Bounds on affine caps

Jürgen Bierbrauer *
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931 (USA)
Yves Edel
Mathematisches Institut der Universität
Im Neuenheimer Feld 288
69120 Heidelberg (Germany)

July 15, 2002

1 Introduction

A cap in affine space $A G(k, q)$ is a set A of k-tuples in \mathbb{F}_{q}^{k} such that whenever a_{1}, a_{2}, a_{3} are different elements of A and $\lambda_{i} \in \mathbb{F}_{q}, i=1,2,3$ such that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \neq(0,0,0)$ and $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$, we have $\sum_{i=1}^{3} \lambda_{i} a_{i} \neq 0$. An equivalent condition is that any three of the $(k+1)$-tuples $\left(a_{i}, 1\right)$ are linearly independent.

Denote by $C_{k}(q)$ the maximum cardinality of a cap in $A G(k, q)$, and $c_{k}(q)=C_{k}(q) / q^{k}$. Clearly $c_{k}(2)=1$. Henceforth we assume $q>2$. The values $C_{k}(q)$ for $k \leq 3$ are well-known. We have $C_{2}(q)=q+1$ in odd characteristic, $C_{2}(q)=q+2$ for even $q>2$, and $C_{3}(q)=q^{2}$ for all $q>2$. Aside of these only a small number of values are known: $C_{4}(3)=20$ (see 5]) and $C_{5}(3)=45$ (see [2]).

Clearly $C_{k}(q) \leq q C_{k-1}(q)$, hence $c_{k}(q) \leq c_{k-1}(q)$. Our main results may be seen as lower bounds on $c_{k-1}(q)-c_{k}(q)$. In [4] Meshulam proves an upper

[^0]bound on the size of subsets of abelian groups of odd order, which do not contain 3 -term arithmetic progressions. The output for caps may be described as follows (see also [6]):

Theorem 1 (Meshulam). Let $q=p^{h}$ be odd. Then

$$
c_{k}(q) \leq \frac{2}{k h}
$$

As a cap in $A G\left(k, p^{h}\right)$ is also a cap in $A G(k h, p)$, Theorem 1 is implied by the special case $c_{k}(p) \leq 2 / k$ for odd primes p. A more careful analysis of Meshulam's method in the case of caps shows that it can be generalized to cover also the characteristic 2 case. Moreover stronger bounds can be obtained. The central result is the following:

Theorem 2. Let $q>2$ be a prime-power. If $k \geq 3$, then

$$
c_{k}(q) \leq \frac{q^{-k}+c_{k-1}(q)}{1+c_{k-1}(q)}
$$

equivalently

$$
\left(1-c_{k}(q)\right)\left(c_{k-1}(q)-c_{k}(q)\right) \geq c_{k}^{2}-q^{-k} .
$$

Theorem 1 follows immediately from Theorem 2. We will prove an improvement in Section 3 .

In the next section we prove Theorem 2. It is possible to do this in the framework of Fourier analysis. We prefer to give a direct treatment.

2 Proof of Theorem 2

We have a prime-power $q>2$, where $q=p^{f}$ (p a prime). Let $k>3$ and $A \subset A G(k, q)$ a cap. As $q>2$ we can find nonzero elements $\lambda_{i} \in \mathbb{F}_{q}$ such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. Let $x \cdot y$ be the ordinary dot product defined on $V=\mathbb{F}_{q}^{k}=A G(k, q)$ with values in \mathbb{F}_{q}, and $t r: \mathbb{F}_{q} \longrightarrow \mathbb{F}_{p}$ the trace function. Put $Q=|V|=q^{k}$. Finally, ζ is a complex primitive $p^{t h}$ root of unity. We aim at an upper bound on $|A|$. Consider the complex number

$$
S=\sum_{y \in V \backslash\{0\}} \sum_{a_{1}, a_{2}, a_{3} \in A} \zeta^{\operatorname{tr}\left(\left(\sum_{i} \lambda_{i} a_{i}\right) \cdot y\right)} .
$$

Lemma 1. $S=|A|\left(Q-|A|^{2}\right)$.
Proof. We have $S=\sum_{y \in V} \sum_{a_{1}, a_{2}, a_{3} \in A} \zeta^{\operatorname{tr}\left(\left(\sum_{i} \lambda_{i} a_{i}\right) \cdot y\right)}-|A|^{3}$. Whenever $\sum_{i=1}^{3} \lambda_{i} a_{i} \neq 0$, the corresponding sum over $y \in V$ vanishes. As A is a cap this will always be the case, unless $a_{1}=a_{2}=a_{3}$. The first sum is therefore $Q|A|$.

Definition 1. Let $0 \neq \lambda \in \mathbb{F}_{q}$ and $0 \neq y \in V$. Consider the complex number $U(\lambda)_{y}=\sum_{a \in A} \zeta^{\operatorname{tr}((\lambda a) \cdot y)}$. Let $u(\lambda)_{y}=\left|U(\lambda)_{y}\right|$. We define a real vector $u(\lambda)$ of length $Q-1$ whose coordinates are parametrized by the $0 \neq y \in V$, the corresponding entry being $u(\lambda)_{y}$.

Lemma 2. Let $0 \neq \lambda \in \mathbb{F}_{q}$ and $0 \neq y \in V$. Then

$$
u(\lambda)_{y} \leq q C_{k-1}(q)-|A|=c_{k-1}(q) Q-|A| .
$$

Proof. As λA is a cap we can assume $\lambda=1$. Denote by ν_{c} the number of elements $a \in A$ such that $a \cdot y=c$. As the $v \in V$ satisfying $v \cdot y=c$ form a subspace $A G(k-1, q)$, we have $\nu_{c} \leq C_{k-1}(q)$. It follows

$$
\begin{aligned}
u(\lambda)_{y} & =\left|\sum_{c \in F_{q}} \nu_{c} \zeta^{\operatorname{tr}(c)}\right|=\left|\sum_{c \in F_{q}}\left(C_{k-1}(q)-\nu_{c}\right) \zeta^{\operatorname{tr}(c)}\right| \\
& \leq \sum_{c}\left(C_{k-1}(q)-\nu_{c}\right)=q C_{k-1}(q)-|A|
\end{aligned}
$$

The same kind of calculation as in the proof of Lemma 1 shows the following.

Lemma 3. Let $0 \neq \lambda \in \mathbb{F}_{q}$. Then

$$
\|u(\lambda)\|^{2}=|A|(Q-|A|)
$$

Comparison of Lemmas 2 and 3 yields a first lower bound on $c_{k-1}(q)-$ $c_{k}(q)$, as follows. Choose $|A|=C_{k}(q)$. The entries of $u(\lambda)$ are positive numbers bounded by $Q\left(c_{k-1}(q)-c_{k}(q)\right)$, the modulus of $u(\lambda)$ follows from Lemma 3. We obtain

Theorem 3. $\left(c_{k-1}(q)-c_{k}(q)\right)^{2} \geq c_{k}(q)\left(1-c_{k}(q)\right) /\left(q^{k}-1\right)$.

It was observed in Section 1 that $c_{k}(q) \leq c_{k-1}(q)$. Theorem 3 shows that strict inequality holds. The following lemma is an obvious consequence of the definitions.

Lemma 4. We have $S=\sum_{y \neq 0} U\left(\lambda_{1}\right)_{y} U\left(\lambda_{2}\right)_{y} U\left(\lambda_{3}\right)_{y}$, in particular

$$
|S| \leq \sum_{y \neq 0} u\left(\lambda_{1}\right)_{y} u\left(\lambda_{2}\right)_{y} u\left(\lambda_{3}\right)_{y}
$$

We now complete the proof of Theorem 2. Use Lemma 2 to obtain an upper bound on $u\left(\lambda_{1}\right)_{y}$. The remaining expression has the form of a dotproduct. Use the Cauchy-Schwartz inequality between the dot product and the lengths of the vectors $u\left(\lambda_{2}\right)$ and $u\left(\lambda_{3}\right)$. Because of Lemma 3 this yields

$$
|S| \leq\left(c_{k-1}(q) Q-|A|\right)(|A|(Q-|A|))
$$

Choose $|A|=C_{k}(q)$. Standard constructions show $C_{k}(q)>\sqrt{Q}$ (see [1]). Lemma 1 implies that S is a negative integer. Comparison of Lemma 1 and the upper bound on $|S|$ yields after simplification the desired inequality.

3 Applications

Recall $c_{3}(q)=1 / q$ for $q>2$. Theorem 2 yields $c_{4}(q) \leq \frac{q^{3}+1}{q^{3}(q+1)}$, or $C_{4}(q) \leq$ $q^{3}-q^{2}+q$ (Theorem 3 is weaker). In particular $C_{4}(3) \leq 21$. It is easy to see that we have sharp inequality in this case. It was in fact proved by Pellegrino [5] that 20 is the maximal size of a cap not only in $A G(4,3)$ but also in $P G(4,3)$. Based on $C_{4}(3)=20$ Theorem 2 yields $C_{5}(3) \leq 48$. The true value is $C_{5}(3)=45$, and the only 45 -cap in $A G(5,3)$ is the affine part of the Hill cap in $\operatorname{PG}(5,3)$ (see [2, 3]). Based on this result Theorem 2 yields $C_{6}(3) \leq 114$. As the doubling process (see [1]) based on the Hill cap yields a 112-cap in $A G(6,3)$, we conclude that $112 \leq C_{6}(3) \leq 114$.

Theorem 4. Let $q>2$ and $k \geq 3$. Then

$$
c_{k}(q) \leq \frac{k+1}{k^{2}}
$$

in particular limsup $_{k \rightarrow \infty}\left(k c_{k}(q)\right) \leq 1$.

Proof. We proceed by induction. For $k=3$ the claim is true as $q>9 / 4$. Let $k \geq 4$ and assume the claim is true for $k-1$. Put $c=c_{k-1}(q), d=c_{k}(q), Q=$ q^{k}. Theorem 2 and the induction hypothesis yield

$$
d \leq \frac{Q^{-1}+c}{1+c} \leq \frac{Q^{-1}+k /(k-1)^{2}}{1+k /(k-1)^{2}}=\frac{(k-1)^{2} / Q+k}{(k-1)^{2}+k}
$$

We have to prove that this expression is $\leq \frac{k+1}{k^{2}}$. An equivalent condition is $(k(k-1))^{2} \leq q^{k}$. This is satisfied for all $k \geq 4$ when $q \geq 4$. The ternary case is special. Here the condition is satisfied only for $k \geq 7$. As the known values $C_{k}(3)$ for $k \leq 5$ and the bound $C_{6}(3) \leq 114$ satisfy the bound of our theorem, we are done in the ternary case as well.

As a cap in $A G\left(k, q^{h}\right)$ is a cap in $A G(h k, q)$ as well, Theorem 4 yields the following corollary:

Corollary 1. Let $q>2$ and $k \geq 3$. Then

$$
c_{k}\left(q^{h}\right) \leq \frac{h k+1}{(h k)^{2}}
$$

The following slight generalization of Theorem 2 may sometimes be useful.
Theorem 5. Let $q>2$ be a prime-power, $k \geq 3$ and $A \subset A G(k, q)$ be a cap such that $|A| \geq \sqrt{q^{k}}$ and A intersects each hyperplane $A G(k-1, q)$ in $\leq C$ points. Let $c=C / q^{k-1}$. Then

$$
\frac{|A|}{q^{k}} \leq \frac{q^{-k}+c}{1+c}
$$

The proof is the same as for Theorem 2, All we have used there is the fact that each hyperplane $A G(k-1, q)$ intersects A in $\leq C_{k-1}(q)$ points. We replace this number by our upper bound C now.

References

[1] Y.Edel and J.Bierbrauer: Recursive constructions for large caps, Bulletin of the Belgian Mathematical Society - Simon Stevin 6(1999),249258.
[2] Y.Edel, S.Ferret, I.Landgev, L.Storme, The classification of the largest caps in $A G(5,3)$.
[3] R.Hill: On the largest size of cap in $S_{5,3}$, Atti Accad. Naz. Lincei Rendiconti 54(1973),378-384.
[4] R.Meshulam: On subsets of finite abelian groups with no 3-term arithmetic progression, Journal of Combinatorial Theory A 71(1995),168172.
[5] G.Pellegrino: Sul massimo ordine delle calotte in $S_{4,3}$, Matematiche (Catania)25(1970),1-9.
[6] L.Storme, J.A.Thas and S.K.J.Vereecke: New lower and upper bounds for the sizes of caps in finite projective spaces.

[^0]: *The first author wishes to thank the Department of Mathematical Sciences of the University of Salzburg (Austria) for its hospitality

