Aufgabe 1. Es sei $n \in \mathbb{N}$ und $F_n = 2^{2^n} + 1$ (F_n heißt eine Fermat-Zahl).

- a. Zeigen Sie, dass F_2 , F_3 und F_4 Primzahlen sind, aber dass F_5 zerlegbar ist.
- b. Zeigen Sie : Ist F_n eine Primzahl, dann gilt $3^{(F_n-1)/2} \equiv -1 \pmod{F_n}$.
- c. Es sei jetzt $q \neq 3$ ein Primfaktor von F_n . Es sei d die Ordnung von 3 in \mathbb{F}_q^{\times} . Zeigen Sie : Gilt $3^{(F_n-1)/2} \equiv -1 \pmod{F_n}$, dann gilt $d=2^{2^n}$.
- d. Zeigen Sie, dass F_n genau dann eine Primzahl ist, wenn $3^{(F_n-1)/2} \equiv -1 \pmod{F_n}$ ist (Pépin-Test).

Aufgabe 2. Eine natürliche Zahl n heißt a-Carmichael $(a \in \mathbb{N}, a \ge 2)$ wenn n keine Primzahl ist und $a^{n-1} \equiv 1 \pmod{n}$ ist. Es sei $p \ne 2$ eine Primzahl mit $p \nmid a(a^2 - 1)$, und es sei $n = (a^{2p} - 1)/(a^2 - 1)$. Zeigen Sie :

- a. *n* ist keine Primzahl,
- b. $a^{2p} \equiv 1 \pmod{n}$
- c. *n* ist *a*-Carmichael,
- d. für jedes $a \geq 2$ existieren unendlich viele a-Carmichael Zahlen.

Aufgabe 3. Es sei n keine Primzahl und keine Carmichael-Zahl. Ein $a \in \mathbb{Z}$ heißt Fermat-Zeuge von n, wenn $a^{n-1} \not\equiv 1 \pmod{n}$ ist. Es sei :

 $F_n := \{\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times} | a \text{ ist Fermat} - \text{Zeuge von } n \}.$

Zeigen Sie:

$$|F_n| \geq \frac{1}{2} |(\mathbb{Z}/n\mathbb{Z})^{\times}|.$$

Aufgabe 4. Es sei $p \equiv 1 \mod 4$ eine Primzahl. Machen Sie aus folgendem Argument (Zagier, 1990) einen ausführlichen Beweis des Satzes 10.3 der Vorlesung. Die auf der endlichen Menge $S = \{(x, y, z) \in \mathbb{N}^3 | x^2 + 4yz = p\}$ durch

$$(x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z) \text{ falls } x < y - z \\ (2y - x, y, x - y + z) \text{ falls } y - z < x < 2y \\ (x - 2y, x - y + z, y) \text{ falls } x > 2y \end{cases}$$

definierte Involution hat genau einen Fixpunkt, so dass |S| ungerade ist; daher hat aber auch die Involution $(x, y, z) \mapsto (x, z, y)$ einen Fixpunkt.

Die Blätter sollen bis Donnerstag, den 11.12. um 14.15 Uhr in die dafür vorgesehenen Einwurfkästen im Foyer des Mathematischen Instituts abgegeben werden.