THE HOMOTOPY FIBRE OF MAPS OF MOREL-VOEVODSKY SPACES

DENIS VOGEL

1. The construction

Let $\Delta^{op} \operatorname{Shv}_{et}(\operatorname{Sm} k)_0$ denote the category of pointed connected simplicial étale sheaves on $\operatorname{Sm}(k)_{et}$ and \mathcal{H}_0 the homotopy category of pointed connected simplicial sets.

Given a morphism $f : (\mathcal{X}, x) \to (\mathcal{Y}, y)$ in $\Delta^{op} \operatorname{Shv}_{et}(\operatorname{Sm} k)_0$ we construct a pro-object $H_f \in \operatorname{pro} -\mathcal{H}_0$ such that we obtain a long exact homotopy sequence

$$\dots \to \pi_{i+1}(\mathcal{Y}, y) \to \pi_i(H_f) \to \pi_i(\mathcal{X}, x) \to \pi_i(\mathcal{Y}, y) \to \dots$$

For convenience we recall some facts about pro-objects. A pro-object of a category C is a functor $F: I \to C$ from a small left filtering category I to C. A map of pro-objects $F: I \to C, G: J \to C$ of C is an element of

$$\lim_{i \in J} \lim_{i \in I} \operatorname{Hom}_C(F(i), G(j)).$$

A strict map of pro-objects $F: I \to C$, $G: J \to C$ of C is a pair (α, ϕ) consisting of a functor $\alpha: J \to I$ and a natural transformation $\phi: F \circ \alpha \to G$. A strict map of pro-objects of course induces a map of pro-objects. We remark ([Fr1], ch. 4) that if $\alpha: J \to I$ is left final then $(\alpha, \text{id}: F \circ \alpha \to F \circ \alpha)$ gives rise to an isomorphism from F to $F \circ \alpha$ (whose inverse need not be strict).

Definition 1.1. Let $\pi Triv_0/\mathcal{X}$ denote the category whose objects are the pointed trivial local fibrations to (\mathcal{X}, x) and whose morphisms are the obvious commutative triangles in $\pi \Delta^{op} \operatorname{Shv}_{et}(\operatorname{Sm} k)_0$. Let $\pi Triv_0(f)$ denote the category whose objects are commutative squares

$$\begin{array}{c} U \xrightarrow{g} V \\ \downarrow \\ \chi \xrightarrow{f} \mathcal{Y} \end{array}$$

 $in \Delta^{op} \operatorname{Shv}_{et}(\operatorname{Sm} k)_0$ (which we denote again by g by abuse of notation) where the vertical maps are pointed trivial local fibrations. A map $g \to g'$ is a commutative diagram

A morphism in $\pi Triv_0(f)$ is an equivalence class of maps $g \to g'$ where two maps $g \rightrightarrows g'$ are equivalent if there exists a pointed simplicial homotopy over f relating them.

Proposition 1.2. The category $\pi Triv_0(f)$ is left filtering.

Proof. This follows from the naturality of the construction of the homotopy left equalizer in $\pi Triv/\mathcal{X}$ as carried out in [Mo], Lemma 0.3.

Recall ([GZ], VI 5.5.1) that to a map $S \to T$ of simplicial sets we can functorially associate a commutative triangle

such that $S \to S^r$ is a weak equivalence and $S^r \to T$ is a Kan fibration. We provide some functors between the above categories.

Definition 1.3. Let

$$\Pi_{\mathcal{X}}: \pi Triv_0/\mathcal{X} \to \mathcal{H}_0, \quad \Pi_{\mathcal{Y}}: \pi Triv_0/\mathcal{Y} \to \mathcal{H}_0$$

denote the connected component functor as in [S], §4. We define

$$H_f: \pi Triv_0(f) \to \mathcal{H}_0, \ g \mapsto (\Pi U)^r \times_{\Pi V} v$$

and

$$\Pi_f^r: \pi Triv_0(f) \to \mathcal{H}_0, \ g \mapsto (\Pi U)^r$$

where we make use of the factorization

of Πg into a weak equivalence followed by a Kan fibration and v denotes the basepoint of ΠV . We denote by

$$\operatorname{sr}: \pi Triv_0(f) \to \pi Triv_0/\mathcal{X}, \ g \mapsto \ U \to \mathcal{X}$$

and

$$\operatorname{rg}: \pi Triv_0(f) \to \pi Triv_0/\mathcal{Y}, \ q \mapsto V \to \mathcal{X}$$

the source and range functor, respectively.

Lemma 1.4. The functors sr and rg are left final.

Proof. This follows in the same way as in [Fr2], from Prop. 1.2.

$$\dots \to \pi_{i+1}(\mathcal{Y}, y) \to \pi_i(H_f) \to \pi_i(\mathcal{X}, x) \to \pi_i(\mathcal{Y}, y) \to \dots$$

Proof. We have obvious strict morphisms $H_f \to \Pi_f \to \Pi_{\mathcal{Y}} \circ \operatorname{rg}$ which by construction induce a long exact sequence of pro-groups

$$\dots \to \pi_{i+1}(\Pi_{\mathcal{Y}} \circ \operatorname{rg}) \to \pi_i(H_f) \to \pi_i(\Pi_f^r) \to \pi_i(\Pi_{\mathcal{Y}} \circ \operatorname{rg}) \to \dots$$

Since rg is left final, we obtain an isomorphism $\Pi_{\mathcal{Y}} \cong \Pi_{\mathcal{Y}} \circ \text{rg in pro-}\mathcal{H}_0$. The left finality of sr yields an isomorphism $\Pi_{\mathcal{X}} \cong \Pi_{\mathcal{X}} \circ \text{sr}$, and by construction we have $\pi_i(\Pi_{\mathcal{X}} \circ \text{sr}) \cong \pi_i(\Pi_f^r)$ for each *i*. This proves the claim. \Box

We remark that H_f coincides with fib (f_{ht}) of [Fr1], ch. 10, if f is a map of schemes. We have a natural map $(\mathcal{X} \times_{\mathcal{Y}} y)_{et} \to H_f$ induced by

$$\pi Triv_0(f) \xrightarrow{\mathrm{st}} \pi Triv_0/\mathcal{X} \to \pi Triv_0/\mathcal{X} \times_{\mathcal{Y}} y.$$

It would be interesting to know under which conditions this map is a weak equivalence.

References

- [AM] Artin, M., Mazur, B.: Etale Homotopy. LNM 100, Springer 1969
- [Fr1] Friedlander, E.: Etale Homotopy of Simplicial Schemes. Ann. of Math. Studies 104, Princeton Univ. Press 1982
- [Fr2] Friedlander, E.: Fibrations in etale homotopy theory. Publ. Math., Inst. Hautes Étud. Sci. 42, 5-46(1972)
- [GZ] Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy theory. Springer, 1967
- [Mo] Morel, F.: Verdier's formula for non locally ibrant simplicial sheaves. preprint
- [S] Schmidt, A.: On the étale homotopy type of Morel-Voevodsky spaces. preprint