already seen that C ' C3 acts faithfully on P/P0.
This shows (e).
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APN case. We now argue with the group H and its action on S. Now all
arguments of the DHO case can be repeated, only that in Case HSP = H the
linear part of the element σ now has the shape

σ =


1

µ γ
λ δ

ρ

 .

However this slight difference is irrelevant. The arguments of the DHO case
show again that µ = λ−1 and ρ2 = 1.

5.2 More properties of N0 and N1

For the remainder of this section we only work in the DHO case: all
arguments can be carried over directly to the APN case. We can do so,
as we do not need the linear representation of the automorphism group on the
vector space U any more (we just use the permutation representation on the set
S).

Lemma 5.5. Let τ be an involution in NL−N that is conjugate to an element
in N0 ∪N1. Set T0 = FixS(τ) and T1 = S − T0. Then the following hold:

(a) τ ∈ NL0 −N .

(b) Let ν ∈ N1. Then one of the following holds:

(1) ν ∈ CN1(τ) and ν fixes S0 ∩ T0 and S0 ∩ T1.

(2) ν 6∈ CN1(τ) and ν interchanges S0 ∩ T0 and S0 ∩ T1.

The analogous statement holds for ν ∈ N0.

(c) |CNi(τ)| = |FixSi(τ)| = 2n−1 for i = 0, 1.

(d) Let νi ∈ Ni − CNi(τ), i = 0, 1. Then:

(1) ν0ν1 interchanges T0 with T1.

(2) ν0ν1 ∈ NN (M), where M is the unique conjugate of N that contains
τ .

(3) 1 6= [τ, ν0ν1] ∈M ∩N .

Proof. Part (a) follows from assertion (c) of Lemma 3.10.
To (b) and (c): By assumption we have Nτ

i = Ni, i = 0, 1 and [τ,Ni] 6= 1
by Lemma 3.10.

(1) Let ν ∈ N1 with (T0 ∩ S0) ∩ (T0 ∩ S0)ν 6= ∅. Then ν ∈ CN1
(τ).

Let S ∈ (T0 ∩ S0) ∩ (T0 ∩ S0)ν, then S is fixed by (ντ)2. But (ντ)2 lies in
N1 and fixes S ∈ S0, which forces (ντ)2 = 1, i.e. ν ∈ CN1

(τ).
(2) We have |T0 ∩ S0| = |T0 ∩ S1| = 2n−1.
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Assume for instance |T0 ∩ S0| > 2n−1. Choose an element ν ∈ N1 −CN1
(τ).

Then (T0 ∩ S0) ∩ (T0 ∩ S0)ν 6= ∅ and (1) implies ν ∈ CN1
(τ), a contradiction.

The assertion follows by symmetry.
(3) Let ν ∈ N1 − CN1

(τ). Then (T0 ∩ S0)ν = T1 ∩ S0.
By (1) (T0 ∩ S0) ∩ (T0 ∩ S0)ν = ∅, and (T0 ∩ S0)ν ⊆ S0, as τ normalizes N1.

With (2) this implies the assertion.
(4) We have |CNi(τ)| = 2n−1 for i = 0, 1.
By (3) we have that the group N1 induces a permutation representation on

{T0 ∩ S0, T1 ∩ S0} and CN1
(τ) is the kernel of this permutation representation.

This implies |N1 : CN1(τ)| = 2.
By (1) - (4) the assertions (b) and (c) follow.
To (d): By the choice of the elements νi we have 1 6= [τ, νi] ∈ Ni, in particular

1 6= [τ, ν0ν1] ∈ N . By (a.2) we have (S0∩T0)ν0ν1 = S0∩T1 and (S1∩T0)ν0ν1 =
S1 ∩ T1, i.e. ν0ν1 interchanges T0 and T1. Then ν0ν1 ∈ NG(M) by Lemma 3.9
and thus [τ, ν0ν1] ∈M , so (d) holds.

Lemma 5.6. Let τ = τγ0 ∈ NL−N be an involution where τ0 ∈ N0 ∪N1. Set
M = Nγ and Mi = Nγ

i , i = 0, 1. Then:

(a) |M ∩ N | = 2n−1. In particular the assertions of Lemma 5.4 hold for the
group H = 〈M,N〉.

(b) Set T0 = S0γ, T1 = S1γ and D = {Si ∩ Tj | 0 ≤ i, j ≤ 1}. Then D is the
set of (M ∩N)-orbits on S.

(c) CNi(NMj
(N)) = NNi(M) and CMi

(NNj (M)) = NMi
(N) for 0 ≤ i, j ≤ 1.

(d) The group H acts on D and P0 is the kernel of this action. P/P0 induces
a Klein four group on D and H/P0 ' Sym(D) ' Sym(4) (here P and P0

have the meaning of Lemma 5.4).

(e) We have P0 = (NM0
(N)×NM1

(N))(NN0
(M)×NN1

(M)) and P0 = (M ∩
N)×NM0(N)×NN0(M) = (M ∩N)×NM1(N)×NN1(M)

Proof. By Lemma 5.5 |CNi(τ)| = 2n−1 for i = 0, 1. Thus CN0
(τ) × CN1

(τ) ≤
CG(τ) ≤ NG(M) by Lemma 3.10 (a). As CN0(τ) fixes Si, i = 0, 1, as well
as FixS(τ) this group fixes every set in D. For νi ∈ Ni − CNi(τ) the element
ν = ν1ν2 interchanges T0 with T1 (assertion (d.1) of Lemma 5.5), i.e. (CN0

(τ)×
CN1

(τ))〈ν〉 ≤ NN (M). Then Theorem 3.6 impliesNN (M) = (CN0
(τ)×CN1

(τ))〈ν〉.
Also by symmetry we have NM (N) = (CM0

(σ) × CM1
(σ))〈ω〉 for any element

1 6= σ ∈ NN0(M) ∪ NN1(M) and an ω in N , which interchanges S0 with
S1. In particular |CM0(σ)| = 2n−1 and CM0(σ)ν ≤ M1. Thus we have that
|[CM0

(σ), ν]| = 2n−1, [CM0
(σ), ν] ≤ M ∩ N , and M ∩ N = [CM0

(σ), ν] by
Lemma 5.4. This implies (a) and (b).

By Theorem 3.6, Lemma 3.10 and Lemma 5.5 NNi(M) = CNi(τ
′), i = 0, 1,

for all 1 6= τ ′ ∈ NM0(N) ∪ NM1(N). Hence we have NNi(M) = CNi(NMj (N))
for 0 ≤ i, j ≤ 1 and by symmetry we obtain assertion (c).
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In particular P̂ = (NM0
(N)×NM1

(N))(NN0
(M)×NN1

(M)) is elementary

abelian and this group acts trivially on D. From Lemma 5.4 we conclude P̂ = P0

as P0 is the only elementary abelian subgroup of P of index 4. Assertions (d)
and (e) now follow from Lemma 5.4.

Remark 5.7. (a) With the notation as in the Lemma, one has

NM0(N) = M0 ∩NL0.

(b) Again set H = 〈M,N〉 as in Lemmas 5.4 and 5.6. For later purposes we
record that, with the notation as in these lemmas:

(1) Every H-composition factor in the group P/Q is the natural H/P -module
(i.e. as P/N ' SL(2, 2) this composition factor has order 4).

(2) Z(H) = M ∩N .

Because of Lemma 5.6 (d) for assertion (1) it suffices to consider a composition
factor W in P0/Q. As P is a 2-group, we have 1 < CW (P ) (see [1, (5.5)]), i.e.
W = CW (P ) (as CW (P ) is H-invariant). So W is an H/P -module and hence
either trivial or W is the natural SL(2, 2)-module. Let C = 〈δ〉 be cyclic of
order three. By Lemma 5.6 (d) we may assume that S0 ∩S0γ is invariant under
δ, and that δ permutes the sets S0 ∩ S1γ, S1 ∩ S0γ, and S1 ∩ S1γ cyclically.
Then S0 ∩ S0γ ⊆ FixS0N

δ
0 6= S0. This shows that NN0

(Nγ) ∩ NN0
(Nγ)δ = 1

and Q∩NN0
(Nγ)NN0

(Nγ)δ = 1. We conclude that δ acts fixed-point-freely on
P0/Q, i.e. W is not the trivial SL(2, 2)-module.

Clearly, Q = M ∩N ≤ Z(H) as H = 〈M,N〉 and Z(H) ≤ P . Assertion (2)
follows from (1).

5.3 N0 as a TI group

The goal of this subsection is the proof of Proposition 5.10. For this purpose we
consider the group generated by conjugates of N0 in the stabilizer of a point.

Let S0 ∈ S be fixed by N0. Let F be the set of Nγ
0 , γ ∈ G, such that Nγ

0

fixes S0 and set
F = 〈F〉.

Lemma 5.8. The following statements hold.

(a) F is a normal subgroup of the stabilizer of S0 in G.

(b) F is a conjugacy class of self-centralizing TI subgroups of F .

(c) O(F ) = 1.

Proof. Part (a) is clear by the definition of F .
(b) By Lemma 3.10

CF (N0) = N ∩ F = N0
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i.e. N0 is self-centralizing in F . Assume 1 6= τ ∈ N0 ∩Nγ
0 . Then

S0 = FixS(N0) = FixS(τ) = FixS(Nγ
0 ) = S0γ,

which implies that γ ∈ NG(N0), i.e. N0 = Nγ
0 .

(c) Set R = O(F ) and X = N0R. It follows that X satisfies the assumptions
of [5, Lemma 4.2]. Since |N0| > 2 we have X = N0 × R and hence R = 1 by
Lemma 3.10.

Lemma 5.9. Let Nγ
0 ∈ F − {N0} and set F0 = 〈N0, N

γ
0 〉. Then:

(a) O2(F0) = NN0
(Nγ

0 )NNγ0 (N0) is elementary abelian of order 22n−2.

(b) F0/O2(F0) ' Sym(3).

Proof. We show that:
(1) There exists a pair N0, N

γ
0 , which satisfies assertions (a) and (b):

Pick γ ∈ G such that |N ∩Nγ | = 2n−1, i.e. the assumptions of Lemma 5.4
are satisfied. We know that |FixS(N0)∩FixS(Nγ

0 )| = 2n−1, i.e. by choosing the
notation in a suitable way we may assume that Nγ

0 ∈ F . Moreover neither N0

nor Nγ
0 are subgroups of P = O2(〈N,Nγ〉), so that F0/(F0 ∩ P ) ' F0P/P '

Sym(3). Now assertions (a) and (b) follow by [8, 2.8].
(2) We have F/O2(F ) ' Lm(2), A6, A7, A8, A9, M22, M23, or M24.
The possible structures of F/O2(F ) are listed in [8, Theorem A] (by Lemma 5.8

the assumptions of this theorem hold). The cases F/O2(F ) ' Lm(q), U3(q), or
Sz(q), q > 2 are ruled out by (1). The remaining cases imply (2).

Assertions (a) and (b) are now a consequence of (2).

Proposition 5.10. Let Nγ be an element of C −{N}. Then |N ∩Nγ | = 2n−1.

Proof. Assume that FixS(N0) ∩ FixS(Nγ
0 ) = ∅. Then Nγ

0 centralizes N0, i.e.
Nγ

0 ≤ CG(N0) = N and Nγ
0 = N1, follows. But then N = Nγ , a contradiction.

Hence FixS(N0) ∩ FixS(Nγ
0 ) 6= ∅. Thus F0 = 〈N0, N

γ
0 〉 satisfies the as-

sumptions of Lemma 5.9. In particular |NNγ0 (N0)| = |NN0(Nγ
0 )| = 2n−1 and

[NNγ0 (N0), NN0(Nγ
0 )] = 1 by Lemma 5.9. ThusNNγ0 (N0) fixes S0 = FixS(NN0

(Nγ))
and thus S1 too. It follows that NNγ0 (N0) normalizes N . Assertion (a) of
Lemma 5.6 completes the proof.

Proof. (Theorem 5.1) This theorem is an immediate consequence of Lemma 5.4
and Proposition 5.10.

6 Recognition results and examples

We will show that the existence of more than one extension group, shows that
an extension of a DHO or an APN function is, in fact, at least a two-fold iterated
extension. Moreover we shall generalize this result if there are more than three
extension groups and give a direct construction of the k-fold extension in this
case, as well as some of its automorphisms.
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We illustrate our results on extension groups by some examples. We also
comment, how the results on automorphism groups of the next Section 7, fit
into these concrete examples.

In this section the symbol S denotes the extension of a bilinear DHO Sβ
in the DHO case, while in the APN case this symbol denotes the graph of the
extension F = Ff0,f1 of quadratic APN functions f0 and f1. We shall assume
in both cases that S is ambient in the defining space and in the APN case we
additionally assume that F is fully ambient. In particular by Theorem 3.6 weak
extension groups are actually extension groups and the results of Sections 3
and 5 are available.

Theorem 6.1. The following statements hold.

(a) Let S be a DHO of rank ≥ 6, which is ambient in its defining space and
which admits at least two extension groups. Then

S = Sβ , Sβ = Sβ ,

where Sβ is a symmetric bilinear DHO, i.e. S is a two-fold extension of
a symmetric DHO.

(b) Let Ff0,f1 be the extension of an APN function of rank ≥ 6, which admits
at least two extension groups and assume that f0 and f1 are ambient in
their defining space. Then f0 = Fg0,g0 and f1 = Fg1,g1 with quadratic
APN functions g0 and g1, i.e. F is a two-fold extension of quadratic APN
functions.

We prove this Theorem by a series of lemmas and distinguish the APN and
DHO case.

6.1 The DHO case

Let M,N be two extension groups of a DHO S of rank n+1 and with an ambient
space U of dimension 2n+ 1 +m. Denote by S0, S1, the orbits of N = N0×N1

and by T0, T1, the orbits of M = M0 ×M1. For i = 0, 1 we set

V Ni = 〈S ∩ S′ | S, S′ ∈ Si, S 6= S′〉, VMi = 〈S ∩ S′ | S, S′ ∈ Ti, S 6= S′〉,
Y N = V N0 ∩ V N1 , YM = VM0 ∩ VM1 ,
UN = V N0 + V N1 , UM = VM0 + VM1 .

Finally, for i = 0, 1 we define MN = NM (N), Mi,N = NMi
(N), NM = NN (M),

and Ni,M = NNi(M). By Lemma 5.4 and Proposition 5.10 we have |MN | =
|NM | = 22n−1 and |Mi,N | = |Ni,M | = 2n−1, i = 0, 1.

Lemma 6.2. With the above notation we have:

(a) YM ⊆ UN and Y N ⊆ UM .

(b) dimYM ∩ Y N ≥ m− n+ 1.
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Proof. (a) Assume y ∈ YM − UN . Pick τ ∈ N0,M , τ ′ ∈ M0,N ×M1,N . By
assertion (c) of Lemma 5.4 the elements commute and we have

y(1 + τ)(1 + τ ′) = y(1 + τ ′)(1 + τ) = 0,

which shows that y(1 + τ) ∈ (YM ∩ V N0 )− Y N . Pick µ ∈MN −M0,N ×M1,N .
Then V N0 µ = V N1 . As µ centralizes YM , we see that

YM ∩ V N0 = (YM ∩ V N0 )µ = YM ∩ V N1 , i.e. YM ∩ V N0 ⊆ Y N .

This implies y(1 + τ) ∈ YM ∩ Y N , a contradiction.

(b) Let S ∈ S0∩T0, i.e. V N0 = (S∩V N0 )⊕Y N . We first note that V N0 6⊆ UM :
Otherwise V N1 = V N0 µ ⊆ UM (µ as above) and it follows UN = UM . If, however,
S′ ∈ S0 ∩ T1, then S ∩ S′ ⊆ UN but S ∩ S′ 6⊆ UM , a contradiction.

Now (a) and the modular law imply that

UM ∩ V N0 = (S ∩ V N0 ∩ UM )⊕ Y N

and it follows that

V N0 = (S ∩ S′)⊕ (S ∩ V N0 ∩ UM )⊕ Y N

follows.
Let S̃ be in S1 ∩ T0. Then by symmetry

V N1 = (S̃ ∩ S̃′)⊕ (S̃ ∩ V N1 ∩ UM )⊕ Y N

with S̃′ ∈ S1 ∩ T1. Since UN = (S ∩ V N0 )⊕ (S̃ ∩ V N1 )⊕ YN , we finally obtain

UN = (S ∩ S′)⊕ (S ∩ V N0 ∩ UM )⊕ (S̃ ∩ S̃′)⊕ (S̃ ∩ V N1 ∩ UM )⊕ Y N .

Moreover, as UN and UM have codimension 1 in U we see that UN ∩ UM has
codimension 1 in UN and (S ∩V N0 ∩UM )⊕ (S̃ ∩V N1 ∩UM )⊕Y N ⊆ UN ∩UM .

So if S ∩ S′ = 〈z〉 and S̃ ∩ S̃′ = 〈z̃〉 then

UN ∩ UM = 〈z + z̃〉 ⊕ (S ∩ V N0 ∩ UM )⊕ (S̃ ∩ V N1 ∩ UM )⊕ Y N .

We claim that YM ⊆ (S ∩ V N0 ∩ UM )⊕ (S̃ ∩ V N1 ∩ UM )⊕ Y N .
Otherwise, there exists w ∈ YM of the form

w = z + z̃ + s+ s̃+ y

with s ∈ S ∩ V N0 ∩ UM , s̃ ∈ S̃ ∩ V N1 ∩ UM , and y ∈ Y N .
Let 1 6= τ ∈ M0,N . Then 0 6= u = z(1 + τ) ∈ S ∩ V N0 ∩ UM , 0 6= u′ =

z̃(1 + τ) ∈ S̃ ∩ V N1 ∩ UM , y(1 + τ) ∈ Y N , and 0 = s(1 + τ) = s̃(1 + τ). In
particular wτ 6= w, a contradiction. The claim follows.

For w ∈ YM we again write w = s+ s̃+ y with s, s̃, y as above. Then

s+ s̃+ y = w = wµ = sµ+ s̃µ+ yµ,
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so that
s = s̃µ (mod Y N ), s̃ = sµ (mod Y N ).

Therefore

(YM + Y N )/Y N ∩ ((S ∩ V N0 ∩ UM ) + Y N )/Y N = 0

and it follows that

dimYM/(Y N ∩ Y N ) = dim(YM + Y N )/Y N ≤ n− 1.

This finally implies that

dim(Y N ∩ Y N ) ≥ dimYM − (n− 1) = m− n+ 1.

Lemma 6.3. With the above notation we have that:

(a) S(0) = {S ∩ V N0 | S ∈ S0} is a DHO on V N0 .

(b) The group M0,N ×M1,N induces an extension group on V N0 .

Proof. Part (a) is obvious.
(b) From assertion (b) of Lemma 6.2 (and with the notation of the proof)

and dimV N0 = n+m we deduce that

V N0 = (S ∩ S′)⊕ (S ∩ V N0 ∩ UM )⊕ (S′ ∩ V N0 ∩ UM )⊕ (YM ∩ Y N ).

Also 〈S1 ∩S2 ∩V N0 | S1, S2 ∈ S0 ∩T0, S1 6= S2〉 ⊆ (S ∩V N0 ∩UM )⊕ (YM ∩Y N )
and 〈S1∩S2∩V N0 | S1, S2 ∈ S0∩T1, S1 6= S2〉 ⊆ (S′∩V N0 ∩UM )⊕ (YM ∩Y N ).
As Mi,N acts regularly on S0 ∩ Tj and fixes S0 ∩ Ti pointwise {i, j} = {0, 1},
we deduce that M0,N ×M1,N satisfies axioms (E1)-(E3) of a weak extension
group. Then by Theorem 3.2 M0,N ×M1,N actually induces an extension group
on V N0 .

The assertion of Theorem 6.1 for the DHO case is a consequence of Lemma 6.3
and Theorem 3.2.

6.2 The APN case

Let M and N be the linear parts of two extension groups of an n+1-dimensional
APN function, with an ambient space of dimension 2n+1+m. Denote by S0 and
S1, the orbits of N = N0 ×N1 and by T0 and T1, the orbits of M = M0 ×M1.
For i = 0, 1 we set

V Ni = 〈x+ x′ | x, x′ ∈ Si〉, VMi = 〈x+ x′ | x, x′ ∈ Ti〉,
Y N = V N0 ∩ V N1 , YM = VM0 ∩ VM1 ,
UN = V N0 + V N1 , UM = VM0 + VM1 .
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We choose the notation such that 0 ∈ S0 ∩ T0, in particular, we have M0 = M0

and N0 = N0. For i = 0, 1 we define MN = NM (N), Mi,N = NMi
(N),

NM = NN (M), and Ni,M = NNi(M). Finally, we set H = 〈N,M〉 and denote
by E the third extension group in H (see Lemma 5.4). By our assumption S is
the graph of a function F = Ff0,f1 , such that fi : Fn2 → Fm2 is a quadratic APN
function ambient in Fn2 ⊕Fm2 . It follows from Remark 3.3 and Theorem 4.4 that
CU (N) = Y N and dimU/(V N0 + V N1 ) = 1 and by Lemma 5.4 the analogous
assertion holds for M and E too.

Lemma 6.4. For each 2-set {R,Q} in {E,M,N}, the vector space UR ∩ UQ
has codimension 1 in UR.

Proof. As 0 ∈ S0 we have V N0 = 〈S0〉. We know U = 〈v〉 ⊕ UN for some v ∈ S.
Hence v ∈ S1 and S1 is contained in the flat v + V N1 . Since v + V N1 = v′ + V N1
for all v′ ∈ S1, we even have U = 〈v′〉 ⊕ UN . Pick v ∈ S1 ∩ T0 and suppose
that UN = UM . Then U = 〈v〉 ⊕ UN = 〈v〉+ UM = UM , a contradiction. The
assertion of the lemma follows by symmetry.

Lemma 6.5. We have Y R ⊆ UQ for each 2-set {R,Q} in {E,M,N}.

Proof. By symmetry it suffices to assume that R = M and Q = N . Assume
that y ∈ YM − UN . Pick τ ∈ N0,M , τ ′ ∈ M0,N ×M1,N . By assertion (c) of
Lemma 5.4 the elements commute and we have

y(1 + τ)(1 + τ ′) = y(1 + τ ′)(1 + τ) = 0

which shows that y(1 + τ) ∈ (YM ∩ V N0 ) − YN . Pick µ ∈ MN −M0,N ×M1,N .
Then V N0 µ = V N1 . As µ centralizes YM , we see that

YM ∩ V N0 = (YM ∩ V N0 )µ = YM ∩ V N1 , i.e. YM ∩ V N0 ⊆ Y N .

This implies that y(1 + τ) ∈ YM ∩ Y N , a contradiction.

Lemma 6.6. For each 2-set {R,Q} in {E,M,N}, we have Y R ∩ Y Q = Y E ∩
YM ∩ Y N .

Proof. We know that Y R = CU (R). Then Y R ∩ Y Q = CU (H) as H = 〈R,Q〉
and the assertion follows.

Lemma 6.7. For each 2-set {R,Q} in {E,M,N}, we have UR ∩ UQ = UE ∩
UM ∩ UN .

Proof. By symmetry it suffices to assume that R = M and Q = N . Suppose
that W = UE ∩ UM ∩ UN is a proper subspace of UM ∩ UN . This shows by
Lemma 6.4 that W has codimension 3 in U . Let v ∈ U − UN . We know that
the map φ : N → UN/Y N defined by φ(τ) = v(1 + τ) is an isomorphism of the
abelian groups N and UN/Y N .

First we observe that O2(H) centralizes the quotient U/(UM ∩UN ). Namely
if τ ∈ O2(H) = 〈NM ,MN 〉, then τ fixes UN and UM and therefore we have
U(1 + τ) ⊆ UM ∩ UN , which shows the claim.
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By symmetry O2(H) also centralizes the quotient U/W . Now NM ≤ O2(H),
which implies that φ(NM ) ⊆W/Y N (note that by Lemma 6.5 Y N ⊆W ). This
implies that 22n−1 = |NM | = |φ(NM )| ≤ |W/Y N | = 22n−2, a contradiction.

Lemma 6.8. We have V N0 ∩YM ⊆ Y N , V N1 ∩YM ⊆ Y N , and dim(Y E ∩YM ∩
Y N ) = dim(YM ∩ Y N ) ≥ m− n+ 1.

Proof. First we observe that V Ni 6⊆ UM : If for instance V N0 ⊆ UM , then also
V N1 = V N0 µ ⊆ UM for µ ∈MN − (M0,N ×M1,N ) contradicting Lemma 6.4.

Hence there exist elements s0 ∈ (V N0 ∩ S0) − (UM ∩ V N0 ) and (considering
the action of µ) we may even assume s0 ∈ T1. Thus V N0 = 〈s0〉 ⊕ (UM ∩ V N0 ).
Apply µ and we obtain V N1 = 〈s1〉 ⊕ (UM ∩ V N1 ) with s1 = s0µ. Note that
s0µ ∈ S but s1 6∈ S. From Lemma 6.4 we deduce that

UN = 〈s0〉 ⊕ 〈s1〉 ⊕ ((UM ∩ V N0 ) + (UM ∩ V N1 )).

Note that UM ∩UN = 〈s0 + s1〉⊕ ((UM ∩V N0 ) + (UM ∩V N1 )) as this space is µ-
invariant. We recall that |S| = |(S+Y N )/Y N |, i.e. V N0 /Y N = (S0 +Y N )/Y N .
As s0 + Y N 6∈ (UM ∩ V N0 )/Y N , we deduce that dim(WN

0 + Y N )/Y N = n − 1
for WN

0 = 〈S0 ∩ T0〉 and hence V N0 ∩ UM = WN
0 + Y N . Similarly, we obtain

that V N1 ∩ UM = WN
1 + Y N with WN

1 = WN
0 µ.

Claim: We have YM ⊆ (UM ∩ V N0 ) + (UM ∩ V N1 )

Suppose, YM 6⊆ (UM∩V N0 )+(UM∩V N1 ). Then there exist elements w ∈ YM
of the form

w = s0 + s1 + u+ u′ + y

with u ∈WN
0 , u′ ∈WN

1 and y ∈ Y N . For 1 6= τ ∈M0,N we have 0 = w(1+τ) =
u(1 + τ) = u′(1 + τ) and y(1 + τ) ∈ Y N . This shows that s0(1 + τ) + s1(1 + τ) ∈
Y N . As s0(1 + τ) ∈ V N0 ∩ UM , s1(1 + τ) ∈ V N1 ∩ UM , we also have that
s0(1+τ), s1(1+τ) ∈ Y N . Moreover s0τ 6= s0 are different elements in S. Hence
s0 + Y N and s0τ + YN are different elements in V N0 /Y N , a contradiction. The
claim follows.

Let w = u+ u′ + y ∈ YM , u, u′, y as before. Then

u+ u′ + y = w = wµ = uµ+ u′µ+ yµ,

showing u′ ≡ uµ (mod Y N ), u ≡ u′µ (mod Y N ). This implies that

(YM + Y N )/Y N ∩ (V N0 ∩ UM )/Y N = 0

and therefore V N0 ∩ YM ⊆ Y N and

dimYM/(YM ∩ Y N ) = dim(YM + Y N )/Y N ≤ n− 1.

We obtain that dimYM ∩ Y N ≥ dimYM − n + 1 = m − n + 1. The assertion
V N1 ∩ YM ⊆ Y N follows by symmetry.
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Lemma 6.9. Set Vi,j = 〈x + y | x, y ∈ Si ∩ Tj〉, i, j = 0, 1. Then dim(Vi,j +
(YM ∩ Y N ))/(YM ∩ Y N ) = n − 1 for all i, j and dimYM ∩ Y N = m − n + 1.
Moreover, (V Ni ∩UM )/(YM ∩Y N ) = (Vi,0 + (YM ∩Y N ))/(YM ∩Y N )⊕ (Vi,1 +
(YM ∩Y N ))/(YM ∩Y N ) for i = 0, 1, and the similar assertions hold for (VMi ∩
UM )/(YM ∩ Y N ).

Proof. We have Vi,j ⊆ UM ∩ UN for all i, j. By Lemma 6.8 V0,0 ∩ V0,1 ⊆
VM0 ∩ VM1 ∩ V N0 = YM ∩ V N0 ⊆ YM ∩ Y N , i.e. (Vi,0 + (YM ∩ Y N ))/(YM ∩
Y N ) ∩ (Vi,1 + (YM ∩ Y N ))/(YM ∩ Y N ) = 0.

Also |(S0 ∩ T0 + (YM ∩ Y N ))/(YM ∩ Y N )| = 2n−1 showing that dim(V0,0 +
(YM ∩Y N ))/(YM ∩Y N ) ≥ n−1. By symmetry dim(Vi,j +(YM ∩Y N ))/(YM ∩
Y N ) ≥ n− 1 for all i, j. Therefore again by Lemma 6.8

m+ n− 1 = dimV0 ∩ UM ≥ 2(n− 1) +m− n+ 1,

so that equality must hold and we have dim(V0,j + (YM ∩ Y N ))/(YM ∩ Y N ) =
n− 1 and dimYM ∩ Y N = m− n+ 1. By symmetry all assertions follow.

Proof. (of Theorem 6.1) Let V Ni = Ri ⊕ Y N for i = 0, 1. By Theorem 3.2
there exist quadratic APN-functions fi : Ri → Y N , such that S0 = {z + f0(z) |
z ∈ R0} is the graph of f0 and v + S1 = {z + f1(z) | z ∈ R1} is the graph
of f1. Here U = 〈v〉 ⊕ UN . Without loss of generality we may assume that
v ∈ S1 ∩ T0. We shall show that both graphs admit extension groups. The
assertion of Theorem 6.1 is then a consequence of Theorem 3.2.

Case (V N0 , f0) We claim that M0,N ×M1,N is an extension group. Con-
ditions (E1) and (E2) of the definition of extension groups follow immediately
by the definition of M0,1 × M1,N . We have V0,j = 〈S0 ∩ Tj〉, j = 0, 1. By
Lemma 6.9 we get CV N0 (M0,N ×M1,N ) = Y = YM ∩Y N , dimV0/(V

N
0 ∩UM ) =

V0/(V0,0 + V0,1 + Y ) = 1, and dim(V0,0 + V0,1 + Y )/Y = 2(n − 1). This shows
(E3) and therefore M0,N ×M1,N is a weak extension group of f0. Since f0 is
quadratic, we deduce by Theorem 4.4 and Remark 3.3 that this group is in fact
an extension group.

Case (V N1 , f1) We first observe that r : M1,N → U defined by r(τ) =
v(1 + τ), is a 1-coboundary (i.e. r(ττ ′) = r(τ)τ ′ + r(τ ′)). Thus c̃ : M1,N → U ,
defined by c̃τ = cτ + r(τ) (here τ = τ + cτ ), is a 1-cocycle. We define τ̃ = τ + c̃τ
and M̃1,N = {τ̃ | τ ∈ M1,N} and observe that M0,N × M̃1,N is elementary
abelian, as the r(τ)’s lie in YM .

We claim that this group is an extension group. Clearly, as v is fixed by
M0,N , the set v + (S1 ∩ T0) is fixed pointwise by this group and this group acts

regularly on v + (S1 ∩ T1). For v + u ∈ v + S1 and τ̃ ∈ M̃1,N we compute

(v + u)τ̃ = (vτ + r(τ)) + uτ = v + uτ.

This shows that M̃1,N fixes the set v+ (S1 ∩ T1) pointwise and on v+ (S1 ∩ T0)
this group acts regularly. Hence conditions (E1) and (E2) hold. Condition (E3)

follows, again by Lemma 6.9. Thus M0,N × M̃1,N is a weak extension group.
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The same argument as in the previous case shows that this group is in fact an
extension group.

In [4] the diagonally represented DHOs were characterized as those DHOs
that admit at least three (and thus infinitely many) iterated extensions. Theo-
rem 6.1 leads to:

Corollary 6.10. Let S be a DHO of rank n+ k, n ≥ 4, k ≥ 2, which admits at
least 2k extension groups. Then there exists a symmetric, diagonally represented
DHO Sβ of rank n, such that S is the (k + 1)-fold extension of Sβ.

Proof. Let N be an extension group with orbits Si, i = 0, 1 and set Vi = 〈S∩S′ |
S, S′ ∈ Si, S 6= S′〉. Let E,M be two extension groups 6= N . By Lemma 6.3 we
have that S(0) = {S∩V0 | S ∈ S0} is a DHO and the groups NR0

(N)×NR1
(N),

R = E,M , induce extension groups on S(0).
Assume that both groups induce the same extension group on S(0). So for

ε ∈ NE0(N) × NE1(N), there exists an element µ ∈ NM0(N) × NM1(N), such
that εµ fixes each S ∈ S(0). This implies that εµ lies in the common normalizer
of the groups N0 and N1. As N1 acts faithfully on S0, we see that εµ lies in the
centralizer of N1, which is N (see Lemma 3.10). Thus ε ∈ 〈N,M〉. However
this group contains precisely three extension groups (Lemma 5.4). Thus S(0)

admits at least d 2k−1
2 e = 2k−1 extension groups. By Theorem 6.1 S(0) is the

2-fold extension of a symmetric DHO S ′, and S is, in fact, the 3-fold extension
of S ′. By [4, Thm. 3.2] S ′ is diagonally represented. Now a routine induction
finishes the proof.

For APN functions we have an analogous corollary:

Corollary 6.11. Let F = Ff0,f1 be a fully ambient APN function of rank n+k,
where n ≥ 4 and k ≥ 2, which admits at least 2k extension groups. Then there
exist quadratic APN functions g0, g1 of rank n, such that fi, for i = 0, 1, is the
k-fold extension of gi.

Proof. We know by Theorem 3.2 that f0 and f1 are quadratic APN functions
and by the proof of Theorem 6.1 (APN case), we know that for an extension
group E = E0 × E1 6= N the group NE0

(N) ×NE1
(N) is the linear part of an

extension group of fi, i = 0, 1. Our claim follows by induction using Theorem 4.4
if we show that the groups of the form NE0(N)×NE1(N) induce at least 2k−1

extension groups on each fi. By symmetry it suffices to show that f0 admits at
least 2k−1 extension groups.

Let E = E0 × E1 and M = E0 ×M1 be the linear parts of two extension
groups that are not equal to N , and which induce the same extension group
on S0, the graph of f0. Then for each ε ∈ NE0

(N) × NE1
(N) there exists an

element µ ∈ NM0
(N) × CM1

(N), such that εµ fixes each vector in S0. As εµ

normalizes N , we see that εµ centralizes N1, i.e. εµ ∈ N . Hence E ≤ 〈N,M〉.
By Lemma 5.4 we see that there are at most two extension groups inducing
the same extension group on f0. As in the proof of the previous corollary we
conclude, that f0 admits at least 2k−1 extension groups.
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6.3 A non-recursive version of the k-fold extension

In this subsection we present, for k > 2, an explicit non-recursive representa-
tion of a k-fold extended DHO, respectively of a k-fold extended APN function.
These non-recursive representations allow a concrete description of 2k − 1 ex-
tension groups and and a group GL(k, 2) (compare also Section 7).

We start with the DHO-case. We say a DHO Sβ , β : X → Hom(X,Y ), is
diagonally represented by z ∈ X, if and only if for its diagonal map, xδ = xβ(x),
we have that xδ = xβ(z). In [4] it is shown that DHOs that admit at least
three iterated extensions are diagonally represented. By [4, Theorem 3.2] the
extension Sβ of a diagonally represented DHO Sβ is isomorphic to Sβ̃ , with

(u, x)β̃(v, e) = (vx+ ue+ (vu)z, xβ(e)), (u, x), (v, e) ∈ X (1)

For this subsection we will use Sβ̃ as extension of Sβ .

Notation. For some l-dimensional F2-space W with a fixed basis {f1, . . . , fl},
denote by ∧2(W ) the second component of the exterior algebra over W , i.e. the(
l
2

)
-dimensional space with basis {fi ∧ fj | 1 ≤ i < j ≤ l}. Let u =

∑
i uifi, v =∑

i vifi. Define

· : W ×W → F2, u · v =
∑l
i=1 uivi,

∧ : W ×W → ∧2(W ), u ∧ v =
∑

1≤i<j≤l(viuj + vjui)fi ∧ fj
∗ : W ×W →W, u ∗ v =

∑l
i=1 uivifi

Observe that u ∗ u = u holds.
Let V = V k be a k-dimensional F2-space with basis {e1, . . . , ek}. Further-

more, let {b1, . . . , bn} be a basis of the F2-space X. Set Xk = V k ⊕ X, and
define βk : Xk → Hom(Xk,∧2(Xk)⊕ Y ) by

(u, x)βk(v, e) = (u ∧ v + v ∧ x+ u ∧ e+ (u ∗ v) ∧ z, xβ(e)). (2)

Note that ∧2(V ⊕X) decomposes as ∧2(V ⊕X) = ∧2(V )⊕(V ∧X)⊕∧2(X),
where V ∧X denotes the space with basis {ei ∧ bj | 1 ≤ i ≤ k, 1 ≤ j ≤ n}. Set
Y k = ∧2(V )⊕ (V ∧X)⊕ Y ⊆ ∧2(Xk)⊕ Y .

Lemma 6.12. Let k ≥ 0 and β : X → Hom(X,Y ) define a DHO Sβ that is
symmetric and diagonally represented by z ∈ X. Then Sβk is isomorphic to
the k times iterated extension of Sβ. Moreover βk is symmetric and diagonally
represented by (0, z) ∈ Xk and Xk ⊕ Y k is the ambient space of Sβk .

Proof. By definition (Equation (2)) βk is symmetric and a direct verification
shows that it is diagonally represented by (0, z). Moreover it is obvious from
the definition that L/Y k = 0, where L is the space generated by the images
of βk(v, e), (v, e) ∈ Xk. Thus the ambient space of Sβk is a subspace of Xk ⊕
Y k. The claim about the ambient space follows by dimensional reasons from
Theorem 2.1, as soon as the main claim is proven.
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For k = 0, ∧2(V 0) and V 0 ∧X are 0-dimensional, thus Sβ0 is isomorphic to
Sβ . Let k > 0; we will show that Sβk is the extension of Sβk−1 .

Set X
k−1

= F2 ×Xk−1 and Y
k−1

= Xk−1 × Y k−1. We define π : X
k−1 ⊕

Y
k−1 → Xk ⊕ Y k sending X

k−1
onto Xk and Y

k−1
onto Y k as follows.

X
k−1 3 (a, x) 7→ (x+ aek) ∈ Xk, Y

k−1 3 (x, y) 7→ (y + x ∧ ek) ∈ Y k,

(with a ∈ F2, x ∈ Xk−1 and y ∈ Y k−1). Let Sγ be the extension of Sβk−1 . Using
uk, vk instead of u and v, Equation (1) gives that

(uk, u, x)γ(vk, v, e) = (vk(u, x)+uk(v, e)+(vkuk)(0, z), (u, x)βk−1(v, e)) ∈ Y k−1
.

We have

vk(u, x) + uk(v, e) + (vkuk)(0, z) = (vku+ ukv, vkx+ uke+ (vkuk)z)

and
(u, x)βk−1(v, e) = (u ∧ v + v ∧ x+ u ∧ e+ (u ∗ v) ∧ z, xβ(e)).

We apply π to (uk, u, x)γ(vk, v, e) and obtain

((vku+ukv)∧ek+u∧v+(vkx+uke)∧ek+v∧x+u∧e+((u+ukek)∗(v+vkek))∧z, xβ(e)).

But this is (u+ ukek, x)βk(v + vkek, e).

Let S = {S(v,e) | (v, e) ∈ Xk}, with S(v,e) = {S(v,e)(u, x) | (u, x) ∈ Xk},
S(v,e)(u, x) = (u, x, (u, x)βk(v, e)), be the k times iterated extension of Sβ .

Notation. For an arbitrary, but fixed t ∈ V ∗ define the partition

Sta = {S(v,e) | (v, e) ∈ Xk, v · t = a}, a ∈ F2,

of S. Let t⊥ = {u ∈ V | u · t = 0}. For an arbitrary, but fixed s ∈ V \ t⊥ let
¯ : V → t⊥, defined by w̄ = w+ (w · t)s, be the projection onto t⊥ in direction
s. For (w, f) ∈ Xk let

ntw,f = 1 +

(
Atw,f (w · t)Btw,f

Dt
w,f

)
∈ Hom(Xk ⊕ Y k, Xk ⊕ Y k), with

Atw,f =

(
·tw̄ ·tf
0 0

)
∈ Hom(Xk, Xk)

Btw,f =

(
∧w̄ ∧f + (∗w̄) ∧ z + (·t)w̄ ∧ z (·t)zβ(f)
0 ∧w̄ β(f)

)
∈ Hom(Xk, Y k)

Dt
w,f =

 (πt∧ ∧ w̄) πt∧ ∧ f + πt∧ ∗ w̄ ∧ z + (·Λ(t))w̄ ∧ z (·Λ(t))zβ(f)
0 πt∧ ∧ w̄ πt∧β(f)
0 0 0

 ∈ Hom(Y k, Y k)
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with respect to the decomposition Xk = V ⊕ X, Y k = ∧2(V ) ⊕ (V ∧ X) ⊕ Y
and where

Λ : V → ∧2(V ), v 7→
∑
i<j vivj(ei ∧ ej),

πt∧ : ∧2(Xk)→ Xk, (v ∧ u) 7→ (v · t)u+ (u · t)v
∧w : Xk → ∧2(Xk), v 7→ v ∧ w,
·t : V → F2, v 7→ v · t
∗w : V → V, v 7→ v ∗ w,

The last three maps should be understood as applications of the corresponding
bilinear map on the “omitted” argument. The proofs of the subsequent lemmas
on the automorphisms are obtained by straightforward standard verifications
and therefore are omitted. The following useful identities are also straightfor-
ward to prove:

u ∧ v = Λ(u) + Λ(u+ v) + Λ(v),

u ∗ v = (u · v)u+ Λ(u)πv∧,

(v · t)(u · t) = (u ∗ v) · t+ (u ∧ v) · Λ(t),

Set N t
a = {ntw,f | w · t = a, f ∈ X}, N t = 〈N t

0, N
t
1〉. Note that N t

a does not

depend on the choice of s in the definition of w̄ (choosing s̃ ∈ V \ t⊥ instead
would lead to the maps ntw+w·t(s+s̃),f , a permutation on the elements of N t

a).

Lemma 6.13. The group N t
a fixes Sta elementwise and acts regularly on Sta+1.

More precisely,

S(v,e)(u, x)ntw,f = S(v,e)+((v+w)·t)(w̄,f)((u, x) + (u · t)(w̄, f)).

Corollary 6.14. Let t ∈ V ∗. Then N t = N t
0 ×N t

1 is an extension group of S,
the k times iterated extension of Sβ, whose orbits on S are St0, St1. The k times
iterated extension of Sβ has 2k − 1 extension groups.

Notation. Let α ∈ G = GL(V ) and (ai,j), the matrix of the map α with
respect to the basis ei, i.e. uα =

∑
i,j uiai,jej . Denote by ai the i-th row of

(ai,j). Define

µα =

(
Aα

Fα

)
, Aα =

(
α

1

)
, Fα =

 α∧ ρα ∧ z
α∧

1

 ,

where α∧ = ∧2(α⊕ 1X) ∈ GL(∧2(V ⊕X)), i.e.

α∧ : ∧2(V )→ ∧2(V ), v ∧ u 7→ vα ∧ uα,
α∧ : V ∧X → V ∧X, v ∧ x 7→ vα ∧ x, and
ρα : ∧2(V )→ V, ei ∧ ej 7→ ai ∗ aj .

A comment about the map ρ : G → Hom(V,∧2(V )) given by α 7→ ρα: It
is well known, that the F2G-module S2(V ) is indecomposable, has the unique
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submodule ∧2(V ), and that S2(V )/ ∧2 (V ) is isomorphic, as an F2G-module,
to the natural module V . Hence ρα can be interpreted as an element of the
extension product Ext1(V,∧2(V )) and

G 3 α 7→
(
α ρα
0 ∧2(α)

)
stands for the representation of G on S2(V ).

Lemma 6.15. Let α ∈ G. Then

S(v,e)(u, x)µα = S(vα,e)(uα, x).

Proof. A straightforward verification. Observe that uα ∗ vα = (u ∗ v)α + (u ∧
v)ρα.

As the hyperplanes t⊥ of V form one orbit under G, the partitions (St0,St1)
and thus the extension groups form one orbit under the automorphisms {µα |
α ∈ G}.

We now turn to the APN case and continue to use the notation introduced
in the DHO-section. Let f(V ) = (fv | v ∈ V ) be a family of (APN) functions
fv : X → Y (indexed with v ∈ V ). Define

Ff(V ) : Xk → Y k, (v, x) 7→ (Λ(v), v ∧ x, fv(x)). (3)

Observe that for k = 0 we have f(V 0) = (f0), ∧2(V 0) and V 0 ∧ X are 0-
dimensional and hence Ff(V 0) is f0 itself.

Lemma 6.16. Let k > 0. Then Ff(V ) is the k-fold extension with respect to the

functions in the family f(V ). More precisely: Let V ⊂ V be the space generated
by e1, . . . , ek−1 and f̃v = fv+ek . Then Ff(V ) is isomorphic to the extension of
the functions Ff(V ) and Ff̃(V ).

Proof. The extension of f0, f1 is defined to be Ff0,f1(v, x) = (vx, vf1(x) + (v +
1)f0(x)), (v, x) ∈ F2 ⊕X. In our situation we put f0 = Ff(V ), f1 = Ff̃(V ) and

we have to adapt the notation by substituting x by (v̄, x),∈ Xk−1 = V ⊕X and
v ∈ F2 by vk. With this the extension is F = Ff0,f1 : F2×Xk−1 → Xk−1×Y k−1,
defined by

F (vk, v̄, x) = (vk(v̄, x), vkf1(v̄, x) + (1 + vk)f0(v̄, x))

Then f0(v̄, x) = (Λ(v̄), v̄ ∧ x, fv̄(x)), f1(v̄, x) = (Λ(v̄), v̄ ∧ x, fv̄+ek(x)), and so

F (vk, v̄, x) = (vk(v̄, x),Λ(v̄), v̄ ∧ x, vkfv̄+ek(x) + (1 + vk)fv̄(x))

Apply the projection π : (F2 ×Xk−1)⊕ (Xk−1 × Y k−1)→ Xk ⊕ Y k as defined
in the proof of Lemma 6.12. We have

F (v̄ + vkek, x) = (Λ(v̄) + vkv̄ ∧ ek, v̄ ∧ x+ vkek ∧ x, vkfv̄+ek(x) + (1 + vk)fv̄(x))

= (Λ(v), v ∧ x, fv(x)) = Ff(V )(v, x), with v = vkek + v̄.
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We now turn to Extensions Ff(V ) which are quadratic APN functions. By
Proposition 2.6, Ff(V ) is equivalent to a k-fold extension where the fv, for v ∈ V ,
are all equal to the a quadratic APN function f . From now on we restrict
ourselves to this case.

Notation. Denote the graph of Ff(V ) by S = SFf(V )
= {S(v, x) | (v, x) ∈ Xk}

where,
S(v, x) = (v, x, Ff(V )(v, x)) = (v, x,Λ(v), v ∧ x, f(x)).

Let α ∈ G, and let L(α) : V → V ∧ V be the function u 7→
∑
i ui(Λ(ai)),

with ai the i-th column of the matrix of α with respect to the basis e1, . . . ek.
Define

µα =


α L(α)

1
α∧

α∧
1

 ∈ GL(Xk ⊕ Y k).

Lemma 6.17. We have

S(v, x)µα = S(vα, x), α ∈ G, (v, x) ∈ Xk

Proof. A straightforward verification. Observe that Λ(u)α∧ = Λ(uα) + uL(α).

Notation. We define

ηtw = 1 +

(
A B

D

)
, ηtw = ηtw + (w · t)(w̄, 0,Λ(w̄), 0, 0),

where

A =

(
·tw̄ 0
0 0

)
,

B =

(
∧((w · t)w̄) + (·t)Λ(w̄) + (∗t) ∧ w̄ 0 0

0 ∧((w · t)w̄) 0

)
,

D =

 (πt∧ ∧ w̄)
(πt∧ ∧ w̄)

0

 .

Lemma 6.18. We have

S(v, x)ηtw = S(v + (v + w) · t w̄, x), t ∈ V ∗

Notation. We define

δtw,y =


1 ·ty ∗t ∧ y + ∧(w · t)y ·tf(y)

1 β(w · t y)
1 πt∧ ∧ y

1 πt∧β(y)
1

 ,
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and set
δ
t

w,y = δtw,y + (w · t)(0, y, 0, 0, f(y)).

Lemma 6.19. We have

S(v, x)δ
t

w,y = S(v, x+ (v + w) · t y), t ∈ V ∗

Hence

νtw,y = δ
t

w,yη
t
w : S(v, x) 7→ S(v + (v + w) · t w̄, x+ (v + w) · t y), (w, y) ∈ Xk,

and thus we have the extension groups.

Corollary 6.20. Let t ∈ V ∗ a ∈ F2, N t
a = {νtw,y | w · t = a,w ∈ V, y ∈ X} and

Sta = {S(v, x) | v · t = a, v ∈ V, x ∈ X}. The group N t
a stabilizes Sta element

wise and acts regularly on Sta+1.

As in the DHO case, the 2k − 1 extensions groups are conjugated by the µα.

6.4 Small DHOs and further examples

We now give examples with more than one extension group. We start with a
discussion of the DHOs of small rank, which naturally lead to the Huybrechts
DHOs and the Buratti-Del Fra DHOs, being examples of DHOs with more than
one extension group. We end the subsection with examples of APN functions
with this property.

We modify the definition of a DHO S of Section 2 by defining S as a family,
instead of a set, of subspaces. For n ≥ 2 both definitions coincide due to the
DHO condition that any two members of a DHO intersect 1-dimensionally. With
that the (uniquely determined) DHO of rank 0 is the null-space and the DHO
of rank 1 consists of two copies of F2. The DHOs of rank 2 and 3 are known
(see e.g. [5, Appendix]).

The DHO of rank 0 can be realized as Sβ , for β the zero-map. It is diagonally
represented with respect to zero. Applying the extension (still in the form of
Equation (1)) leads us to the DHO Sβ̃ of rank 1, with β̃ the zero-map. The
DHO of rank 1 has the trivial group as extension group.

Further extensions of the DHO of rank 1, with respect to z = 0, lead to
the standard form of the Huybrechts DHO Sβ with xβ(e) = x ∧ e. Thus the
Huybrechts DHO of rank k can be seen as the k-th extension of the DHO of
rank 0, i.e. the null-space. This also nicely ‘explains’ the the 2k − 1 extension
groups of the Huybrechts DHO.

The DHO of rank 1, Sβ̃ (β̃(e) = 0), is also diagonally represented with
respect to z = 1. The DHO of rank 2 is unique, has a unique elementary
abelian translation group and only one class, of length 3, of extension groups.
Thus the extensions of the DHO of rank 1, with respect to z = 1, lead to an
isomorphic representation with another ‘β’.
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Denote the twofold extensions of the DHO of rank 1, with respect to z as
Sβz , z ∈ {0, 1}. Again, there is only one DHO of rank 3 in F6

2 with a translation
group, thus Sβ0

and Sβ1
are isomorphic. However the standard translation

groups of these two representations differ. The standard translation group of
Sβ0 is normal and the standard translation group of Sβ1 is in a class of length
7 in the full automorphism group (these are the two only classes of translation
groups for this DHO, see [5, Appendix]). The DHO has only one class, of length
7, of extension groups (as it should being the Huybrechts DHO).

There are two further DHO of rank 3; both have no extension groups.

For each k > 2, the k-fold extension of the DHO of rank 1, with respect to
z = 1, Skβ1

, is the Buratti Del-Fra DHO (which has 2k − 1 extension groups).

An easy way to see this identification, is to observe that S3
β1

is identical to a
coordinatized form of the Buratti Del-Fra DHO of rank 4 given in [4, Example
3.6.]. Then use the fact that the Buratti Del-Fra DHO of higher rank can be
obtained as an iterated extension of this one (see again [4]).

Set X = Fn2 with canonical basis B = {e1, . . . , en} and Y = ∧2(X). The
Huybrechts map Λ : X → Y , Λ(x) =

∑
i<j xixjei ∧ ej , as already defined in

Section 6.3, is a quadratic APN function. Analogously to the Huybrechts DHO,
it is the k-fold extension of the zero-function (of rank 0) and thus has 2k − 1
extension groups.

6.5 Non-quadratic extensions of APN functions

We now discuss non-quadratic extensions of quadratic APN functions that have
the property that N is not normal in the automorphism group.

Example 6.21. Set f0 = Λ, the Huybrechts map, eij = ei ∧ ej and let n ≥ 4.
We consider extensions F = Ff0,f1 , where f1(x) = f0(x)α, α ∈ GL(Y ).

Claim: The extension F is not quadratic if α is a transvection in GL(Y ). In
particular F is not quadratic in the following examples (a) and (b).

Assume the converse. By assertion (b) of Theorem 4.4 there exists φ ∈

Autop(f0) of the form φ =

(
λ γ

α

)
. On the other hand, by Theorem [5,

Thm. 3.10] Autop(f0) ' Autop(Hn), where Hn is the Huybrechts DHO of
rank n, which is the alternating DHO associated with f0 in the sense of The-
orem [5, Thm. 2.4]. By [9] Aut(Hn) ' 2n · SL(n, 2), which implies that
Autop(f0) ' SL(n, 2). Note that φ acts on Y = CU (T ), T the translation
group, as a transvection α. But, as an SL(n, 2)-module, Y is isomorphic to
∧2(X), with X the natural SL(n, 2)-module. Since n > 3, a transvection in
SL(n, 2) does not induce a transvection on Y ' ∧2(X), a contradiction. This
shows the claim.

(a) Define the linear map α ∈ GL(Y ) by (
∑
i<j zijeij)α =

∑
i<j zijeij +

z2,n−1en−1,n. Define f1 : X → Y by f1(x) = f0(x)α and denote by F the
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extension of f0 and f1. A typical element from S0 has (in coordinates) the form

(0 | x | 0 | x1x2, x1x3, . . . , x1xn, . . . , xn−1xn)

and a typical element from S1 has (in coordinates) the form

(1 | 0 | y | y1y2, . . . , y1yn, . . . , yn−2yn, y2yn + yn−1yn).

Define τ ∈ GL(U) by (a | x | y | z)τ = (a′ | x′ | y′ | z′), with a′ = a + x2 + y2,
x′ = (x1+z12, y2, x3+z23, . . . , xn+z2,n), y′ = (y1+z12, x2, y3+z23, . . . , yn+z2,n),
and z′ = (z12, . . . , zn−2,n, z2,n + zn−1,n).

Claim: The map τ is an automorphism that does not fix S0 or S1. In
particular G has more than one extension group.

Let v = (a | x | y | z) be an element in S. Consider for instance the case
a = y2 = 1. Then v lies in S1 (i.e. x = 0) and it has the form

v = (1 | 0 | y | y1y2, . . . , yn−2yn, y2yn + yn−1yn).

Then

vτ = (0 | y, | 0 | y1y2, . . . , yn−2yn, y2yn + (y2yn + yn−1yn))

= (0 | y, | 0 | y1y2, . . . , yn−2yn, yn−1yn)

lies in S0. For a = 1 and y2 = 0 again v lies in S1 (i.e. x = 0) and it has the
form

v = (1 | 0 | y | y1y2, . . . , yn−2yn, y2yn+yn−1yn) = (1 | 0 | y | y1y2, . . . , yn−2yn, yn−1yn).

We compute vτ = v. Similar computations for v = (a | x | y | z) ∈ S and (a, x2)
equal to (0, 0) or (0, 1) show that v ∈ S0 and vτ ∈ S. The claim follows.

(b) Define the linear map α ∈ GL(Y ) by (
∑
i<j zijeij)α =

∑
i<j zijeij +

z1,2en−1,n. Define f1 : X → Y by f1(x) = f0(x)α and denote by F the extension
of f0 and f1. A typical element from S0 has (in coordinates) the form

(0 | x | 0 | x1x2, x1x3, . . . , x1xn, . . . , xn−1xn)

and a typical element from S1 has (in coordinates) the form

(1 | 0 | y | y1y2, . . . , y1yn, . . . , yn−2yn, y1y2 + yn−1yn).

Define τr ∈ GL(U), r = 1, 2, by

(a | x | y | z)τr = (a(r) | x(r) | y(r) | z(r)),

with (using the convention zij = zji)

1. a(r) = a+ xr + yr,

2. x(r)r = yr and x(r)i = xi + zir for i 6= r,
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3. y(r)r = xr and y(r)i = yi + zir for i 6= r,

4. z(r) = (z12, . . . , z1n, z23, . . . , zn−2,n, zn−1,n + z12).

Claim: The maps τr’s are automorphisms and |S0 ∩S0τ1 ∩S0τ2| = 2n−2. In
particular F admits more than three extension groups.

We consider first the case τ = τ1. Let v = (a | x | y | z) be an element in S.
Case a = 0 (i.e. v ∈ S0, y = 0). Then

vτ = (x1 | 0, x2+x1x2, . . . , xn+x1xn | 0, x1x2, . . . , x1xn | x1x2, . . . , xn−2xn, x1x2+xn−1xn).

If x1 = 0 then v = vτ and if x1 = 1 then

vτ = (1 | 0 | 0, x2, . . . , xn | x1x2, . . . , xn−2xn, x1x2 + xn−1xn) ∈ S1.

In particular S0 ∩ S0τ1 is the set of elements in S0 with x1 = 0.
Case a = 1 (i.e. v ∈ S1, x = 0). Then

vτ = (1+y1 | y1, y1y2, . . . , y1yn | 0, y2+y1y2, . . . , yn+y1yn | y1y2, . . . , (y1y2+yn−1yn)+y1y2).

If y1 = 0, then v = vτ and if y1 = 1, then

vτ = (0 | 1, y2, . . . , yn | 0 | y1y2, . . . , yn−1yn) ∈ S0.

Thus τ1 is an automorphism.
By symmetry τ2 is an automorphism too and S0∩S0τ2 is the set of elements

in S0 with x2 = 0. The claim follows.

7 Automorphisms

Let G be the automorphism group of a DHO or the linear part of the auto-
morphism group of an APN function. We assume that the conjugacy class C of
extension groups in G is not empty. We will determine the group H = 〈C〉 gen-
erated by extension groups. It turns out that the structure of H only depends
on the size of C. It will be shown that this group is the extension of a 2-group of
nilpotency class ≤ 2 by SL(k+1, 2), k > 0. The proof is purely group theoretic,
i.e. it does not depend on the action of the extension groups on the underly-
ing space. As a consequence we get a factorization G = HNG(N), N ∈ C, of
the automorphism group. We assume again that X and Y are F2-spaces with
dimX = n and dimY = m. We always assume

dimX = n ≥ 4.

Theorem 7.1. Let β : X → Hom(X,Y ) be a monomorphism that defines a
bilinear DHO Sβ that is ambient in X ⊕ Y . Set G = Aut(S), S = Sβ. Let C
be the set of extension groups, G∗ = 〈C〉 and N ∈ C. Then G = G∗NG(N),
NG(N) = NL, where L is given in Section 2. Moreover one of the following
holds:
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(a) β and βo are not isotopic, C = {N}, G is not transitive on S, and G is
equal to NG(N).

(b) β and βo are isotopic, C = {N}, G is transitive on S, and G = NG(N).

(c) β and βo are isotopic, |C| > 1, G is transitive on S. There exists k
with k ∈ {1, . . . , n} such that G∗/P ' SL(k + 1, 2), where P = O2(G∗).
Moreover Q = Z(G∗) is elementary abelian of order 2n−k, [P, P ] ≤ Q,
P/Q has order 2(k+1)(n−k+1), and all composition factors of G∗ on P/Q
are natural SL(k + 1, 2)-modules.

Remark 7.2. If G contains a translation group T , we are in case (b) or (c).
Then |T : T ∩ N | = 2 and τ ∈ T − (T ∩ N) interchanges the two N -orbits. If
|C| > 3, then by Corollary 6.10 S is a symmetric, diagonally represented DHO,
in particular G contains translation groups.

Theorem 7.3. Let fi : X → Y be quadratic APN functions for i = 0, 1, which
are ambient in X ⊕ Y . Set F = Ff0,f1 , G = Aut(F ) and G = A(F ). Let C
be the set of extension groups, G∗ = 〈C〉 and N ∈ C. Then G = G∗NG(N),
NG(N) = NL, where L is given in Section 2. Moreover one of the following
holds:

(a) f0 and f1 are not isotopically linked, C = {N}, G is not transitive on
S = SF , and G = NG(N).

(b) f0 and f1 are isotopically linked, C = {N}, G is transitive on S, and G is
equal to NG(N).

(c) f0 and f1 are isotopically linked, |C| > 1, G is transitive on S. There exists
k with k ∈ {1, . . . , n} such that G∗/P ' SL(k + 1, 2), where P = O2(G∗).
Moreover Q = Z(G∗) is elementary abelian of order 2n−k, [P, P ] ≤ Q,
P/Q has order 2(k+1)(n−k+1), and all composition factors of G∗ on P/Q
are natural SL(k + 1, 2)-modules.

Remark 7.4. If G contains a translation group T , we are in case (b) or (c).
Then |T : T ∩N | = 2 and τ ∈ T − (T ∩N) interchanges the two N -orbits.

We prove the two theorems by a series of lemmas. The symbol S denotes
the extension of a bilinear DHO Sβ (which is ambient in its defining space) in
the DHO case, while in the APN case this symbol denotes the graph of the
extension F = Ff0,f1 of quadratic APN functions f0 and f1 (which are both
ambient in the same defining space). Also G = Aut(S) in the DHO case, while
in the APN case we have G = Aut(F ) and G = A(F ) is the linear part of G.

By Theorem 5.1 C is at conjugacy class in G∗, i.e.

C = {Nγ | γ ∈ G∗}.

Our main task will be to determine the group 〈C〉. By our assumptions all results
of Sections 3 and 5 are available. The starting point is the case |C| = 3, where
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Lemma 5.4 provides the structure of 〈C〉. The general case will be obtained by
a somewhat tedious induction on |C|, which results in Theorem 7.11.

Again we only work in the DHO case as all arguments can be
carried over one to one to the APN case: Namely, we do not need the
linear representation of the automorphism group on the vector space U any
more, but only use the permutation representation on the set S. The following
proposition is part of the folklore on linear groups.

Proposition 7.5. Let W be a finite dimensional space over Fq and G = SL(W ).
For a subspace U of W let GU = {σ ∈ G | σU = 1, σW/U = 1} be the centralizer
of the chain 0 ⊆ U ⊆ W . If H is a hyperplane, then GH − {1} is the set
of all transvections that act trivially on H. Let H be a set of hyperplanes,
D =

⋂
H∈HH, dimW/D = k, and set X = 〈GH | H ∈ H〉. Let p be the

characteristic of Fq. Then the following hold:

(a) X/Op(X) ' SL(k, q).

(b) Op(X) is an elementary abelian p-group of order qk(n−k) and Op(X) is
generated by the σ ∈ GH , H ∈ H, with σW/D = 1. Moreover Op(X) is the
direct sum of n − k natural SL(k, q) modules (with X/Op(X) ' SL(k, q)
acting by conjugation).

(c) Let H be any hyperplane containing D. Then for any K ∈ H there exists
a γ ∈ X, such that H = Kγ and GH = GγK .

(d) Let U1 and U2 be subspaces of D such that U1 ⊂ U2 and dimU2/U1 = 1.
Let Ei = {σ ∈ Op(X) | W (1 − σ) ⊆ Ui} for i = 1, 2. Then E2/E1 is a
natural SL(k, q)-module.

(e) Let σ ∈ X, such that σ normalizes each group GH , H ∈ H. Then σ ∈
Op(X).

Lemma 7.6. Let Nγ , Nδ ∈ C − {N}, be such that Nγ 6= Nδ, but Nγ ∩ N is
equal to Nδ ∩N . Then:

(a) N,Nγ , Nδ are the elements of C that lie in H = 〈N,N δ〉.

(b) NNγ (N) ≤ NNδ(N)N .

Proof. By Lemma 5.4 we can assume that δ ∈ H has order 3, so that Nδ2 ≤ H
too. Let T0 and T1 be the orbits of Nδ. Then Nδ2 has (as we have seen) the
orbits (S0 ∩ T0) ∪ (S1 ∩ T1) and (S0 ∩ T1) ∪ (S1 ∩ T0).

Pick 1 6= τ ∈ NNγ0 (N). By assumption τ centralizes the group Nδ ∩N and
therefore this group leaves invariant U0 = FixS(τ) and U1 = S − U0. So the
two sets are the union of the orbits of Nδ ∩ N . But as Nγ 6= Nδ we see that
{U0,U1} = {(S0 ∩ T0) ∪ (S1 ∩ T1), (S0 ∩ T1) ∪ (S1 ∩ T0)}, which shows that Nδ2

and Nγ have the same orbits. In particular these groups normalize each other
and (a) follows by Theorem 3.6.

By Lemma 5.4 O2(H) = NN (Nδ)NNδ(N) and NNγ (N) ≤ O2(H) and (b)
follows.
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Lemma 7.7. Let Nδ ∈ C − {N}. Set H = 〈N,N δ〉 and let N,Nγ , Nδ be the
elements of C that lie in H. Suppose τ ∈ L0N −N is conjugate in G to some
element in N0 and let τ ′ ∈ Nγ

0 induce the same automorphism on N0 as τ .
Then τ lies in Nδ

i or Nγ
i , i = 0 or 1.

Proof. By assumption ττ ′ ∈ CG(N0) = N , say ττ ′ = ν0ν1, where νi ∈ Ni,
i = 0, 1. As τ ′ normalizes the groups Ni’s, we have

1 = τ2 = ν0ν
τ ′

0 ν1ν
τ ′

1 ,

which implies that τ and τ ′ centralize ν0 and ν1. By Lemma 5.5 (with T0 =
FixS(τ ′), T1 = S − T0) we have

|FixSi(τ)| = |Si ∩ Tj | = 2n−1

for i, j ∈ {0, 1}. We have FixS0(τ ′ν0) = S0 ∩ T0. If ν1 = 1, then FixS0(τ) =
S0 ∩ T0.

Now assume that ν1 6= 1; then ν1 fixes or interchanges the sets S0 ∩ T0

and S0 ∩ T1. If, however, ν1 interchanges these sets, then FixS0(τ) = ∅, a
contradiction. So ν1 fixes both sets and τ = τ ′ν0ν1 acts fixed-point-freely on
S0 ∩ T0. So FixS0(τ) = S0 ∩ T1 in this case.

Arguing by symmetry, we get that FixS1(τ) equals S1 ∩ T0 or S1 ∩ T1. This
implies that the sets U0 = FixS(τ) and U1 = S − U0 coincide with the orbits
of Nγ or Nδ. Thus by Lemma 3.10 τ lies in one of these groups. The proof is
complete.

Lemma 7.8. Let ∅ 6= M ⊆ C − {N}. Set H = 〈NM (N) | M ∈ M〉N ,

H0 = H ∩NL0, and Ñ0 =
⋂
M∈MNN0

(M). Let |Ñ0| = 2n−k. Then:

(a) |H : H0| = 2.

(b) H0/N ' E · SL(k, 2) and E is elementary abelian of order 2k(n−k).

(c) H/O2(H) ' SL(k, 2) and O2(H)/N is elementary abelian. Moreover, we
have

⋂
M ′∈MNM (M ′) ∩NM (N) ≤ O2(H) for M ∈M.

(d) Let N̂0 be a subgroup of index 2 in N0 which contains Ñ0. Then there exist

precisely two groups M and M ′ in C, such that N̂0 = NN0
(M) = NN0

(M ′).

Moreover N̂0 = NN0
(M) = NN0

(M ′) ≤ H0.

Proof. Using CG(N) = CG(N0) = N we can (and will) consider H/N as a
subgroup of SL(N) and H0/N as a subgroup of SL(N0).

(a) We know H ≤ NG(N) = NL, H0 ≤ NL0, and |NL : NL0| ≤ 2, that
is, |H : H0| ≤ 2. By (d.1) of Lemma 5.5 there is an element in NM (N) that
interchanges S0 with S1. Hence |NM (N) : NM (N0)| = 2 and we get assertion
(a).

(b) By Lemma 5.4 |NM (N)| = 22n−1 and (M ∩ N) × NM0
(N) has order

22n−2, so that NM (N0) = (M ∩ N) × NM0(N) follows. Thus NM (N0)N/N
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induces on N0 (as a subgroup of SL(N0)) an elementary abelian group of or-
der 2n−1, which fixes the subspace NN0

(M) of dimension n − 1 pointwise, i.e.
NM (N0)N/N is the full centralizer in SL(N0) of the hyperplane NN0

(M). We
recall from Proposition 7.5 that the centralizer of the subspace (and subgroup)

Ñ0 in SL(N0) has the shape X = E · SL(k, 2), with E as in assertion (b). Then
by Proposition 7.5 〈NM (N0) | M ∈ M〉 already induces the group X. But
H0/N is isomorphic to a subgroup of X, i.e. H0/N ' X.

(c) As NM (N0) = NM (N1), we see that this group induces in SL(N1) an
elementary abelian group of order 2n−1, which fixes the subspace NN1(M). Set

P0 = O2(H0) and Ñ1 =
⋂
M∈MNN1

(M). Then H0/P0 ' SL(k, 2) induces

on Ni/Ñi, for i = 0, 1, the group SL(Ni/Ñi). Let σ ∈ H − H0, then σ inter-
changes N0 with N1 by conjugation. In particular the mapping H0/P0 3 τP0 7→
σ−1τσP0 ∈ H0/P0 induces an equivalence transformation between the two rep-

resentations of H0/P0 on N0/Ñ0 and N1/Ñ1 = N0σ/Ñ0σ. Then σ induces an
inner automorphism on H0/P0. But this group is isomorphic to its group of
inner automorphisms. This shows that the 2-radical O2(H/P0) of H/P0 has
order 2.

Let P be the pre-image ofO2(H/P0). Then |P : P0| = 2. NowNM (N)P/P =
NM0

(N)P/P (as NM0
(N)P/P is self-centralizing in H/P ' SL(k, 2)), i.e P =

(P ∩ NM (N))P0 = 〈τ〉P0 for some τ ∈ P ∩ NM (N). We have CP0/N (τ) ≥
NM0(N)N/N . By symmetry NM ′(N) covers P/P0 for each M ′ ∈ M. Hence
there exists a σ ∈ P0, such that τσ ∈ NM ′(N). ThusNM ′0(N)N/N ≤ CP0/N (τσ) =
CP0/N (τ). By assertion (a) of Proposition 7.5 τ centralizes P0/N and hence P/N
is elementary abelian.

Now assume that σ ∈
⋂
M ′∈MNM (M ′) ∩ NM (N). Let M1 ∈ M. Then

(M1
0 )σ = M1

a for some a ∈ {0, 1}. Also by Lemma 5.4 NM1
0
(N) ≡ NM1

1
(N)

(mod N), so that NM1
0
(N)σN/N = NM1

0
(N)N/N . By (f) of Proposition 7.5

(applied to H/P ) we see that σ ∈ P .
(d) By assertion (d) of Lemma 7.5 there exists γ ∈ H0, such that (M ′0)γ is

the group of elements in SL(N0) that fix the hyperplane N̂0 pointwise. Since
Mγ ≤ 〈Mγ , N〉, assertion (d) follows from Lemma 7.6.

Remark 7.9. (a) Let M be in M−{N}. By Lemma 5.4 the groups NM (N0)

and NN (N0) centralize each other. So both groups Ñi, i = 0, 1, lie in the

center of P0. As we have seen σ ∈ P − P0 interchanges Ñ0 and Ñ1, so that
[Ñ0× Ñ1, σ] = [Ñ0× Ñ1, P ] has order 2n−k. For a given M ∈M we may choose

σ ∈ NM (N). From Lemma 5.4 we deduce that [Ñ0 × Ñ1, P ] ≤ M ∩ N . This
implies that |N ∩

⋂
M∈MM | ≥ 2n−k.

(b) Under the assumptions of the lemma the group H contains precisely
2(2k − 1) + 1 = 2k+1 − 1 groups, which lie in C. Moreover E ∈ C lies in H, if
and only if NN0

(E) contains
⋂
M∈MNN0

(M): By Lemma 5.4 all groups from
C, which lie in H, are already conjugate in H. So for any M ∈ C, M ≤ H
we have that NM0(N) contains Ñ0 =

⋂
M∈MNN0(M) by assertion (b). On the

other hand, as H0/O2(H0) ' SL(k, 2), the group H0 contains precisely 2k − 1
groups of the form NM (N0)N , M ∈ C − {N}. By Lemma 7.7 we see that for
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E ∈ C − {N}, NE(N0)N ≤ H0, there is precisely one more E′ ∈ C for which
NE(N0)N and NE′(N0)N induce the same automorphism group on N0. Also
there exists γ ∈ H0 and M ∈ M, such that NE(N0)N and NMγ (N0)N induce
the same automorphism group on N0. By Lemma 7.7 E = Mγ or E′ = Mγ .
The assertion follows.

For a subgroup K ≤ G and a subsetM⊆ C, in what follows we writeM∩K
for the set of those M ∈M that lie in K.

Lemma 7.10. Let N ∈M ⊆ C, |M| > 1 and set M? = 〈M〉 ∩ C. Then:

(a) |M?| = 2k+1 − 1 for some k ∈ {1, . . . , n}.

(b) The group
⋂
M∈MNN (M) =

⋂
M?∈M? NN (M?) has order 22n−k and the

group
⋂
M∈MNN0

(M) =
⋂
M?∈M? NN0

(M?) has order 2n−k.

Proof. Set Ñi =
⋂
M∈MNNi(M), for i = 0, 1 and define k by |Ñ0| = 2n−k

(= |Ñ1| by Lemma 7.8). Then (a) holds by Remark 7.9. We prove assertion (b)
by induction on k.

Case k = 1. Then M? = {E,M,N} ⊆ H = 〈M,N〉, where M ∈ M− {N}.
With the notation of Lemma 5.4 we have P ∩N = NN (M) = NN (E), P0∩N =
NN0(M)×NN1(M) = NN0(E)×NN1(E) and assertion (b) follows.

Assume now k > 1 and pick two M,M ′ ∈ M, such that N 6≤ 〈M,M ′〉. Let
{M,M ′, E} = 〈M,M ′〉 ∩ C. An element τ ∈ NN (M) ∩NN (M ′) normalizes M ,
M ′ and 〈M,M ′〉 and hence E too. Thus

NN (M) ∩NN (M ′) = NN (M) ∩NN (M ′) ∩NN (E). (4)

Similarly,

NN0(M) ∩NN0(M ′) = NN0(M) ∩NN0(M ′) ∩NN0(E). (5)

Denote by M̃ the set of all those M̃ ∈ C that lie in groups of the form 〈M,M ′〉,
M,M ′ ∈ M. Then the k = 1 case and Equations (4) and (5) show that⋂
M∈MNN (M) =

⋂
M̃∈M̃NN (M̃) and

⋂
M∈MNN0

(M) =
⋂
M̃∈M̃NN0

(M̃).
Induction on the size of M shows that these equation remain to be true if
we replace M̃ by M?.

It remains to show that |
⋂
M∈MNN (M)| = 22n−k and |

⋂
M∈MNN0(M)| =

22n−k. To see this we choose M1, . . . ,Mk ∈ M, such that Ñ0 =
⋂
iNN0

(M i)
and we set M0 = {N,M1 . . . ,Mk}. Then M0 satisfies the assumptions of the

lemma, in particular M? = 〈M0〉 ∩ C and Ñ =
⋂
M∈MNN (M) =

⋂
iNN (M i).

Since |N : NN (M i)| = 2 we have |Ñ | ≥ 22n−k and |Ñ0| ≥ 2n−k. However a non-
trivialH0/N -module has dimension at least k (asH0/O2(H0) ' SL(k, 2)), which

implies that |N0/Ñ0| ≥ 2k, and thus |Ñ0| = 2n−k. Also N/Ñ is a nontrivial

H/O2(H)-module implying (as before) that |N/Ñ | ≥ 2k. Hence we obtain that

|Ñ | = 22n−k.
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We call a non-empty subset M of C saturated if M = 〈M〉 ∩ C. We know
by Remark 7.9 that |M| = 2k+1− 1 for some k > 0. For any M ∈M and a = 0
or 1 we set:

M̃ =
⋂

M ′∈M
NM (M ′), M̃a =

⋂
M ′∈M

NMa(M ′).

With these conventions we prove the following generalization of Lemma 5.4:

Theorem 7.11. Let M be a saturated subset of C such that |M| = 2k+1 − 1,
and set H = 〈M〉. Then the following hold:

(a) Q = Z(H) =
⋂
M∈MM is elementary abelian of order 2n−k.

(b) For any N0, N1, . . . , N ` ∈M, 1 ≤ ` < k, with |N0∩N1∩· · ·∩N `| = 2n−`,
there exist N `+1, . . . , Nk ∈M with H = 〈N0, N1, . . . , Nk〉. Moreover, we
have Q = N0 ∩ · · · ∩ Nk. For the remaining assertions N0, N1, . . . , Nk

will be as here.

(c) Let Sja be the two orbits of N j on S, where 0 ≤ j ≤ k and a = 0, 1. For
a = (a0, a1, . . . , ak) ∈ {0, 1}k+1 define

S(a) = S(a0, a1, . . . , ak) =

k⋂
i=0

Siai

and set
D = {S(a) | a ∈ {0, 1}k+1}.

Then |S(a)| = 2n−k for all a ∈ {0, 1}k+1 and |D| = 2k+1. Moreover Q
acts regularly on S(a) for all a and D is the set of Q-orbits.

(d) Set P0 = 〈M̃a | M ∈ M, a = 0, 1〉. Then P0 is elementary abelian of
order 2(k+2)(n−k) and

P0 = Q× Ñ0
0 × · · · × Ñk

0 = Q× Ñ0
1 × · · · × Ñk

1 .

(e) Set P = 〈M̃ | M ∈ M〉. Then P = O2(H) = 〈Ñ0, . . . , Ñk〉 and P0 is the
kernel of the action of P on D. The group P has nilpotency class at most
2 and P/Q is elementary abelian. The group P/P0 has order 2k+1 and it
acts regularly on D.

(f) H/P ' SL(k+1, 2) and every H-composition factor on P/Q is the natural
SL(k + 1, 2)-module.

Proof. We prove the theorem by induction on k. We also may assume without
loss of generality that N ∈M.

Case k = 1. Let M,N be two extension groups in M. By Lemma 5.4 the
group H = 〈M,N〉 contains three groups from C, i.e. H = 〈M〉. Lemma 5.4,
Lemma 5.6, and Remark 5.7 imply assertions (a) - (f).
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Case k > 1. We start with assertions (a) and (b). SetH` = 〈N0, N1, . . . , N `〉,
M` = H` ∩C and assume |M`| = 2s+1− 1. Without loss of generality N = N0.
As |NN0

(N i)| = 2n−1 for i ≥ 1, we have |
⋂

0≤i≤`NN0
0
(N i)| = 2n−s ≥ 2n−`, i.e.

s ≤ `. By Lemma 7.10
⋂

0≤i≤`NN0
0
(N i) =

⋂
M∈M` NN0

0
(M). If s < `, then by

induction Z(H`) = N0∩ · · ·∩N ` has order 2n−s, contradicting our assumption.
Hence |

⋂
M∈M` NN0

0
(M)| = 2n−` and |M`| = 2`+1− 1 by Remark 7.9. Pick

N `+1 ∈M−M`. If
⋂
M∈M` NN0

0
(M) ≤ NN0

0
(N `+1), we get N `+1 ∈M` by Re-

mark 7.9 (b), a contradiction. Thus |
⋂

0≤i≤`NN0
0
(N i) :

⋂
0≤i≤`+1NN0

0
(N i)| =

2.
By part (a) of Remark 7.9 we know |N0 ∩ . . . ∩N `+1| ≥ 2n−`−1, i.e. |N0 ∩

. . . ∩ N ` : N0 ∩ . . . ∩ N `+1| ≤ 2. We claim that equality holds. Write σ ∈
Z(H`) = N0 ∩ . . . ∩ N ` as σ = σ0σ1, where σi ∈ Ni, i = 0, 1. Then each
mapping Z(H`) 3 σ 7→ σi ∈ Ni is injective, as Z(H`) ∩ Ni = 1. Moreover, if
σ ∈ N0 ∩ . . . ∩ N `+1 then σ0 ∈

⋂
0≤i≤`+1NN0

(N i), which has order 2n−`−1.
This shows the claim. Now induction on ` implies assertions (a) and (b).

To (c): Let B be the set of Q-orbits on S. Since Q acts semiregularly on
S, each orbit has length 2n−k, so that |B| = 2k+1. By (b) (and Lemma 5.4)
each S(a) is Q-invariant. So D = B, once we show that each S(a) 6= ∅. For
a sequence (a0, . . . , ak−2) ∈ {0, 1}k−1 and a, b ∈ {0, 1} we consider the sets
T a =

⋂
0≤i<k−1 Siai ∩ S

k−1
a , Tb =

⋂
0≤i<k−1 Siai ∩ S

k
b , and T ab = T a ∩ Tb =

S(a0, . . . , ak−2, a, b). By induction |T a| = |Tb| = 2n−k+1 and we have partitions
T a = T a0 ∪T a1 and Tb = T 0

b ∪T 1
b . We have to show that all the T ab are non-empty.

Assume, for instance, that T 0
1 = ∅. Then T 0 = T 0

0 = T0 has size 2n−k+1.
In particular Q0 =

⋂
0≤i<kN

i and Q1 =
⋂

0≤i≤k,i 6=k−1N
i act faithfully and

regularly on T 0. Set Q = 〈Q0, Q1〉, which is elementary abelian, as Q ≤ N0.
Since |Q0 ∩Q1| = 2n−k, we have |Q| = 2n−k+2. If k > 2, then Q (≤ N0 ∩N1)
acts semiregularly on S, i.e |T 0| ≥ |Q|, a contradiction.

So assume k = 2 and, without loss of generality, assume that a0 = 0. Then
S0

0 ∩S1
0 = S0

0 ∩S2
0 and S0

0 ∩S1
1 = S0

0 ∩S2
1 are sets of size 2n−1 and by Lemma 5.4

the two groups NNi1(N0
0 ), i = 1, 2, act faithfully and semiregularly on the first

set. Pick S ∈ S0
0 ∩ S1

0 . There exist precisely 2n−1 elements ν ∈ N0
1 with

Sν ∈ S0
0 ∩ S1

0 . For µ ∈ NNi1(N0
0 ) we have

Sν = Sνµ = Sµνµ = Sνµ,

which forces ν = νµ. Hence CN0
1
(NN1

1
(N0

0 )) = CN0
1
(NN2

1
(N0

0 )) is a group of

order 2n−1. This shows that NN1
1
(N0

0 )N and NN2
1
(N0

0 )N induce in SL(N0
1 ) the

same group of transvections centralizing the hyperplane CN0
1
(NN1

1
(N0

0 )). By

Remark 7.9 (b) (or Lemma 7.7) we conclude that N2 ≤ 〈N0, N1〉, a contradic-
tion. Now assertion (c) follows.

To (d): Set P00 = 〈Q, Ñ0
0 , . . . , Ñ

k
0 〉. We claim that (1) P00 = Q× Ñ0

0 ×· · ·×
Ñk

0 and (2) P0 = P00.

By Lemma 7.10 we know Ñ j
0 =

⋂
0≤i≤kNNj0

(N i) and |Ñ j
0 | = 2n−k. By

assertion (a) of Lemma 5.5 each orbit S`a, where 0 ≤ ` ≤ k, a = 0, 1, is fixed

under Ñ j
0 . Thus P00 fixes each Q-orbit in D.
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Assume that we have already shown

〈Ñ1
0 , . . . , Ñ

k
0 〉 = Ñ1

0 × · · · × Ñk
0 .

The group Ñ0
0 acts faithfully on S(1, 0, 0, . . . , 0), whereas Ñ1

0 × · · · × Ñk
0 fixes

this set pointwise. Hence Ñ0
0 ∩ (Ñ1

0 × · · · × Ñk
0 ) = 1 and

〈Ñ0
0 , Ñ

1
0 , . . . , Ñ

k
0 〉 = Ñ0

0 × Ñ1
0 · · · × Ñk

0 .

follows. Considering the actions of Q and Ñ0
0 × · · · × Ñk

0 on S(0, 0, 0, . . . , 0), we
finally obtain assertion (1).

We turn to assertion (2). We observe that P00 ∩N0 = Q × Ñ0
0 : Otherwise

(as Q×Ñ0
0 ≤ P00∩N0) we would have N0∩Ñ1

0 ×· · ·×Ñk
0 6= 1. But non-identity

elements from this group have fixed-points in S0
0 and S0

1 , which is impossible.
Thus |P00N

0/N0| = 2k(n−k) and P00N
0/N0 (as a subgroup of SL(N0

0 )) stabilizes

the chain 1 ≤ Ñ0
0 ≤ N0

0 . The stabilizer of this chain in SL(N0
0 ) however has

order 2k(n−k), i.e. P00N
0/N0 is the full stabilizer of this chain. Also P0N

0/N0

stabilizes this chain, i.e.

P0 ≤ P00N
0 = N0(Ñ1

0 × · · · × Ñk
0 ),

and, as we have seen before, N0
0 ∩ (Ñ1

0 × · · · × Ñk
0 ) = 1. Let 1 6= σ be in P0.

Adjusting σ if necessary with an element from P00, we may also assume that
σ ∈ N0 and that σ has fixed-points in S0

0 . But then σ ∈ N0
0 and σ fixes every

S(0, ∗, . . . , ∗) pointwise, but acts fixed-point-freely on each orbit of the form

S(1, ∗, . . . , ∗). This implies that σ ∈ Ñ0
0 : otherwise Ñ0

0 < 〈Ñ0
0 , σ〉 ≤ N0

0 and
therefore the orbits of this group in S0

1 would have a length strictly greater than
2n−k, which is impossible. Thus claim (2) is also true. Assertion (d) follows
from (1) and (2).

To (e): Clearly,

[Ñ0, Ñ1] ≤ N0 ∩N1.

Let τi ∈ Ñ i, i = 0, 1. Then σ = τ0τ1 ∈ O2(Hk), Hk = 〈NM (Nk) | M ∈ M〉Nk

by assertion (c) of Lemma 7.8. As O2(Hk)/Nk is elementary abelian, we get

[τ0, τ1] = σ2 ∈ Nk. Hence [Ñ0, Ñ1] ≤ Q by an obvious induction. Since any

pair M,E ∈ M is conjugate in H to N0, N1, we see that [M̃, Ẽ] ≤ Q. So P/Q
is an elementary abelian 2-group.

By definition P is a normal subgroup of H. We claim, that P0 is the kernel
of the action of P on D:

Denote by P̂ this kernel (of course P0 ≤ P̂ ). The group P̂N0/N0 stabilizes

the chain 1 ≤ Ñ0
0 ≤ N0

0 , since P̂ normalizes N0
0 and P̂N0/N0 lies in the

stabilizer of the chain 1 ≤ Ñ0
0 ≤ N0

0 as a subgroup of SL(N0
0 ). As before we

obtain P̂ ≤ P0N . Let σ be an element in P̂ . Adjusting this element with an
element from P0, we may even assume that σ ∈ N and as in the verification
of (d) this leads to σ ∈ Q × Ñ0

0 × Ñ0
1 , i.e. P̂ = P0. In particular P/P0 acts

faithfully on D.
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Claim: We have |P/P0| = 2k+1 and P/P0 acts regularly on D.

By Lemma 7.10, we have 2n = |Ñ0 : Ñ0
0 | = |S0

0 |. So Ñ0 is transitive on S0
0

and (by symmetry) on S0
1 . Therefore Ñ0 permutes transitively all orbits of the

form S(0, ∗, . . . , ∗) and all orbits of the form S(1, ∗, . . . , ∗). These two subsets

of D have size 2k. Hence |Ñ0P0/P0| = 2k = |Ñ0 : Ñ0
0 |, i.e. Ñ0 ∩P0 = Ñ0

0 . This

shows that Ñ0P0/P0 acts regularly on both subsets of D. Of course P/P0 is
transitive on D and P/P0 is abelian and therefore P/P0 is regular on D. This
implies that |P/P0| = 2k+1 and hence the claim.

Finally we show that P = O2(H):
Set R = O2(H) (i.e. P ≤ R). The group R acts by conjugation on the set

M of size 2k+1 − 1. Thus R normalizes one and hence all subgroups inM. Set
K1 = 〈NM (N) | M ∈ M〉RN ≤ NG(N) (where N = N0). By Theorem 3.6
there exists a normal subgroup K0, with |K1 : K0| ≤ 2, such that K0 normalizes
N0 and N1. But we have seen that P does not leave invariant the orbits S0

0 and
S0

1 , i.e. |K1 : K0| = 2.
By Lemma 7.8 K0/N induces on N0

a , for a = 0, 1, by conjugation the cen-

tralizer of the subspace Ñ0
a in SL(N0

a ), whereas P0N/N induces the 2-radical of
this group. As PN > P0N and |K1 : K0| = 2 we have that PN/N = RN/N is
the 2-radical of K1/N , in particular

PN = RN.

Assume R > P . As PN = RN , we have R∩N > P ∩N . We know that P ∩N
is transitive on S0

0 , so that 2n = |S0
0 | = |P ∩ N : P ∩ N0| = |R ∩ N : R ∩ N0|

and thus R ∩N0 > P ∩N0.
Let σ ∈ (R∩N0)−(P∩N0), i.e. |〈Ñ0, σ〉 : Ñ0| = 2, as P∩N0 = Ñ0. Pick M ∈

M, such that 〈Ñ0, σ〉 ≤ NN0
(M). In fact, σ ∈ NN0

(M0), by Lemma 5.6 (a).

Then σ induces an involution on M0/M̃0, i.e. we have σ
M0/M̃0

6= 1
M0/M̃0

(as

σ ∈ N0 − Ñ0). By Lemma 7.8 there exist a M ′ ∈ M and σ′ ∈ NM ′0(M), such
that (σσ′)

M0/M̃0
has order 3. This contradicts σ ∈ R = O2(H). The verification

of (e) is complete.
To (f): We observe that H = 〈N i | 0 ≤ i ≤ k〉 acts as a permutation group

on D and that, by (e), P0 is a normal subgroup of H. Note that every H
composition factor on P/Q is a F2[H/P ]-module by [1, (5.5)].

We first provide an H-decomposition of P0/Q. For R ≤ Q denote by P0(R)
the kernel of the action of P0 on the R-orbits. Decompose ρ ∈ R as ρ = ρ0ρ1,
ρi ∈ N0

i , i = 0, 1. Then ρ0 and ρ1 are in P0(R) (For instance ρ1 acts on S0

like ρ and it acts trivially on S1, i.e. ρ1 ∈ P0(R)). Hence |P0(R) ∩ N i
0| = |R|.

Moreover P0(R) ∩ P0(R′) = 1 for R′ ≤ Q and R ∩ R′ = 1, as a non-trivial
intersection of an R-orbit with an R′-orbit has size 1, since Q acts faithfully
and regularly on each of its orbits. Clearly, each P0(R) is normal in H, as R
and P0 are normal subgroups. Let Q = R0 × · · · × Rn−k with subgroups Ri of

order 2. Then Xi = (P0(Ri) ∩ Ñ0
0 ) × · · · × (P0(Ri) ∩ Ñ0

k ) has order 2k+1 and
hence Q×X1×· · ·×Xn−k has order 2(k+2)(n−k), i.e. P0 = Q×X1×· · ·×Xn−k.
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Then
P0/Q = X1Q/Q× · · · ×Xn−kQ/Q

is an H-invariant decomposition.
Set K0 = 〈NN1(N0), . . . , NNk(N0)〉.
We know from Lemma 7.8 that K0N/N has the form E · SL(k, 2), where E

is the elementary abelian 2-radical of K0N/N . Hence K0/P̂ ' SL(k, 2), where

P̂ = O2(K0).
Set H0 = 〈N1, . . . , Nk〉 and P 0 = O2(H0). By induction H0/P 0 ' SL(k, 2)

and all H0-composition factors in P 0/Z(H0) are natural. Here we call a com-
position factor natural, if it is the natural module for SL(k, 2) ' H0/P 0. Now

K0P 0/P 0 is isomorphic to a subgroup of SL(k, 2) and as K0 ∩ P 0 ≤ P̂ , we see
that K0/(K0 ∩ P 0) is the extension of a 2-group by SL(k, 2). This shows that

K0/(K0 ∩ P 0) ' SL(k, 2) and K0 ∩ P 0 = P̂ .

Clearly, P̂ ∩ Z(H0) = Q, so that all composition factors in P̂ /Q of K0

are natural. This shows that K0 has in XiQ/Q one natural and one trivial

composition factor. Indeed, the trivial composition factor is given by Ñ0
0Q/Q∩

XiQ/Q. As Ñ i ≤ P̂ for 1 ≤ i ≤ k, we see that P̂ 6≤ P 0. Thus P̂ /(P̂ ∩ P 0)
contains at least one natural composition factor.

The group K1 = 〈NN0(N1), NN2(N1), . . . , NNk(N1)〉 has the analogous

properties to those of K0 (but leaves invariant Ñ1 instead of Ñ0). So the group
K = 〈K0,K1〉 induces on XiQ/Q as well on P/P0 the (maximal possible) group
SL(k + 1, 2) and all composition factors of H on P/Q are natural.

7.1 Proofs of Theorems 7.1 and 7.3

Proof. (Theorem 7.1) The first assertion follows from a Frattini argument: Let
σ be an element in G. Then Nσ ∈ C. By Proposition 5.1 there exists a γ ∈ G∗
with Nσγ = N , i.e. σγ ∈ NG(N) or G = G∗NG(N).

Assume first that G is not transitive on S. Then S0 and S1 are the G-orbits.
Assertion (a) follows from Lemma 3.9.

Assume from now on that G is transitive on S. By Corollary 3.7 NG(N) is
transitive too, i.e. there exists an element σ ∈ NG(N) that interchanges S0 and
S1. The proof of Lemma 3.9 shows that β and βo are isotopic.

If C = {N}, then N is normal in G, and we have assertion (b) by Lemma 3.9.
If N is not normal, we get assertion (c) by Theorem 7.11.

Proof. (Theorem 7.3) The assertion G = G∗NG(N) has the same verification as
in the previous proof.

Assume first that G is not transitive on S. Then S0 and S1 are the G-orbits.
Assertion (a) now follows from Lemma 3.9.

Assume from now on that G is transitive on S. By Corollary 3.7 NG(N) is
transitive too, i.e. there exists an element σ ∈ NG(N) that interchanges S0 and
S1. So f0 and f1 are isotopically linked by the proof of Lemma 3.9. If C = {N},
then N is normal, we get assertion (b) of Theorem 7.1 by Lemma 3.9. If N is
not normal, we obtain assertion (c) by Theorem 7.11.

59



Remark 7.12. Let S be the extension of a bilinear DHO or the graph of the
extension of quadratic APN functions. Assume in addition in the DHO case
that S is bilinear and in the APN case assume, that the extension is quadratic.
We sketch in this situation a simpler, alternative way, to prove Theorems 7.1
and 7.3. The basis for this approach is the following lemma, which is implicitly
contained in [5].

Lemma 7.13. Let T be a translation group of S that is normalized by the
extension group N . Let U be the ambient space of S. Then N induces as
a subgroup of GL(U/CU (T )) the 2-radical of the stabilizer of a hyperplane of
U/CU (T ).

Proof. As N normalizes T , we see that TN is a 2-group and hence by The-
orem 3.6 both groups normalize each other. Therefore CU (T ) = [U, T ] ⊆
W0 + W1, where Wi is defined as in Remark 3.5. As N normalizes T, it
fixes the subspace CU (T ). Thus NT/T is the stabilizer of the hyperplane
(W0 +W1)/CU (T ) of U/CU (T ).

Proof. (Sketch of the simplified verification) Let G be the automorphism group
of S (DHO) or the linear part of the automorphism group of S (APN) and let
C be the class of extension groups in G. We assume |C| > 1.

Then T is normal in G: Let K be the group generated by the the conjugates
of T and assume that T < K. By [5, Thm. 5.9] M = O2(K) ∈ C. As
M char K �G, we obtain M �G, which contradicts |C| > 1.

Set H = 〈C〉. Then HT/T is canonically isomorphic to a subgroup of the
autotopism group. Therefore HT/T acts faithfully on U/CU (T ) by [5, Prop.
3.9]. Assume that S has rank n+ 1. By Lemma 7.13 and Proposition 7.5 there
exists a number k (1 ≤ k ≤ n) such that H/(T ∩H) ' HT/T ' E · S with E
elementary abelian of order 2(k+1)(n−k) and S ' SL(k+1, 2). By [5, Lemma 4.5]
T ∩N is a hyperplane of T , so that T = 〈T ∩N,T ∩M〉 for any two M,N ∈ C,
i.e. T ≤ H. Pick N1, . . . , Nk+1 ∈ C, such that H = 〈N1, . . . , Nk+1〉T . Then we
have Q = T ∩N1 ∩ · · ·Nk+1 ≤ Z(H) and |Q| ≥ 2n−k. But as a cyclic group of
order 2k+1 − 1 in H centralizes this group, we get |Q| = 2n−k. Set P = O2(H).
It is now easy to see that [T, P ] ≤ Q = Z(H). Hence P has class at most 2,
P/Q is elementary abelian of order 2(k+1)(n−k+1), and all composition factors
of P/Q are natural SL(k + 1, 2)-modules.

We add an observation about the natural composition factors of SL(k+1, 2).
For k ≥ 2 the natural SL(k + 1, 2)-module is not equivalent to its dual module
(for instance the roles of stabilizers of points and hyperplanes are interchanged).
Indeed the SL(k+ 1, 2)-composition factors of P/Q are not pairwise equivalent:
the factor T/Q is dual to the composition factors in P/T . Inspecting the proof
of Theorem 7.11 one observes a further phenomenon: the composition factors
in P0/Q are dual to the composition factor P/P0.
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