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Abstract

We construct caps in projective 4-space PG(4, q) in odd characteristic, whose cardinality
is O(5

2
q2).
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1 Introduction

Let PG(r, q) be the projective space of dimension r over the Galois field IFq = GF (q)
of order q. An n-cap O in PG(r, q) is a set of n points, no three of which are collinear.
The maximum value of n for which there exists an n-cap in PG(r, q) is denoted by
m2(r, q) (see [4]). The number m2(r, q) is only known, for arbitrary q, when r = 2 and
r = 3. To be precise m2(2, q) = q + 1 if q is odd, m2(2, q) = q + 2 if q is even and
m2(3, q) = q2 + 1, q > 2. Caps in PG(3, q) of size q2 + 1 are called ovoids. Apart from
m2(r, 2) = 2r, m2(4, 3) = 20, m2(5, 3) = 56 [4, p.285], and m2(4, 4) = 41 [2], for m2(r, q)
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only upper bounds are known. It seems that finding the exact value m2(r, q) for r ≥ 4
and constructing a cap of size m2(r, q) are very hard problems.

We study large caps in dimension 4. In [1] we improved a construction due to Tallini
and constructed (2q2+q+9)-caps in PG(4, q) for all q = 2f > 4. In this paper we construct
large caps in PG(4, q) in odd characteristic. Segre claimed in [6] to have constructed caps
of size (5q2− 2q + 1)/2 in PG(4, q) whenever q = pf , where the prime p ≡ 7 (mod 8) and
the exponent f is odd. Segre’s construction is not quite correct as it is stated in [6]; to
see this, consider for example the collinear points P1 = (0, 1, 1, 1, 0), P2 = (0, 1, 1,−1, 0)
and P3 = (0,−2,−2, 0, 0) in the terminology of [6, p.90], in the case when 3 is a non-
square. However, his method does produce large caps. We start from a version of Segre’s
construction, which works for all odd q. This is done in Section 2 for q ≡ 3 (mod 4), and
in Section 3 for q ≡ 1 (mod 4). Denote the resulting caps by Cq ⊂ PG(4, q). We proceed
to show that there is a plane E meeting Cq in 4 points and a conic section A ⊂ E such
that A ∩ Cq = ∅ and

C∗q = (Cq \ E) ∪ A
is a cap. It is clear that C∗q has q − 3 points more than Cq. This construction is carried
through in Section 4 for q ≡ 3 (mod 4) and in Section 5 for q ≡ 1 (mod 4). The proof
in case q ≡ 1 (mod 4) uses a technical lemma (Lemma 1). In Section 6 we give a proof
of this lemma. It is based on the Hasse-Weil bound for the number of rational points for
algebraic curves. Our main result is as follows.

Theorem 1 Let q be an odd prime-power. Then PG(4, q) contains a cap C∗q of the fol-
lowing cardinality:

(5q2 − 2q − 7)/2 if q ≡ 1 (mod 8),
(5q2 − 8q − 13)/2 if 3 < q ≡ 3 (mod 8),
(5q2 − 6q − 11)/2 if q ≡ 5 (mod 8),
(5q2 − 4q − 9)/2 if q ≡ 7 (mod 8).

It follows from one of the by-laws of quadratic reciprocity (see for example [7]) that 2
is a square if q ≡ ±1 (mod 8) and 2 is a nonsquare if q ≡ ±3 (mod 8).

We use homogeneous coordinates for PG(4, q). A typical point will be written as
x = (x1 : x2 : x3 : x4 : x5). Denote by ei the vector which has xi = 1, xj = 0 for j 6= i. We
wish to thank A. Brandis for a helpful discussion.

2 The construction in the case q ≡ 3 (mod 4)

In the projective space PG(4, q) consider the hyperplanes H1 with equation x3 = 0, H2

with equation x4 = 0, H3 with equation x5 = 0 and quadrics Qi, i = 1, 2, 3 with the
following equations:

Q1(x) = x2
1 + x2

2 − x2
4 + x2

5,

Q2(x) = x2
1 + x2

2 + x2
3 − x2

5,

Q3(x) = x2
1 + x2

2 + 2x2
3 − 2x2

4.
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Observe that the bilinear form (scalar product) corresponding to Q1 is

(x, y)1 = x1y1 + x2y2 − x4y4 + x5y5,

and analogously for Q2 and Q3. The radicals of the quadrics Qi are

Rad(Q1) = 〈e3〉, Rad(Q2) = 〈e4〉, Rad(Q3) = 〈e5〉.

In particular, the restriction of Qi to Hi is non-degenerate. It follows that V (Qi) ∩ Hi,
the set of projective points P ∈ Hi satisfying Qi(P ) = 0, is a non-degenerate quadric.
The discriminant is −1 in each case, meaning that the Gram matrix has nonsquare de-
terminant. This shows that V (Qi) ∩Hi has index 1; geometrically, this means that it is
an ovoid. The 2-space 〈e1, e2〉 is anisotropic with respect to each Qi, or equivalently the
line corresponding to 〈e1, e2〉 is an exterior line of V (Qi). Another equivalent expression
is: V (Qi)∩H1 ∩H2 ∩H3 = ∅. Call a line l generic if it is not contained in any of the Hi,
in other words if l ∩ Hi consists of one point Pi, i = 1, 2, 3. We construct a large subset
U ⊂ V (Q3) ∩H3 such that no generic line meets V (Q1) ∪ V (Q2) ∪ U in three points.

So let l be a generic line and let Pi = l ∩ Hi, i = 1, 2, 3. Assume Pi ∈ V (Qi). Write
Pi = 〈vi〉, where notation is chosen such that v1 + v2 + v3 = 0. We have

v1 = x = (x1, x2, 0, x4, x5),

v2 = y = (y1, y2, y3, 0, y5),

v3 = z = (z1, z2, z3, z4, 0).

As x + y + z = 0 we have the following relations:

z1 = −(x1 + y1), z2 = −(x2 + y2)
z3 = −y3, z4 = −x4, y5 = −x5.

Since Pi ∈ V (Qi), i = 1, 2, 3 we have that Qi(vi) = 0. Consider the equation 2Q1(x) +
2Q2(y)−Q3(z) = 0; taking into account the above relations, we obtain

(x1 − y1)
2 = −(x2 − y2)

2.

As −1 is a non-square we obtain x1 = y1 and x2 = y2. The relation Q1(x) − Q2(y) = 0
reads as follows:

z2
3 + z2

4 = 2x2
5. (1)

We have that V (Qi)∩Hi∩Hj is an oval whenever i 6= j. Also, these 6 ovals are mutually
disjoint. We see that Ui = (V (Qi) ∩Hi) \ (Hj ∪Hk) has q2 + 1− 2(q + 1) = q2 − 2q − 1
elements whenever {i, j, k} = {1, 2, 3}.

Put Q(z3, z4) = z2
3 + z2

4 . Define

U = {P = (z1 : z2 : z3 : z4 : 0) | P ∈ V (Q3), z3 · z4 6= 0, 2Q(z3, z4) non-square in IFq}.

If P = 〈z〉 ∈ U, then equation (1) cannot be satisfied. It follows that Cq = U1 ∪ U2 ∪ U is
a cap.
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We have to show that |U | ≥ (q +1)2/2 if 2 is a square, and that |U | ≥ (q +1)(q− 3)/2
if 2 is a non-square. For each non-zero square u ∈ IFq there are precisely two pairs (z3, 0)
such that Q(z3, 0) = u and also two pairs (0, z4) such that Q(0, z4) = u. Non-squares
u have no such representation. Define E = {(z3, z4) | z3z4 6= 0, z2

3 − z2
4 = 0}. Then

|E| = 2(q− 1) and it is clear that P = 〈z〉 /∈ U if (z3, z4) ∈ E. Moreover for each non-zero
element u ∈ IFq with the same Legendre symbol as 2 there are precisely 4 pairs (z3, z4) ∈ E
such that Q(z3, z4) = u. An element u whose Legendre symbol is different from that of 2
has no such representation.

Now, let (z3, z4) ∈ M = (IF ∗
q ×IF ∗

q )\E. We have |M | = (q−1)(q−3). As the quadratic
form Q is anisotropic it represents each non-zero field element by q + 1 pairs. Consider
at first the case when 2 is a square. The number of pairs (z3, z4) ∈ M such that Q(z3, z4)
is non-square is q−1

2
· (q + 1). As z2

3 − z2
4 6= 0 for these pairs, there are precisely q + 1 pairs

(z1, z2) such that for z = (z1, z2, z3, z4, 0) we have Q3(z) = 0. This holds for each fixed
such pair (z3, z4). Hence we have

|U | = (q + 1) · q − 1

2
· (q + 1)/(q − 1) = (q + 1)2/2.

Now, let 2 be a non-square. The number of pairs (z3, z4) ∈ M such that Q(z3, z4) is square
equals q−1

2
· (q + 1− 4). Proceeding as in the former case we conclude that

|U | = (q + 1) · q − 1

2
· (q − 3)/(q − 1) = (q + 1)(q − 3)/2.

3 The construction in the case q ≡ 1 (mod 4)

The general build-up is the same as in the case q ≡ 3 (mod 4). We choose a non-square
α and use the following quadrics:

Q1(x) = x2
1 + αx2

2 + x2
4 + x2

5,

Q2(x) = x2
1 + αx2

2 − x2
3 − x2

5,

Q3(x) = x2
1 + αx2

2 − 2x2
3 + 2x2

4.

As before we see that V (Qi) ∩ Hi describes an ovoid, i = 1, 2, 3 and that 〈e1, e2〉 is
anisotropic with respect to each Qi. Assume a generic line l intersects Hi in Pi, where
Pi ∈ V (Qi), i = 1, 2, 3. Write Pi = 〈vi〉, where notation is chosen such that v1+v2+v3 = 0.
We have

v1 = x = (x1, x2, 0, x4, x5),

v2 = = y = (y1, y2, y3, 0, y5),

v3 = = z = (z1, z2, z3, z4, 0),

and the same relations hold as in case q ≡ 1 (mod 4) :

z1 = −(x1 + y1), z2 = −(x2 + y2),
z3 = −y3, z4 = −x4, y5 = −x5.
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As before we use 2Q1(x) + 2Q2(y)−Q3(z) = 0. This yields

(x1 − y1)
2 = −α(x2 − y2)

2.

As −α is a non-square we obtain x1 = y1 and x2 = y2.
The relation Q1(x)−Q2(y) = 0 yields

z2
3 + z2

4 = −2x2
5. (2)

As before, put Q(z3, z4) = z2
3 + z2

4 . This time Q does not describe an anisotropic space
but rather a hyperbolic plane. Each non-zero value is represented precisely q − 1 times
by Q. Put

U = {P = (z1 : z2 : z3 : z4 : 0) | P ∈ V (Q3), z3 · z4 6= 0,
Q(z3, z4) = 0 or 2Q(z3, z4) non-square in IFq} .

If P = 〈z〉 ∈ U, then equation (2) cannot be satisfied. It follows that Cq = U1 ∪ U2 ∪ U
is a cap, where U1 and U2 are defined as before. We have that V (Qi) ∩ Hi ∩ Hj is
an oval whenever i 6= j. Moreover these 6 ovals are mutually disjoint. It follows that
Ui has q2 + 1 − 2(q + 1) = q2 − 2q − 1 elements. The number of P ∈ U such that
Q(z3, z4) = 0 is 2(q − 1)(q + 1)/(q − 1) = 2(q + 1). For every non-zero u ∈ IFq, which
has the same Legendre symbol as 2, there are 4 pairs (z3, z4) such that z3z4 6= 0, z2

3 = z2
4

and Q(z3, z4) = u. For each non-zero square u there are 4 pairs (z3, z4) 6= (0, 0) such that
z3z4 = 0 and Q(z3, z4) = u.

We distinguish between the cases when 2 is a square and when 2 is a non-square.
Using the same counting argument as in the preceding section we get in the former case
(2 a square)

|U | = 2(q + 1) + (q + 1) · q − 1

2
· (q − 1)/(q − 1) = (q2 + 4q + 3)/2.

When 2 is non-square we obtain

|U | = 2(q + 1) + (q + 1) · q − 1

2
· (q − 5)/(q − 1) = (q2 − 1)/2.

4 The extension in the case q ≡ 3 (mod 4)

Consider the plane E = (x1 = x2 = 0) and the conic section A = V (Q4) ⊂ E, where

Q4(x) = x2
3 + x2

4 + ax2
5,

and a ∈ IFq is chosen such that a and 2a + 1 are non-zero squares. Cq ∩ E consists of
the four points (0 : 0 : 0 : 1 : ±1) and (0 : 0 : 1 : 0 : ±1). We have to prove that
C∗q = (Cq \E)∪A is a cap. As A is an oval in E it suffices to prove that there is no line l
containing a point W = 〈w〉 = (0 : 0 : w3 : w4 : w5) ∈ A and two points P1, P2 of Cq \ E.
Two essentially different cases arise.

The first case
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P1 = 〈x〉 ∈ U1 \ E, P2 = 〈y〉 ∈ U2 \ E. We have

x = (x1, x2, 0, x4, x5),

y = (y1, y2, y3, 0, y5),

w = (0, 0, w3, w4, w5),

where Q1(x) = Q2(y) = Q4(w) = 0 and notation has been chosen such that x+y+w = 0.
It follows from Q1(x)−Q2(y) = 0 that

w2
3 + w2

4 = x2
5 + y2

5. (3)

The equation Q4(w) = 0 yields

w2
3 + w2

4 = −aw2
5 = −a(x2

5 + 2x5y5 + y2
5). (4)

Subtracting equation (4) from equation (3) we obtain

(a + 1)x2
5 + 2ax5y5 + (a + 1)y2

5 = 0.

We see that x5/y5 is a solution of the quadratic equation X2 + 2a
a+1

X + 1 = 0. The
discriminant of this equation is −(2a + 1)/(a + 1)2. As this is a non-square we obtain a
contradiction.

The second case
P1 = 〈x〉 ∈ U1 \ E, P2 = 〈z〉 ∈ U \ E. We have

x = (x1, x2, 0, x4, x5),

z = (z1, z2, z3, z4, 0),

w = (0, 0, w3, w4, w5),

where Q1(x) = Q3(z) = Q4(w) = 0 and notation has been chosen such that x+z +w = 0.
The additional property that 2(z2

3 + z2
4) is a non-square will not be needed.

Equation Q1(x) = Q3(z) yields

−2w2
3 − x2

4 + 2z2
4 + w2

5 = 0.

Equation Q4(w) = 0 yields

w2
3 + w2

4 + aw2
5 = w2

3 + x2
4 + 2x4z4 + z2

4 + aw2
5 = 0.

Consider the equation Q1(x)−Q3(z) + 2Q4(w) = 0. Putting Y = x4/z4 we obtain

(Y + 2)2 + (2a + 1)(w5/z4)
2.

It follows that 2a + 1 is a non-square, contradicting our choice.
The third case P1 ∈ U2 \ E, P2 ∈ U2 \ E is obtained from the second case using the

involutorial automorphism, which interchanges the third and fourth coordinates.
In order to complete the proof in this case it suffices to show that we can always find

a non-zero square a ∈ IFq such that 2a + 1 is a non-zero square. If the characteristic is
not 3 we can choose a = 4. Let the characteristic be 3, q > 3. Let a 6= 1 be a square. We
have 2a + 1 = 1− a 6= 0. If 1− a is a square we are done. Assume 1− a is a non-square.
Put a′ = 1/a. Then 1− a′ = (a− 1)/a is a square and we are done.
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5 The extension in the case q ≡ 1 (mod 4)

In this section we will assume q > 9. Cases q = 5 and q = 9 will be dealt with in Section 7.
Consider the plane E = (x1 = x2 = 0) and the conic section A = V (Q4) ⊂ E, where

Q4(x) = x2
3 + x2

4 + bx2
5 + 2cx3x4.

Here the non-zero elements b, c are chosen such that c is a square, 1− c2 is a non-square,
b = (1 ± c)/2 is a non-square. The proof that such a choice is possible for q > 9 can
be found in Section 6. The set Cq ∩ E consists of the four points (0 : 0 : 0 : 1 : ±i)
and (0 : 0 : 1 : 0 : ±i), where i denotes an element of order 4. We have to prove that
C∗q = (Cq \E)∪A is a cap. As before it suffices to prove that there is no line l containing
a point W =< w >= (0 : 0 : w3 : w4 : w5) ∈ A and two points P1, P2 of Cq \ E. As in the
preceding section we have to consider two essentially different cases.

The first case
P1 = 〈x〉 ∈ U1 \ E, P2 = 〈y〉 ∈ U2 \ E. We have

x = (x1, x2, 0, x4, x5),

y = (y1, y2, y3, 0, y5),

w = (0, 0, w3, w4, w5),

where Q1(x) = Q2(y) = Q4(w) = 0 and x + y + w = 0. Equation −2b(Q1(x) − Q2(y)) +
Q4(w) = 0 simplifies as follows:

(1− 2b)(w2
3 + w2

4)− b(x5 − y5)
2 + 2cw3w4 = 0.

Using 1−2b = ±c we obtain ±c(w3±w4)
2 = b(x5−y5)

2. As bc is a non-square we conclude
x5 = y5 and w3 = ±w4. Equation (Q1(x) + Q2(y))/2 yields x2

1 + ax2
2 = 0, which forces

x1 = x2 = 0 contradicting the assumption that x /∈ E.

The second case
P1 = 〈x〉 ∈ U1 \ E, P2 = 〈z〉 ∈ U \ E. We have

x = (x1, x2, 0, x4, x5),

z = (z1, z2, z3, z4, 0),

w = (0, 0, w3, w4, w5),

where Q1(x) = Q3(z) = Q4(w) = 0 and x+z+w = 0. Equation b(Q1(x)−Q3(z))−Q4(w) =
0 reads as follows:

(2b− 1)w2
3 + (b− 1)w2

4 − bz2
4 + 2bw4z4 − 2cw3w4 = 0.

Recall that b = 1
2
(1±c). Consider the case when b = 1

2
(1+c). Then b−1 = 1

2
(c−1), 2b−1 =

c and our equation simplifies as follows:

c(w3 − w4)
2 =

1

2
(c + 1)(z4 − w4)

2 = b(z4 − w4)
2.
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As bc is non-square we conclude w3 = w4 = z4 = −z3. Equation Q3(z) = 0 yields the
contradiction z1 = z2 = 0.

Consider the case when b = 1
2
(1 − c). Then b − 1 = −1

2
(c + 1), 2b − 1 = −c. Our

equation simplifies as follows:

−c(w3 + w4)
2 =

1

2
(1− c)(z4 − w4)

2 = b(z4 − w4)
2.

As before we conclude w4 = z4 = −w3 = z3. Equation Q3(z) = 0 yields the contradiction
z1 = z2 = 0.

6 A lemma concerning finite fields

Recall the conditions that b, c ∈ IFq have to satisfy in Section 5: both are non-zero, c a
square, 1− c2 non-square, b = 1

2
(1± c) and b non-square. Assume the square c has been

chosen such that 1− c2 is non-square. As the product 1
2
(1 + c) · 1

2
(1− c) is a non-square

it is clear that we are done once the following Lemma is proved:

Lemma 1 Let q be a prime-power, q ≡ 1(mod 4), q > 9. Then there is an element x ∈ IFq

such that 1− x4 is non-square.

Proof: Assume this is not the case. Consider the homogeneous polynomial

F (X, Y, Z) = X4 + Y 2Z2 − Z4

with coefficients in IFq. Denote by N the number of its rational points. The only rational
point with z = 0 is P∞ = (0 : 1 : 0). The remaining rational points will be written in the
form (x : y : 1). If y = 0, then x ∈ 〈i〉. If x = 0, then y = ±1. Let x /∈ {0,±1,±i}. By our
assumption 1− x4 is a square. It follows that each such x gives us 2 rational points all of
whose coefficients are non-zero. We have seen that N = 1 + 4 + 2 + 2(q− 5) = 2q− 3. On
the other hand the polynomial F (X, Y, Z) of degree 4 determines an algebraic curve of
genus g ≤ 3. As P∞ is a singular point we have g ≤ 2. It is not difficult to determine the
genus completely. In fact, it follows from [8], Example VI.3.3, that we are in the elliptic
case g = 1. From the Hasse-Weil formula we have that N ≤ q + 1 + 2

√
q (see [8], for

example). We have 2q− 3 ≤ q + 1 + 2
√

q, equivalently q ≤ 4 + 2
√

q, which is not true for
q ≥ 13. �

It may be noted that the statement of Lemma 1 is indeed not true for q = 5 and q = 9.

7 Small fields

The method of Section 5 works for q = 5 and for q = 9 as well. The only change is that
the constants b, c in the definition of the quadratic form Q4 have to be chosen in a different
way. As the case q = 5 is not very interesting we leave it for the reader to check that the
choice b = c = 1 leads to the desired result. We work out the case q = 9. Represent IF9
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in the form IF9 = IF3(ε), where the primitive element ε satisfies ε2 = −ε + 1. We choose
b = 1, c = ε.

In the first case the equation Q1(x)−Q2(y) = 0 yields

w2
3 + w2

4 + x2
5 + y2

5 = 0.

Comparison with Q4(w) = 0 shows that x5y5

w3w4
= ε. It is easy to show that if the sum of

four nonzero squares vanishes in IF9, then the product of these squares is ±1. This yields
a contradiction.

In case 2 we proceed as in Section 5. Consider the equations Q1(x)−Q3(z) and Q4(w).
We simplify, divide all the terms by w2

4 and use the new variables X = w3/w4, Y = z4/w4

and Z = w5/w4. This leads to the equations

X2 − εX = Y 2 + Y,

X2 − 1− Y = Z2.

The first of the above equations has only five solutions (x, y), namely either (x, y) = (ε,−1)
or x ∈ {−1,−ε3}, y ∈ {−ε,−ε2}. In each of these cases the second equation cannot be
satisfied as x2 − 1− y is a non-square. This contradiction concludes the proof.
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