p-EXTENSIONS WITH RESTRICTED RAMIFICATION THE MIXED CASE

DENIS VOGEL

Abstract

Let p be an odd prime number, k a number field and S a set of primes of k containing some, but not all primes of k above p. We study under which conditions $G_{S}(k)(p)$ is a mild pro-p-group of deficiency one, and apply our results to the case of imaginary quadratic number fields.

1. Introduction

Let k be a number field, p an odd prime number and S a finite set of primes of k. The pro-p-group $G_{S}(k)(p)=\operatorname{Gal}\left(k_{S}(p) / k\right)$, i.e. the Galois group of the maximal p-extension of k unramified outside S contains interesting information on the arithmetic of k. Let S_{p} denote the set of primes of k above p. There are three cases that have to be distinguished:

- the wild case: $S_{p} \subset S$,
- the tame case: $S \cap S_{p}=\varnothing$,
- the mixed case: $\varnothing \neq S_{p} \cap S \varsubsetneqq S_{p}$.

In the wild case, it is known that $G_{S}(k)(p)$ is of cohomological dimension less or equal to 2 , and it is often a duality group, see [NSW], Ch. X, §7. The strict cohomological dimension of $G_{S}(k)(p)$ is conjecturally 2 (Leopoldt's conjecture). In the tame case, only little had been known on the structure of $G_{S}(k)(p)$ until recently. Labute($\left.[\mathrm{L}]\right)$ showed that pro- p-groups whose presentation in terms of generators and relations is of a certain type, socalled mild pro-p-groups, are of cohomological dimension 2. Then he used results of Koch to show that $G_{S}(\mathbb{Q})(p)$ is a mild pro- p-group if S is a strictly circular set of prime numbers. In [V], Labute's techniques were applied to the case where k is an imaginary quadratic number field. Schmidt([S1],[S2]) extended the results of Labute by arithmetic methods and could show that, under some conditions on k and p, for any given finite set S^{\prime} of primes of k of norm $\equiv 1 \bmod p$, there exists a finite set $S \supset S^{\prime}$ of primes of k of norm $\equiv 1$ $\bmod p$, such that $G_{S}(k)(p)$ is mild. In the tame case, if the group $G_{S}(k)(p)$ is mild, then it is a duality group of strict cohomological dimension 3. The mixed case has been studied in papers of Wingberg([W]) and Maire([M]) using the theory of elliptic curves and Iwasawa theory. In particular it is shown that if K / k is an abelian extension of an imaginary quadratic number field and S is a non-empty subset of $S_{p}(K)$ stable under $\operatorname{Gal}(K / k)$, then the cohomological dimension of $G_{S}(K)(p)$ is less or equal to 2 , see [M], Prop. 3.5.

[^0]The objective of this paper is the study of the mixed case, making use of Labute's results on mild groups. In $\S 2$ we study under which conditions the group $G_{S}(k)(p)$ is a mild pro- p-group of deficiency one. In $\S 3$ the result is applied to the following situation. Let k be an imaginary quadratic number field whose class number is not divisible by p, and assume furthermore that p splits in $k, p \mathcal{O}_{k}=\mathfrak{p p}$. Let S^{\prime} be a set of primes of k of norm $\equiv 1 \bmod p$, and let $S=S^{\prime} \cup\{\mathfrak{p}\}$. We will prove criterions for $G_{S}(k)(p)$ to be a mild pro- p-group and hence, of cohomological dimension 2. Explicit examples will be given as well.
I would like to thank Alexander Schmidt and Kay Wingberg for interesting discussions on the subject and valuable suggestions.

2. Mild pro- p-Groups of deficiency one in the mixed case

Let p be an odd prime number and let k be a number field. For a prime \mathfrak{q} of k, let $k_{\mathfrak{q}}$ denote the completion of k with respect to \mathfrak{q} and $U_{\mathfrak{q}}$ its group of units. We put

$$
n_{\mathfrak{q}}=\operatorname{dim}_{\mathbb{F}_{p}} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}
$$

Let S be a finite set of primes of k. Let $\mathrm{D}_{S}(k)$ denote the dual of the Kummer group

$$
V_{S}(k)=\left\{a \in k^{\times} \mid a \in k_{\mathfrak{q}}^{\times p} \text { for } \mathfrak{q} \in S \text { and } a \in U_{\mathfrak{q}} k_{\mathfrak{q}}^{\times p} \text { for } \mathfrak{q} \notin S\right\}
$$

We remark that we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{k}^{\times} / p \longrightarrow V_{\varnothing}(k) \longrightarrow{ }_{p} \mathrm{Cl}(k) \longrightarrow 0, \tag{1}
\end{equation*}
$$

and for each subset $T \subset S$ we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow V_{T}(k) \longrightarrow V_{\varnothing}(k) \longrightarrow \prod_{\mathfrak{q} \in T} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p} \tag{2}
\end{equation*}
$$

see $[\mathrm{K}], \S 11.3$. We let $h(k)$ denote the class number of k, and we set

$$
\delta_{\mathfrak{q}}= \begin{cases}1 & \text { if } \mu_{p} \subset k_{\mathfrak{q}} \\ 0 & \text { otherwise }\end{cases}
$$

Definition 2.1. We say that the triple (k, S, p) has the property $(*)$ if the following holds:

- $p \nmid h(k)$,
- $\delta_{\mathfrak{q}}=1$ for $\mathfrak{q} \in S, \mathfrak{q} \notin S_{p}$,
- $\delta_{\mathfrak{q}}=0$ for $\mathfrak{q} \in S \cap S_{p}$,
- $\mathrm{B}_{S}(k)=0$,
- $\sum_{\mathfrak{q} \in S \cap S_{p}}\left[k_{\mathfrak{q}}: \mathbb{Q}_{p}\right]=r$, where $r=r_{1}+r_{2}$ is the number of archimedean primes of k.
We remark that in this case $\mu_{p} \not \subset k$ and

$$
n_{\mathfrak{q}}= \begin{cases}1 & \text { if } \mathfrak{q} \in S, \mathfrak{q} \notin S_{p} \\ {\left[k_{\mathfrak{p}}: \mathbb{Q}_{p}\right]} & \text { if } \mathfrak{q} \in S \cap S_{p}\end{cases}
$$

We denote the maximal p-extension of k unramified outside S by $k_{S}(p)$, and we put $G_{S}(k)(p)=G\left(k_{S}(p) / k\right)$. For $\mathfrak{q} \in S$, let $\left\{\alpha_{\mathfrak{q}, 1}, \ldots, \alpha_{\mathfrak{q}, n_{\mathfrak{q}}}\right\}$ be a basis of the \mathbb{F}_{p}-vector space $U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$, and let $\pi_{\mathfrak{q}}$ be a uniformizer of $k_{\mathfrak{q}}$. Let \mathfrak{Q} be an extension of \mathfrak{q} to $k_{S}(p)$. We let $\sigma_{\mathfrak{q}}$ be an element of $G_{S}(k)(p)$ with the following properties:
(i) $\sigma_{\mathfrak{q}}$ is a lift of the Frobenius automorphism of \mathfrak{Q};
(ii) the restriction of $\sigma_{\mathfrak{q}}$ to the maximal abelian subextension \tilde{k} / k of $k_{S}(p) / k$ is equal to $\left(\hat{\pi}_{\mathfrak{q}}, \tilde{k} / k\right)$, where $\hat{\pi}_{\mathfrak{q}}$ denotes the idèle whose \mathfrak{q} component equals $\pi_{\mathfrak{q}}$ and all other components are 1 .
For $i=1, \ldots, n_{\mathfrak{q}}$, let $\tau_{\mathfrak{q}, i}$ denote an element of $G_{S}(p)$ such that
(i) $\tau_{\mathfrak{q}, i}$ is an element of the inertia group $T_{\mathfrak{Q}}$ of \mathfrak{Q} in $k_{S}(p) / k$;
(ii) the restriction of $\tau_{\mathfrak{q}, i}$ to \tilde{k} / k equals $\left(\hat{\alpha}_{\mathfrak{q}, i}, \tilde{k} / k\right)$, where $\hat{\alpha}_{\mathfrak{q}, i}$ denotes the idèle whose \mathfrak{q}-component equals $\alpha_{\mathfrak{q}, i}$ and all other components are equal to 1 .
We set

$$
h^{i}\left(G_{S}(k)(p)\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left(H^{i}\left(G_{S}(k)(p), \mathbb{Z} / p \mathbb{Z}\right), \quad i=1,2\right.
$$

We say that a finitely presented pro-p-group G is of deficiency one if $h^{1}(G)-$ $h^{2}(G)=1$.

Proposition 2.2. Assume that the triple (k, S, p) satisfies the property $(*)$. Let $S \backslash S_{p}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right\}$. Then

$$
h^{1}\left(G_{S}(k)(p)\right)=1+n
$$

and

$$
h^{2}\left(G_{S}(k)(p)\right) \leq n
$$

If $\mathrm{E}_{S \cap S_{p}}(k)=0$, then the group $G_{S}(k)(p)$ has a presentation $G_{S}(k)(p)=$ F / R where F is the free pro-p-group on generators x_{1}, \ldots, x_{n+1}, and R is generated as a normal subgroup of F by relations r_{1}, \ldots, r_{n} which are given modulo F_{3} by

$$
r_{i} \equiv x_{i}^{\mathrm{N}\left(\mathfrak{q}_{i}\right)-1} \prod_{\substack{j=1 \\ j \neq i}}^{n+1}\left[x_{i}, x_{j}\right]^{a_{i j}} \bmod F_{3}, i=1, \ldots, n
$$

Here F_{3} denotes the third step of the descending p-central series of F.
Proof. Since (k, S, p) satisfies $(*)$, we have by [NSW], Thm. 8.7.11,

$$
\begin{aligned}
h^{1}\left(G_{S}(k)(p)\right) & =1+\sum_{\mathfrak{q} \in S} \delta_{\mathfrak{q}}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{~B}_{S}(k)+\sum_{i=1}^{m}\left[k_{\mathfrak{p}_{i}}: \mathbb{Q}_{p}\right]-r \\
& =1+n
\end{aligned}
$$

and

$$
h^{2}\left(G_{S}(k)(p)\right) \leq \sum_{\mathfrak{q} \in S} \delta_{\mathfrak{q}}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{~B}_{S}(k)=n
$$

An explicit construction of a presentation of $G_{S}(k)(p)$ in terms of generators and relations is carried out in $[\mathrm{K}], \S 11.4$. We sketch it here. The set of $n+r$ automorphisms $\mathcal{M}=\left\{\tau_{\mathfrak{q}, i} \mid \mathfrak{q} \in S, i=1, \ldots, n_{\mathfrak{q}}\right\}$ constitutes a system of generators of $G_{S}(k)(p)$ which is not minimal unless $r=1$. In order obtain a minimal generating set, we have to remove $r-1$ elements from the above set. Which generators can be omitted is determined by the following method: By construction, the set $\mathcal{N}=\left\{\alpha_{\mathfrak{q}, i} \mid \mathfrak{q} \in S, i=1, \ldots, n_{\mathfrak{q}}\right\}$ is a basis of the $\mathbb{F}_{p^{-}}$ vector space $\prod_{\mathfrak{q} \in S} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. Let $\epsilon_{1}, \ldots, \epsilon_{r-1}$ be a system of fundamental units of k. Since $\mathrm{D}_{S}(k)=0$, the elements $\epsilon_{1}, \ldots, \epsilon_{r-1}$ are linearly independent in
$\prod_{\mathfrak{q} \in S} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. We have to omit elements from \mathcal{N} such that the remaining elements, together with $\epsilon_{1}, \ldots, \epsilon_{r-1}$, form a basis of $\prod_{\mathfrak{q} \in S} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. In this way, we arrive at a subset $\mathcal{N}_{0} \subset \mathcal{N}$ of cardinality $n+1$. A minimal system of generators of $G_{S}(k)(p)$ is then given by the subset $\mathcal{M}_{0} \subset \mathcal{M}$ corresponding to \mathcal{N}_{0}.
Assume that $\mathrm{B}_{S \cap S_{p}}(k)=0$. Then $\epsilon_{1}, \ldots, \epsilon_{r-1}$ are linearly independent in the r-dimensional \mathbb{F}_{p}-vector space $\prod_{\mathfrak{q} \in S \cap S_{p}} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. This implies that there exists a prime $\mathfrak{p} \in S \cap S_{p}$ and $k \in\left\{1, \ldots, n_{\mathfrak{p}}\right\}$ such that $\left\{\epsilon_{1}, \ldots, \epsilon_{r-1}, \alpha_{\mathfrak{p}, k}\right\}$ is a basis of $\prod_{\mathfrak{q} \in S \cap S_{p}} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. Then $\left\{\epsilon_{1}, \ldots, \epsilon_{r-1}, \alpha_{\mathfrak{p}, k}, \alpha_{q_{1}, 1}, \ldots, \alpha_{\mathfrak{q}_{n}, 1}\right\}$ is a basis of $\prod_{\mathfrak{q} \in S} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p}$. Therefore $\left\{\tau_{\mathfrak{q}_{1}, 1}, \ldots, \tau_{\mathfrak{q}_{n}, 1}, \tau_{\mathfrak{p}, k}\right\}$ is a minimal system of generators of $G_{S}(k)(p)$. Let F be the free pro- p-group on generators x_{1}, \ldots, x_{n+1}. We define a presentation

$$
1 \longrightarrow R \longrightarrow F \xrightarrow{\psi} G_{S}(k)(p) \longrightarrow 1
$$

by $\psi\left(x_{i}\right)=\tau_{\mathfrak{q}_{i}, 1}, i=1, \ldots, n, \psi\left(x_{n+1}\right)=\tau_{\mathfrak{p}, k}$. Let y_{i} be a preimage of $\sigma_{\mathfrak{q}_{i}}$ for $i=1, \ldots, n$. Then

$$
y_{i} \equiv \prod_{\substack{j=1 \\ j \neq i}}^{n+1} x_{j}^{a_{i j}} \bmod F_{2}
$$

for $a_{i j} \in \mathbb{Z} / p \mathbb{Z}$. The relation subgroup R is generated as a normal subgroup of F by the relations

$$
r_{i}=x_{i}^{\mathrm{N}\left(\mathbf{q}_{i}\right)-1}\left[x_{i}^{-1}, y_{i}^{-1}\right], \quad i=1, \ldots, n,
$$

We obtain
$r_{i} \equiv x_{i}^{\mathrm{N}\left(\mathrm{q}_{i}\right)-1}\left[x_{i}, y_{i}\right] \equiv x_{i}^{\mathrm{N}\left(\mathfrak{q}_{i}\right)-1}\left[x_{i}, \prod_{\substack{j=1 \\ j \neq i}}^{n+1} x_{j}^{a_{i j}}\right] \equiv x_{i}^{\mathrm{N}\left(\boldsymbol{q}_{i}\right)-1} \prod_{\substack{j=1 \\ j \neq i}}^{n+1}\left[x_{i}, x_{j}\right]^{a_{i j}} \bmod F_{3}$, which finishes the proof.
By applying Thm. 3.10, Thm. 3.18 and Thm. 3.19 of [L], we immediately obtain:

Theorem 2.3. Let p be an odd prime number, k a number field and S a set of primes of K. Assume that (k, S, p) satisfies $(*)$ and $\mathrm{E}_{S \cap S_{p}}(k)=0$. Assume that a presentation of $G_{S}(k)(p)$ as obtained in 2.2 is given: $G_{S}(k)(p)=$ F / R, where F is the free pro-p-group on generators $x_{1}, \ldots, x_{n+1}, n=$ $\#\left(S \backslash S_{p}\right), R$ is the normal subgroup of F generated by relations r_{1}, \ldots, r_{n} which satisfy a congruence of the form

$$
r_{i} \equiv x_{i}^{p a_{i}} \prod_{\substack{j=1 \\ j \neq i}}^{n+1}\left[x_{i}, x_{j}\right]^{a_{i j}} \bmod F_{3}, i=1, \ldots, n .
$$

with $a_{i}, a_{i j} \in \mathbb{Z} / p \mathbb{Z}$. Assume that one of the following conditions is fulfilled:
(i) $a_{i, n+1} \neq 0$ for $1 \leq i \leq n$
(ii) $a_{n, n+1} \neq 0$ and $a_{i, n} \neq 0$ for $i<n$.

Then $G_{S}(k)(p)$ is a mild pro-p-group of deficiency one. In particular, we have $\operatorname{cd} G_{S}(k)(p)=2$.

An interesting example in which (k, S, p) fulfills $(*)$ and $\mathrm{D}_{S \cap S_{p}}(k)=0$ can be obtained if k is an imaginary quadratic number field. This case will be studied in more detail in $\S 3$. Here we are going to point out another situation in which the above conditions are fulfilled.

Proposition 2.4. Let p be a prime and k a CM-field with maximal real subfield k^{+}such that

- p is inert in k^{+} / \mathbb{Q},
- p splits in $k / k^{+}, p \mathcal{O}_{k}=\mathfrak{p} \overline{\mathfrak{p}}$,
- $\delta_{\mathfrak{p}}=0$,
- $p \nmid h(k)$,
and one of the following two conditions holds:
(i) $p \nmid h\left(k\left(\mu_{p}\right)\right)$,
(ii) $p \nmid h\left(k^{+}\left(\mu_{p}\right)\right)$ and $p \nmid\left(\mathcal{O}_{k}^{\times}: \mathcal{O}_{k^{+}}^{\times}\right)$

If S^{\prime} is any set of primes of k of norm $\equiv 1 \bmod p$ and $S=S^{\prime} \cup\{\mathfrak{p}\}$, then (k, S, p) satisfies $(*)$, and $\mathrm{E}_{S \cap S_{p}}(k)=\mathrm{E}_{\{\mathfrak{p}\}}(k)=0$.
Proof. By our assumptions, $\left[k_{\mathfrak{p}}: \mathbb{Q}_{p}\right]=[k: \mathbb{Q}] / 2=r$. Since $\mathrm{B}_{S}(K) \subset$ $\mathrm{E}_{\{\mathfrak{p}\}}(K)$ it remains to show that $\mathrm{B}_{\{\mathfrak{p}\}}(K)=0$. By virtue of the exact sequences (1) and (2), this is equivalent to the injectivity of the map

$$
\mathcal{O}_{k}^{\times} / p \rightarrow U_{k_{\mathfrak{p}}} / U_{k_{\mathfrak{p}}}^{p}
$$

Let us assume (i). Suppose $x \in \mathcal{O}_{k}^{\times} / p$ is a non-trivial element of the kernel of this map. Then x is contained in the kernel of

$$
\mathcal{O}_{k}^{\times} / p \rightarrow U_{k_{\mathfrak{p}}} / U_{k_{\mathfrak{p}}}^{p} \times U_{k_{\overline{\mathfrak{p}}}} / U_{k_{\bar{p}}}^{p}
$$

as well. Therefore $k(\sqrt[p]{x}) / k$ is a non-trivial unramified extension. By Kummer theory, the abelian extension $k\left(\mu_{p}, \sqrt[p]{x}\right) / k\left(\mu_{p}\right)$ is unramified of degree p, contradicting (i). Now we assume that (ii) is fulfilled. Since $p \nmid\left(\mathcal{O}_{k}^{\times}: \mathcal{O}_{k^{+}}^{\times}\right)$ and p splits in k / k^{+}we have a commutative diagram

in which the vertical maps are isomorphisms. Thus it suffices to show the injectivity of the $\operatorname{map} \mathcal{O}_{k^{+}}^{\times} / p \rightarrow U_{k_{p}^{+}} / U_{k_{p}^{+}}^{p}$. This is proved in the same way as in case (i).

Example 2.5. Let $k=\mathbb{Q}(\sqrt{3}, \sqrt{-7})$ and $p=5$. Computations with the computer algebra system MAGMA([MAG]) show that the assumptions of Prop.2.4 are fulfilled.

3. The case of imaginary quadratic number fields

Let p be an odd prime number and k an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Assume furthermore that p splits in $k, p \mathcal{O}_{k}=\mathfrak{p p}$. Let $S^{\prime}=$
$\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right\}$ be a set of primes of k whose norm is congruent to $1 \bmod p$. Put $S=S^{\prime} \cup\{\mathfrak{p}\}$.

Proposition 3.1. The triple (k, S, p) has property $(*)$, and $\mathrm{E}_{S \cap S_{p}}(k)=0$.
Proof. It suffices to show that $\mathrm{E}_{S \cap S_{p}}(k)=0$. We have

$$
V_{\varnothing}(k) \cong \mathcal{O}_{k}^{\times} / p=0
$$

The result follows since $V_{S \cap S_{p}}(k) \subset V_{\varnothing}(k)$.
In the above situation, the set of automorphisms $\left\{\tau_{\mathfrak{q}_{1}, 1}, \ldots, \tau_{\mathfrak{q}_{n}, 1}, \tau_{\mathfrak{p}, 1}\right\}$ constructed in $\S 2$ is a minimal system of generators of $G_{S}(k)(p)$. Let I_{k} denote the idèle group of k, and for a subset T of S let U_{T} be the subgroup of I_{k} consisting of those idèles whose components for $\mathfrak{q} \in T$ are 1 and for $\mathfrak{q} \notin T$ are units. We remark that for each subset T of S we have isomorphisms

$$
H_{1}\left(G_{T}(p), \mathbb{Z} / p \mathbb{Z}\right) \cong I_{k} /\left(U_{T} I_{k}^{p} k^{\times}\right) \cong U_{\varnothing} / U_{T} U_{\varnothing}^{p} \cong \prod_{\mathfrak{q} \in T} U_{\mathfrak{q}} / U_{\mathfrak{q}}^{p} \cong(\mathbb{Z} / p \mathbb{Z})^{\# T}
$$

see $[\mathrm{K}], \S 11.3$. For the following considerations we set $\mathfrak{q}_{n+1}=\mathfrak{p}$. We make the same definition as in [V].
Definition 3.2. For two primes $\mathfrak{q}_{i}, \mathfrak{q}_{j} \in S$, the linking number $\ell_{i j} \in \mathbb{Z} / p \mathbb{Z}$ of \mathfrak{q}_{i} and \mathfrak{q}_{j} is defined by the formula

$$
\sigma_{\mathfrak{q}_{i}} \equiv \tau_{\mathfrak{q}_{j}}^{\ell_{i j}} \quad \bmod G_{\left\{\mathfrak{q}_{j}\right\}}(p)^{p}
$$

where, by abuse of notation, $\sigma_{\mathfrak{q}_{i}}$ and $\tau_{\mathfrak{q}_{j}}$, respectively, denote the images of $\sigma_{\mathfrak{q}_{i}} \in G_{S}(k)(p)$ and $\tau_{\mathfrak{q}_{j}} \in G_{S}(k)(p)$, respectively, in $G_{\left\{\mathfrak{q}_{j}\right\}}(p)$.
In other words, $\ell_{i j}$ is the image of the Frobenius automorphism $\sigma_{\mathfrak{q}_{i}} \in$ $G_{S}(k)(p)$ in $H_{1}\left(G_{\left\{\mathfrak{q}_{j}\right\}}(p), \mathbb{Z} / p \mathbb{Z}\right)$ which we identify with $\mathbb{Z} / p \mathbb{Z}$ by means of its generator $\tau_{\mathfrak{q}_{j}}$. Note that $\ell_{i i}=0$ for all $i=1, \ldots, n$. The linking number $\ell_{i j}$ is independent of the choice of the uniformizer $\pi_{\mathfrak{q}_{i}}$ of $k_{\mathfrak{q}_{i}}$ (this follows from the above isomorphism for the case $T=\left\{\mathfrak{q}_{j}\right\}$), but it depends on the choice of $\alpha_{\mathfrak{q}_{j}}$. If $\alpha_{\mathfrak{q}_{j}}$ would be replaced by $\alpha_{\mathfrak{q}_{j}}^{s}$, where s is prime to p, then $\ell_{i j}$ would be multiplied by s. The defining equation of the linking number $\ell_{i j}$ is equivalent to

$$
\hat{\pi}_{\mathfrak{q}_{i}} \equiv \hat{\alpha}_{\mathfrak{q}_{j}}^{\ell_{i j}} \quad \bmod U_{\left\{\mathfrak{q}_{j}\right\}} I_{k}^{p} k^{\times}
$$

Proposition 3.3. Under the above assumptions, we have

$$
h^{1}\left(G_{S}(k)(p)\right)=n+1
$$

and

$$
h^{2}\left(G_{S}(k)(p)\right) \leq n
$$

The group $G_{S}(k)(p)$ has a presentation $G_{S}(k)(p)=F / R$ where F is the free pro-p-group on generators x_{1}, \ldots, x_{n+1}, and R is generated as a normal subgroup of F by relations r_{1}, \ldots, r_{n} which are given modulo F_{3} by

$$
r_{i} \equiv x_{i}^{\mathrm{N}\left(\mathfrak{q}_{i}\right)-1} \prod_{\substack{j=1 \\ j \neq i}}^{n+1}\left[x_{i}, x_{j}\right]^{\ell_{i j}} \quad \bmod F_{3}, i=1, \ldots, n
$$

Proof. This is immediate from the construction of the presentation carried out in the proof of 2.2 .

Theorem 2.3 now implies

Theorem 3.4. Let p be an odd prime number, k an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Assume furthermore that p splits in $k, p \mathcal{O}_{k}=\mathfrak{p} \overline{\mathfrak{p}}$. Let $S^{\prime}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right\}$ be a set of primes of k whose norm is congruent to 1 $\bmod p$. Put $\mathfrak{q}_{n+1}=\mathfrak{p}$ and $S=S^{\prime} \cup\left\{\mathfrak{q}_{n+1}\right\}$. Assume that one of the following conditions is fulfilled:
(i) $\ell_{i, n+1} \neq 0$ for $1 \leq i \leq n$.
(ii) $\ell_{n, n+1} \neq 0$ and $\ell_{i, n} \neq 0$ for $i<n$.

Then $G_{S}(k)(p)$ is a mild pro-p-group of deficiency one. In particular, $G_{S}(k)(p)$ is of cohomological dimension 2.

Corollary 3.5. Let p be an odd prime number, k an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Assume furthermore that p splits in k, $p \mathcal{O}_{k}=\mathfrak{p} \overline{\mathfrak{p}}$. Let q_{1}, \ldots, q_{n} be prime numbers which are inert k / \mathbb{Q} with $q_{i} \equiv 1 \bmod p$, $q_{i} \not \equiv 1 \bmod p^{2}$ for $i=1, \ldots, n$. Put $S=\left\{\left(q_{1}\right), \ldots,\left(q_{n}\right), \mathfrak{p}\right\}$. Then $G_{S}(k)(p)$ is a mild pro-p-group.

Proof. We set $\mathfrak{q}_{i}=\left(q_{i}\right)$ for $1 \leq i \leq n, \mathfrak{q}_{n+1}=\mathfrak{p}$. We will verify condition (i) of 3.4 , i.e. we will show that $\ell_{i, n+1} \neq 0$ for $1 \leq i \leq n$. For $1 \leq i \leq n$, $\pi_{\mathfrak{q}_{i}}=q_{i}$ is a uniformizer of $k_{\mathfrak{q}_{i}}$, and an element of $U_{\mathfrak{q}}$ for all primes $\mathfrak{q} \neq \mathfrak{q}_{i}$ of k. Hence, the idèle $\hat{\pi}_{\mathfrak{q}_{i}}$, when considered modulo $U_{\left\{\mathfrak{q}_{n+1}\right\}} I_{k}^{p} k^{\times}$, is equivalent to the idèle whose \mathfrak{q}-component is equal to 1 for $\mathfrak{q} \neq \mathfrak{q}_{n+1}$ and equal to q_{i}^{-1} for $\mathfrak{q}=\mathfrak{q}_{n+1}$. Since we are only interested in the non-vanishing of $\ell_{i, n+1}$ we may assume without loss of generality that $\alpha_{n+1}=1+p$. In particular, $\ell_{i, n+1}$ is given by

$$
q_{i} \equiv(1+p)^{-\ell_{i, n+1}} \quad \bmod U_{\mathfrak{p}}^{p}
$$

By our assumptions, $\ell_{i, n+1} \neq 0$
Example 3.6. Let $k=\mathbb{Q}(\sqrt{-5}), p=3, S=\{(13),(31),(3,1+\sqrt{-5})\}$. Then $G_{S}(k)(p)$ is a mild pro-p-group.

References

[K] Koch, H.: Galoissche Theorie der p-Erweiterungen. Deutscher Verlag der Wiss., 1970 (English translation Berlin 2002)
[L] Labute, J.: Mild Pro-p-Groups and Galois Groups of p-Extensions of \mathbb{Q}. J. Reine Angew. Math. 596 (2006), 155-182
[M] Maire, C.: Sur la dimension cohomologique des pro-p-extensions de corps de nombres. J. Theor. Nombres Bordx. 17, No. 2 (2005), 575-606
[MAG] Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User Language. J. Symbolic Comput. 24 (1997), 235-265.
[NSW] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields. Springer 2000
[S1] Schmidt, A.: Circular sets of prime numbers and p-extensions of the rationals. J. Reine Angew. Math. 596 (2006), 115-130
[S2] Schmidt, A.: Rings of integers of type $K(\pi, 1)$. Preprints der Forschergruppe Algebraische Zykel und L-Funktionen Regensburg/Leipzig Nr. 7, 2007
[V] Vogel, D.: Circular sets of primes of imaginary quadratic number fields. Preprints der Forschergruppe Algebraische Zykel und L-Funktionen Regensburg/Leipzig Nr. 5, 2006
[W] Wingberg, K.: Galois groups of number fields generated by torsion points of elliptic curves. Nagoya Math. J. 104 (1986), 43-53

Denis Vogel
NWF I - Mathematik, Universität Regensburg
93040 Regensburg
Deutschland
email: denis.vogel@mathematik.uni-regensburg.de

[^0]: Date: July 18, 2007.

