NONPRINCIPAL REFLEXIVE LEFT IDEALS IN IWASAWA ALGEBRAS II

DENIS VOGEL

In the following we use the same notation as in the appendix of [1]. There we constructed a principal ideal L of Λ which is nonprincipal. We will calculate the G- and H-homology of Λ/L .

Recall that L is generated by the elements

$$f = Z^{2} - \frac{u\pi + \sigma^{2}(\pi)}{\sigma(\pi)}Z + u = Y^{2} + (2 - \frac{u\pi + \sigma^{2}(\pi)}{\sigma(\pi)})Y + (u - \frac{u\pi + \sigma^{2}(\pi)}{\sigma(\pi)} + 1)$$

$$\pi h = \pi Z - \sigma(\pi) = \pi Y + (\pi - \sigma(\pi))$$

Lemma 1. The following sequence is an exact sequence of Λ -modules:

$$0 \to \Lambda \xrightarrow{\phi} \Lambda^2 \xrightarrow{\psi} \Lambda \to \Lambda/L \to 0.$$

The right map is the canonical projection and

$$\phi: e_1 \mapsto (M, N) := (\sigma(\pi), Z - u) = (\sigma(\pi), Y + (1 - u)),$$

$$\psi: e_1 \mapsto f, e_2 \mapsto -\pi h.$$

Proof. It suffices to show that $\operatorname{Im} \phi = \operatorname{Ker} \psi$. First we calculate

$$Mf = \sigma(\pi)f = \sigma(\pi)Z^2 - (u\pi + \sigma^2(\pi))Z + \sigma(\pi)u = Z\pi Z - Z\sigma(\pi) - u\pi Z + u\sigma(\pi)$$
$$= N\pi h$$

which shows that $\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi$. Let $(a, b) \in \operatorname{Ker} \psi$. We can write b = cN + dwith $c \in \Lambda, d \in R$. We obtain $af = (cN+d)\pi h$ and therefore $(a-cM)f = d\pi h = 0 \cdot f + d\pi h$. Since $\operatorname{deg}(d\pi h) = 1 < \operatorname{deg} f$ the uniqueness statement in the division theorem yields a = cM and d = 0. Therefore $\operatorname{Ker} \psi \subseteq \operatorname{Im} \phi$.

Proposition 2. It holds that

$$H_0(G, \Lambda/L) = \mathbb{Z}_p,$$

$$H_1(G, \Lambda/L) = \mathbb{Z}_p \times \mathbb{Z}/p,$$

$$H_i(G, \Lambda/L) = 0 \text{ for } i \ge 2.$$

Moreover,

$$\begin{aligned} H_0(G,L) &= \mathbb{Z}_p \times \mathbb{Z}/p, \\ H_i(G,L) &= 0 \quad for \ i \geq 1. \end{aligned}$$

During this research, the author has been supported by the DFG Forschergruppe "Arithmetik" at the Mathematisches Institut, Heidelberg.

Proof. If we denote the maps induced by taking G-coinvariants of the above sequence again with the same letters, then we obtain a sequence

$$\mathbb{Z}_p \xrightarrow{\phi} \mathbb{Z}_p^2 \xrightarrow{\psi} \mathbb{Z}_p$$

and $H_0(G, M) = \operatorname{Coker} \psi$, $H_1(G, M) = \operatorname{Ker} \psi / \operatorname{Im} \phi$, $H_2(G, M) = \operatorname{Ker} \phi$. In the proof of Lemma A.2 in [1] we showed that the absolute term of $(u\pi + \sigma^2(\pi))/\sigma(\pi)$ is 1 + u. The absolute term of $\pi - \sigma(\pi)$ is zero. Therefore $\psi : \mathbb{Z}_p^2 \to \mathbb{Z}_p$ is the zero map. Since the absolute term of $\sigma(\pi)$ is -p and by Lemma A.2 of [1] we may write $u = 1 + \alpha p^l \mod (p, X)$ for some $l \ge 1$, ϕ is given by $e_1 \mapsto (-p, \alpha p^l)$. This implies the first claim. The second claim follows from the exact sequence

$$0 \to \Lambda \xrightarrow{\phi} \Lambda^2 \xrightarrow{\psi} L \to 0$$

by the same calculations.

Corollary 3. There does not exist a principal ideal \tilde{L} in Λ with $\Lambda/L \cong \Lambda/\tilde{L}$.

Proof. If there existed an \tilde{L} with the above properties then we could write $\tilde{L} = \Lambda \tilde{f}$ with a distinguished polynomial \tilde{f} and obtain a projective resolution

$$0 \to \Lambda \xrightarrow{\cdot \tilde{f}} \Lambda \to \Lambda / \Lambda \tilde{f} \to 0.$$

Then $H_1(G, \Lambda/\tilde{L}) = \operatorname{Ker}(\mathbb{Z}_p \xrightarrow{\tilde{f}_0} \mathbb{Z}_p)$ where \tilde{f}_0 denotes the absolute coefficient of \tilde{f} and therefore $H_1(G, \Lambda/\tilde{L}) = \mathbb{Z}_p$ or 0 depending on whether this coefficient is zero or not.

Lemma 4. The following sequence is an exact sequence of Λ -modules:

$$0 \to \Lambda/\Lambda N \xrightarrow{\chi} \Lambda/\Lambda f \to \Lambda/L \to 0.$$

The map χ is given by $\lambda + \Lambda N \mapsto \lambda \pi h + \Lambda f$ for $\lambda \in \Lambda$.

Proof. We have to determine the kernel of the surjection $\Lambda/\Lambda f \to \Lambda/L$. It is given by

$$(\Lambda \pi h + \Lambda f) / \Lambda f = \Lambda \pi h / (\Lambda f \cap \Lambda \pi h) = \Lambda \pi h / \Lambda N \pi h = \Lambda / \Lambda N$$

which gives the result.

Proposition 5. It holds that

$$H_0(H, \Lambda/L) = \mathbb{Z}_p \times \mathbb{Z}/p,$$

$$H_i(H, \Lambda/L) = 0 \text{ for } i \ge 1.$$

Proof. The exact sequence of the above lemma is a projective resolution for Λ/L as a $\Lambda(H)$ -module. Taking *H*-coinvariants we obtain a map $\chi : \mathbb{Z}_p \to \mathbb{Z}_p^2$ with $H_0(H, \Lambda/L) = \operatorname{Coker} \chi, H_1(H, \Lambda/L) = \operatorname{Ker} \chi$. Since $\pi h = \pi Y + (\pi - \sigma(\pi))$ the map ψ is given by $e_1 \mapsto (-p, 0)$. This implies the result. \Box

The last proposition shows that Λ/L is not a free $\Lambda(H)$ -module. However, it does not rule out the possibility that there might exist a principal reflexive left ideal \tilde{L} of Λ (generated by a linear distinguished polynomial of Λ) for which there exists

an injection $\Lambda/L \to \Lambda/\tilde{L} = \Lambda(H)$ of Λ -modules with pseudonull cokernel.

References

 O.Venjakob: A non-commutative Weierstrass preparation theorem and its applications to Iwasawa theory. With an appendix by D. Vogel, Journal f
ür die reine und angewandte Mathematik 559(2003), 153-191

UNIVERSITÄT HEIDELBERG, MATHEMATISCHES INSTITUT, IM NEUENHEIMER FELD 288, 69120 HEIDELBERG, GERMANY.

E-mail address: vogel@mathi.uni-heidelberg.de

URL: http://www.rzuser.uni-heidelberg.de/~dvogel2/