ON THE GALOIS GROUP OF 2-EXTENSIONS WITH
RESTRICTED RAMIFICATION

DENIS VOGEL

ABSTRACT. In this paper we study the relation structure of the Galois group
of the maximal outside a given set .S of primes unramified 2-extension Qg(2) of
Q and of the Galois group of the 2-class field tower of a quadratic number field.
We complete Morishita’s calculations of the triple Milnor invariants for Qg(2)
and obtain the relation structure of G(Qg(2)/Q) modulo the fourth step of the
Zassenhaus filtration. We use this result results in order to deduce information
on the Galois group of the 2-class field tower of a quadratic number field.

1. INTRODUCTION

The objective of this paper is the study of relations in certain Galois groups,
namely the Galois group of the maximal 2-extension of Q unramified outside a
set of primes S and the 2-class field tower of a quadratic number field. Let us
explain this now in more detail.

We consider the Galois group G(2) of the maximal 2-extension Qg(2) of Q which
is unramified outside a set S of odd primes which is given by
S = {ll,...,ln7OO}.

For 1 < i < nlet [; be a fixed extension of [; to Qs(2)/Q, and let o; be an element
of Gg(2) with the following properties:

(i) oy is a lift of the Frobenius automorphism of [;,

(i) the restriction of o; to the maximal abelian subextension Qg(2)*"/Q of
Qs(2)/Q is equal to (A, Qs(2)*”/Q), where \; denotes the idele whose
[;-component equals [; and all other components are 1.

For 1 <i <mn let 7; denote an element of G(2) such that

(i) 7; is a generator of the inertia group 7}, of [; in Qg(2)/Q,

(i) the restriction of 7; to Qs(2)**/Q equals (ay, Qs(2)**/Q), where «; de-
notes the idele whose [;-component is a primitive root modulo [/; and all
other components are 1.

By a well-known result due to Frohlich and Koch [9], there is a minimal presen-
tation

1 R F —— Gs(2) — 1
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of Gg(2), where F' is the free pro-2-group on generators z, ..., x, and 7 is given
by x; — 71;, 1 <1 < n. A minimal generating system of R as a normal subgroup
of F is given by R = {pm }1<m<n With

S o Ty B
where y,, € F is any preimage of o, for 1 < m < n. Here, we write (a,b) =
a~'b~tab for elements a,b € F. We have

P = xlm ™ H (w5, 2;)%™  mod F)
1<i<j<n
for all 1 < m < n, where F{3) denotes the third step of the Zassenhaus filtration
of I which will be explained later and

(;—z) if m=1,
(—1)im =4 0
(l—]> if m=j,

where (-) denotes the Legendre symbol. If the relation subgroup R lies inside F{s),
one may ask what the relations {p,,}1<m<n look like when they are considered
modulo F| (4)-

The second question we are going to deal with is given by the following. Let
K = Q(\/E) be a quadratic number field, where D is a squarefree integer. We
assume that D = 1 mod 4, or equivalently, that 2 is unramified in K/Q. Let
S =A{ly,...,l,,00} be the set of primes of Q which consists of all primes which
are ramified in K/Q and the infinite prime co. We denote by Kg_ the maximal 2-
extension of K which is unramified outside the archimedean primes of K. For an
imaginary quadratic number field this is the same as K4, the maximal unramified
2-extension of K. There is the following theorem due to Koch[9]. We have a
minimal presentation

1 R 9 G(Ks /K) — 1

of G(Kgs_/K) by the free pro-2-group $) on generators wy, ..., w,—1. The sub-
group fR of § can be generated as a normal subgroup by certain elements {7, }1<m<n
which fulfill the congruences

T = wimn H (wiwi(wm,w‘j))gm’j mod ), 1<m<n-—1,
1<j<n-1
JFEm
n—1
T = H(w?)gnvf mod §)3),
j=1
where

- ()

for all 1 < m < n. Once again, one may ask what happens if R lies inside §3).
What do the {7, }1<m<n look like modulo $(4)?

Let us explain the techniques used to settle these questions. One important
ingredient is the theory of the Fox differential calculus on free pro-p-groups. This
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is a theory which is developed in analogy to the theory of the Fox differential
calculus on free discrete groups. Let F' be the free pro-p-group on generators
T1,..., o, and Z,[F] the completed group algebra of F' over Z,. By a theorem
of Thara [8], there exist unique continuous Z,-linear maps, the free derivatives

0
3. LolFl = Z,[F],
such that every element a € Z,[F] can be uniquely written as

"0
a = ez pp()1 + Z 85- (x; — 1),
i=1

where €7, 1) : Zp[F] — Z, denotes the augmentation homomorphism. For I =
(11,...,1,) we set

o f
erp(f) = 5(i1,...,z'r),p(f) = €z,[F] (m)

and denote by €7, : ' — Z/pZ the reduction of €; modulo p. For n > 1 let
the ideal I™(F') of IF,[F] be the n-th power of the augmentation ideal /(F"). The
filtration

Foy={f1f-1el"(F)}, n>1,
is called the Zassenhaus filtration of F'. We have that

[ € Fuy if and only if ;,(f) = 0 for all I with |/] < k.

We construct bases for the quotients Fiy) / Fli+1) as Fy-vector spaces. Assume
we are given an element f € Fy) and know the 7 ,(f) for all multi-indices I of
length k. We study how f modulo F{;,) can be expressed in terms of our basis

of F(k)/F(kJrl).

We mention that by results of Morishita [12], the Fox differential calculus has a
cohomological interpretation in terms of Massey products. We studied this con-
nection independently. In the appendix, we give a new proof of one of Morihita’s
results.

We now come back to the arithmetical questions we started with. Morishita
[11] introduced the notion of Milnor invariants of the group Gg(2). Let r > 1
and 1 < iy,...,4, < n. The Milnor ps-invariant of Gg(2) corresponding to

I = (i1,...,14,) is defined by

p2(I) = er2(yi,),
where I" = (i1,...,4.—1). We remark that it is shown in [11] that the Milnor
invariants are independent of the choices we made and are invariants of Gg(2).
We want to calculate the third order Milnor invariants of Gg(2). The group R of
relations of Gg(2) lies inside F{s) if and only if all /; are =1 mod 4 and we have
l; o o,
(l_) =1foralll<i,j<mn,i#j.
J
In this setting Morishita has calculated the third order Milnor invariants ps(i, 7, k)
for 1 < 1,7, k < n pairwise distinct. We determine the third order Milnor invari-
ants also in the remaining cases. This gives us a description of the sought-after
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relation structure of Gg(2). It turns out that the third order Milnor invariants
are described by the so-called Rédei symbol which was introduced in the 1930’s
by Rédei [14]. This triple symbol [py, ps, p3] for primes py, ps, p3 taking values +1
describes a prime decomposition law in a certain dihedral extension of degree 8.
We prove the following

Theorem (Theorem 3.12). Let S = {ly,...,l,,00} where [; = 1 mod 4, i =
1,...,n, and assume that

l;

(T>:1f07’all 1<i,j<mn, i#].

j
Let 1 <, j,k <n. The third order Milnor invariants of Gs(2) are given by

(_1)u2(i,j,k) _ [li7lj7 lk] /Lf ng(lialjalk) = 17
1 if i=j=Fk

For each 1 < m <n we have

P = H ((z4, ), x) 7k mod Fly),

1<i<j<n,
k<
where
(i 1 L) of m=j and m # k,
[Lis L5, U] if m # j and m = k,
(=1)ciakm = & [l 1, Iy if m=1iandj =k,
[Lis L5, U] if m=j=k,

1 otherwise.

We also give several examples in which we calculate the relations modulo Fiy).

We apply the results about Gg(2) to the study of the 2-class field tower of certain
quadratic number fields. We follow Koch’s construction from [9], and using the
Fox differential calculus, in particular a chain rule which is proved in the first
chapter, we are able to give a partial description of sought-after relation structure
of G(Kg,,/K). We prove the following theorem.

Theorem (Theorem 4.4). Let K = Q(v/D) be a quadratic number field where D
satisfies one of the following conditions:

(i) D=1-... 1, and all l; are congruent 1 modulo 4,
(ii)) D= =l -...-1,, where ly,... l,—1 are congruent 1 modulo 4 and l,, is
congruent 3 modulo 4,

and assume that

l;
(l_) =1forall 1<i,5<n, i#].
J

If we write the relations 1, 1 < m < n modulo ey as

[T ((wiw)wg)=orn mod 5,

1<i<j<n—1,
k<j

T'm
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then for1 <i<j<n—-1,k<j,i#kandl <m<n-—1 (in case (i) also
m = n is allowed) we have

(_1)ei,j,k,m — [lh lja lk] if m :j orm = k:,
1 otherwise.

We remark that for imaginary quadratic number fields there is an isomorphism
H'(G(Ks.),Z/2Z) = H'(G(Kg/K), Z/2Z) = (CL(K)/2)",

where CI(K) denotes the ideal class group of K and * denotes the Pontrya-
gin dual. In the situation of the theorem, we have a triple Massey product on
HY(G(Kgy),Z/27Z). The pairings

HYG(Ky/K)) x H(G(K5/K)) x HY(G(Ks/K)) 3 HAG(Ky/K)) ™ 7,/22

(here the coefficients are Z/27Z) induced by the Massey product and the trace
maps (see the appendix), are therefore pairings

(CI(K)/2)* x (CL(K)/2)* x (CY(K)/2)" — 7,)2Z.

By virtue of our above theorem, we give examples where these pairings are non-
trivial.

I would like to thank my supervisor Kay Wingberg for his suggestion to study
these problems and his constant encouragement. Furthermore, I would like to
thank Alexander Schmidt and Otmar Venjakob for numerous discussions on the
subject.

2. ALGEBRAIC PREREQUISITES

Originally, the Fox differential calculus has been developed for discrete free groups.
It is possible to carry it over to free pro-p-groups, see [8] and [11].

Let F' be the free pro-p-group on generators zi, ..., z, and let Z,[F] be the com-
pleted group algebra of I’ over Z,. Let ez, [r) : Zy[F] — Z, be the augmentation
homomorphism. We use the following result due to Thara which essentially states
that free derivatives exist as in the case of discrete free groups and share the same
properties.

Theorem 2.1. ([8],Thm.2.1) For each i with 1 < i < n there exists a uniquely
determined continuous Zy-linear map, the free derivative

0
oz L Ly F] — Zy[F],
such that every element o € Zy[F] can be uniquely written as
"\ da
o = 5Zp[[F]](a)1 + Z ax(ﬂfl — 1)
i=1 v

For properties of the free derivatives we refer to [8] and [11]. Before we continue
we introduce a notion that is needed in all what follows. Here and in the rest
of the exposition we mean by a multi-index I of height n a tuple of elements
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I = (i1,...,i,) where r is a natural number and 1 < i, < nforall 1 <k <r.
Usually we will assume that the height is clear from the context and omit it from
the notation. For a multi-index I = (iy,...,,) we denote by |I| = r the length
of I. If multi-indices I = (i1, ...,14,), Is = (j1,- .-, Js) are given, we denote by

Ly = (i1, eyt 1y oy Js)

the concatenation of I; and Is. We denote the set of multi-indices of height n by
M?"™ and the set of multi-indices of height n and length k& by M7}.

The completed group algebra Z,[F] is isomorphic to the ring Z,(X1,. .., X))
of formal power series in 7 non-commuting variables Xy, ..., X, over Z,, and an
isomorphism is given by

VY Lp[F] — Zpy( X, ..., X0), xi— 14+ X,.
The Magnus expansion M(f) of f € F' is given by

M) = o) =1+ 3 (X1, 21(f) € 2,

Iemn
For each multi-index I € M" this gives us a map

e B — Z,.
This map stands in the following relation to free differential calculus, cf. [11],52.

Proposition 2.2. Let f € F and I = (iy,...,i,) € M". Then

o f
il =enin (5 s )

Definition 2.3. The basic commutators of weight one are z,...,x,, and
their ordering is ;1 > ... > x,,. Assume we have defined the basic commutators
together with their ordering for all weights < k. Then the basic commutators of
weight k& are the elements of F' of the form (¢, cy) where ¢;, ¢y are basic com-
mutators of weights ki, ko. Moreover we require ¢; > c¢o, and if ¢; = (c3,¢4) we
also require that ¢o < ¢4. The ordering among the commutators of weight k is
lexicographically, i.e. (c1,c2) < (¢}, ¢) if and only if ¢; < ¢}, or ¢; = ¢} and
¢y < . Commutators of weight k are greater than all commutators of smaller
weight.

Example 2.4. The basic commutators of weight 3 are given by ((x;,z;), xx),
1<i<j<n k<j.

For a pro-p-group G' we denote by {Gy}r>1 the descending central series of G
which is defined recursively by G1 = G, Gy = (Gy, G) where (G, G) denotes
the closed subgroup of G generated by the commutators (a,b) = a~'b"tab for
a € Gy, b € G. We have the following theorem, which follows directly from an
analogous statement for discrete free groups, cf. [6], Thm. 11.2.4, by completion.

Theorem 2.5. The basic commutators of weight k represent a basis of Fy./Fy.1

as a free Zy-module.

We want to study the effect of £; on the basic commutators or more generally on
the so-called bracket arrangements. We collect some definitions from [5].
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Definition 2.6. A bracket arrangement consists of brackets and asterisks
(which act as place holders) and comes assigned with a weight. The only bracket
arrangement of weight one is () = *. Assume all bracket arrangements of weight
< k have been defined. The bracket arrangements of weight k are of the form 3 =
(01, B2), where 3, B2 are bracket arrangements of weight ki, ke and k = ki + k.
The weight of a bracket arrangement (3 is denoted by w(3). Suppose a bracket
arrangement (§ with w() = k and a multi-index I = (41, ...,4) are given. Then
B(I) denotes the commutator in F}, which is obtained from [ by substitution of

Ziy, ..., %, in consecutive locations.

To each bracket arrangement [ we will associate a tree T'(3) with a root.

Definition 2.7. If w(3) = 1 then the tree T'(3) consists of a single vertex, which
is the root. Assume these trees have been defined for all weights < k, and ( is
of the form = (1, f2) und has weight k. Then T'((3) is the tree in figure 1 and
v is its root, where vy and vy are the roots of T'(3;) and T'(fs), respectively. We
orient the trees in such a way that left-right ordering is preserved and that the
new root is at the bottom. The weight of T'(5) is defined as w(3). We denote the
set of these trees by 7.

FIGURE 1. T(3)

T T

m-\/-m

v

If v is a vertex in T' € 7, we can pick out an upper tree U(v), a left-hand tree
L(v) and a right-hand tree R(v), see fig. 2.

FIGURE 2

U(v) = L(v) U R(v)
7 L(v) ) R(v) 7 vy, = left-hand vertex
- . : vgr = right-hand vertex

Definition 2.8. Let 5(I) € F}, — Fy11 (this is e.g. the case if §([/) is basic). To
B(I) we associate a labelled tree T'(3,I) which is just 7'(8) with each vertex
having a label from the free group F. The labelling is defined inductively as
follows: If w(B) =1 and I =i, then T'(5,1) = %. Assume the labelling has been
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accomplished for all trees of weight < k and 3 = (31, 52) has weight k. We break
I'upin I = L1, with I([;) = w(f1), I = w(B2). Then the sub-trees T'(;) und
T'((s) are labelled and the root of T'(/3) is labelled with the commutator (Lq, Lo)
where Ly and Ly are the labels of the roots of 7'(1) and T'((32), respectively. We
denote the set of labelled trees of this type by 7;. If a tree T'= T'(3, ) is given
we set Z(T') = I and B(T') = $(I). The monomial u(T") of a labelled tree T'(3, )
is defined by
W(T)=X; = X3, ... X

Definition 2.9. The admissible operations on 7' € 7 are generated by the
following elementary operations: For a vertex v € T we interchange L(r) and
R(v) and preserve the left-right and up-down orderings within L(v), R(v) while
keeping v and T—U (v) fixed (see fig.3). The sign of an elementary operation is —1
and the sign of an admissible operation is the product the signs of its elementary
operations. An admissible operation on T" € 7 is an admissible operation on T
where T is interpreted as an element of 7. The labelling is preserved by each
elementary operation in the sense that the labels remain attached to the vertices
they were originally attached to. We denote the set of admissible operations on
T by Op(T).

FIGURE 3. elementary operation

N VR°\/-VL

elementary
_
operation

Example 2.10. Let 1 < k,[,m < n, k # [. There are four admissible operations
on the labelled tree T' = T'(((*, *), *), (k,l,m)). Their effect on T" can be seen in
the following picture. The corresponding signs are noted below the trees.

X o

xk,xl 901751%
T
\vxl"rk \vxkuxl
xmu xlvxk xma fL’k,CEl

+1 —1
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For f € F let L(f) denote the leading polynomial of the Magnus expansion M (f)
of f. If f € F, — Fy,4 it obviously holds that

L) =Y elH)Xr
I(I)=k
In complete analogy to [5], lemma 5.5, we obtain the following result.

Proposition 2.11. Let 8 be a bracket arrangement of weight k > 1 and I =
(i1, .. ix) € M™, such that 3(I) € Fy — Fypy1. Let T =T(5,1). Then

LBI) = Y sen(o)u(a(T)).
oce0p(T)

Example 2.12. Let § = ((x,*),%), I = (k,I,m) with k # [. From the above
example we obtain

L(((xg, 1), 2m)) = Xitm + Xk — Xonkt — Xiom.-

Let Ci, denote the free Z,-module on the set C}, of basic commutators of weight
k. In later applications we will need a description of the map

me: My = Cr, T > e1(B(I)B.
BeCk

It is easily seen that the previous proposition implies the following result.

Proposition 2.13. The map n; s given by

> ) sen(o)B(o(T)).

TeT, oe0p(T)
I(T)=I &(T)eCy

Example 2.14. Let [ = (k,I[,m) with 1 < k,I;m <n and assume that [ > k,

[ > m and k # m. There are two trees 11,1y € T3 with Z(T;) = I, i = 1,2:
$k,l'l </ \/ xl,l'm
.ij,.fEl ) Tk, xlamm
T1 T2

The labelled tree T corresponds to a basic commutator, and no nontrivial ad-
missible operation will produce a labelled tree from 7} that corresponds to a
basic commutator as well. The labelled tree T, does not correspond to a basic
commutator, but the labelled tree

xmaxl

((:Cm, )7 xk)



10 DENIS VOGEL

obtained from 75, by an admissible operation of sign +1 is the only one obtained
from 75 that does. Hence

773<I) = ((xkaa:l)7 xm) + ((xmﬂ xl>7xk>'

Let G be a finitely generated pro-p-group, and for k > 1 let the ideal I*(G) of
F,[G] be the k-th power of the augmentation ideal I(G). The filtration
G(k) ={g|lg—1¢€ [k(G)}, k>1,

is called the Zassenhaus filtration of G. There are the following results on the
Zassenhaus filtration, see [3], Thm. 12.9 and [3], Thm. 11.2, respectively.

Theorem 2.15. (i) The Zassenhaus filtration can be recursively described
as follows:
G = Gl 1] (Go G,
i,7>1
i+ =k

where [k/p| denotes the least integer m such that pm > k.

(ii) For each k,
=] ¢
i,j>0
ipi >k

These results last allows us in particular to write down bases for the quotients
F(k /Fle41) as Fp-vector spaces using the description of the bases of Fj,/Fj1; as
given in 2.5. We denote by C} the set of basic commutators of welght k and we

set Cf = {c* | c € Cyt. We remark that if Fp C Fliy, then F "1 C Flqn). If
i1k, then Ff C Fx) implies Fl C Flk41). In particular we have the following
Corollary 2.16. For each k > 1 there exists a uniquely determined set
Vi C{(i,j) €EZXZ | i,5>0,ip =k}
such that
B/rg:C'f'f1 chjz U...UC’frim, (ir,4r) € Vi forallr =1,...,m
represents a basis for Fgy/Fu1) as an Fy-vector space.

Example 2.17. We have that

4 PR /FOF3F, if p=3.

For p # 3 the set (5 of basic commutators of weight 3 represents a basis of
Fi3)/Fla) as an [F-vector space. For p = 3 such a basis is represented by C3UCs.

Let €7, : F — Z/pZ denote the reduction of ¢; modulo p. For the following

technical result, see [5].

Proposition 2.18. Let o, 5 € F', f € Fyy, g € F(;) and let I € M™. Then the
following assertions hold:
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(i)
erp(aB) = ) enp@)eny(B).
nl=I
(ii) If |I| < i, then er,(f) = 0.
i

(iii) If [I| < min(i, j), then ery(f9) = rp(f) + €1p(9)-
(iv) If |I| =i+ j, I = 11y = ILI], where Iy, 5, I], I}, are multi-indices with
\L| =[] =i, [Io] = |I5] = 5, then

erp((f,9) = enp(flenplg) — Eli,p(f)gl§7p(g)'

The next result gives a characterization of the descending central series and the
Zassenhaus filtration by means of differential calculus.

Lemma 2.19. Let f € F'. Then:

(i) f € Fy if and only if e;(f) = 0 for all multi-indices I with |I| < k.
(i) f € Fu if and only if er,(f) =0 for all multi-indices I with |I| < k.

Proof. (i) follows as in the discrete case, see [4], 4.4.5. (ii) follows by looking at
the Magnus expansion of f modulo p and a consideration of the generators of
I"(F). O

Let I be a multi-index of length k. The results above allow us to reduce the
calculation of €7, on Fy to a calculation of €7, applied to a basis of F{;) modulo
Fli41) as given in 2.16. We have already studied the effect of the e; on basic
commutators. The next result shows that this is sufficient for the calculation of
€1p ON F, (k)

Proposition 2.20. The linear map

Fuy/Fiesry — (Z/pZ)M%, f mod Feyry = (erp(f))remp

1 1njective, and its representation matriz with respect to By and the standard
basis of (Z./pZ)™% can be computed in terms of the maps n;, i € pry Vj.

Proof. Linearity and injectivity of the above map follow from 2.18 and 2.19,
respectively. Let ¢ € Cgr where sp” = k. Then

€]7p(cpr) = Z 611717(6) et 6IpTap(C)
I=I I

We call the decomposition I = I; ... I, of type w, where w is a natural number,
if w of the multi-indices Iy, ..., I,» are empty. There is exactly one decomposition
of type 0. It is given by

I = (il, .o ,is)(is+1, . 7@23) e (i(pr—1)87 “ e ,iprs)
To a decomposition I = I ... I» of type w we associate a reduced decomposition
I'=1...1,_, of type 0 by leaving out the empty multi-indices. We may then

write
p'-1
EI,p(cp ) = Z Z Eil,p(c) et €fpr_w7p(c)

w=0 I=I..Ir
of type w
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Each reduced decomposition I = I . .. Iy, occurs exactly (f; ) times in the

above summation. Since
(M) == uw) >0

w

forw =0,...,p" — 1, where v, denotes the p-adic valuation, it follows that
EIJ)(CPT) - g(ila---ais)7p(c) e 6(7;(;77"71)57"'7iprs)7p(c)7

hence e;,(c?") is determined by the knowledge of the map 7, from 2.13. O

Example 2.21. Let f € F{3). Then we have
f= H ((zh, T1), T )P0k 2 () H (xg, x1), 2;)°=t02) mod F

1<k<I<n 1<k<iI<n
m<l
if p # 3, and
- )
3e
— (k,k,k),3 3— m
f = ka H ((xk’xl)’ajm> €(1,k,m),3(f) H ((l‘k,.Tl),xl)€<’“vlv”’3(f)
k=1 1<k<I<n 1<k<i<n
m<l
mod F(4)

if p=3.
A useful tool for making explicit calculations is the following chain rule.

Definition 2.22. Let F' be the free pro-p group on z1,...,x, and let F’ be the
free pro-p-group on z,... 2! . Let ¢ : F — F’ be a homomorphism. We will
denote by 55 , and 55 ;9 the corresponding maps €7, in order to avoid confusion.

We set '
¢l = el (0(x;), 1<i<m, 1<j<n,

and call the matrix (¢!);; the Jacobi matrix of ¢.

Jlendk 491 492 . Ak

T1yenesbl i1 7ig ig "

Proposition 2.23. Let the notation be as in 2.22, and let f € Fy,. Then
el @) = D gldeell o (f).

Jise-sJk

Proof. This is easily proved by induction on &k and makes use of 2.15(i) and
2.18. 0

We mention a special case in which much more holds than the above chain rule.
Let F be the free pro-p-group on z1, . .., x,,. We denote by N the normal subgroup
generated by zp41,...,x, where h >0, and by ¢ : F — F’' = F//N the canonical
projection. We set a} = x;N for i = 1,..., h. Then for each multi-index I € M"
of height h, and each f € F, it holds that e} (¢(f)) = ef,(f). This follows
immediately from the definition of €7,

In our applications we will make use of the shuffle property of the €;7,. For that
purpose we introduce the notion of shuffles, cf. [1].
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Definition 2.24. Let [ = (ay,...,q;) and J = (by,...,b,) be multi-indices. A
shuffle of I and J is a pair («, ) of sequences @ = (a(1),...a(l)) and § =
(B(1),...,0(m))such that 1 <a(l) <a(2) <...<a(l) <m+land 1 < F(1) <
B(2) <...< B(m) <m+I. If a(i) is always distinct from ((j) the shuffle will be
called a proper shuffle. We denote the set of shuffles of I and J by S(7, J) and
the set of proper shuffles of I and J by 3([, J). A multi-index K = (c1,...,¢,)
is called the result of a shuffle (o, 3) € S(1,J) if

(i) capy = a; fori=1,... 1 and cgy) = b; for j =1,...,m.
(ii) Each index k = 1,...,n is either an «(i) for some i or an (3(j) for some
J or both.

For s € § we denote by K = f(s) the set of results of the shuffle s. If s is a
proper shuffle then R(s) consists of one element which we denote by t(s).

We note that if K is the result of a proper shuffle of I and J, then |K| = |I|+]J].
For multi-indices I and J we define the map €7, - €, as

(e1pcap)(f) =c1p(Fesp(f), [ EF.

The following lemma comes from the classical theory of the free differential cal-
culus, see [1], lemma 3.3, and carries over directly to our situation.

Proposition 2.25. Let I and J be multi-indices. Then
€1p - €Jip = Z Z EKp-
seS(I,J) KeR(s)
In particular, if f € Fyy with k = |I| + |J|, then

Z Er(s),p = 0.

seS(1,J)

3. THE MAXIMAL 2-EXTENSION OF (Q WITH RESTRICTED RAMIFICATION

Let S ={li,...,l,,00} be a finite set consisting of odd prime numbers ly,..., 1,
and the infinite prime oo of Q. In this section we study the relation structure of
the Galois group of the maximal outside S unramified 2-extension Qg(2) of Q.
For i =1,...,n let [; be a fixed prime over [; in Qg(2), and let o; be an element
of G5(2) = G(Qs(2)/Q) with the following properties:

(i) o; is a lift of the Frobenius automorphism of [;,

(ii) the restriction of o; to the maximal abelian subextension Qg(2)*"/Q of
the extension Qg(2)/Q is equal to (\;, Qs(2)**/Q), where )\; denotes the
idele whose [;-component equals [; and all other components are 1.

For 1 <i <n let 7; denote an element of G¢(2) such that

(i) 7; is a generator of the inertia group 7}, of [; in Qg(2)/Q,

(i) the restriction of 7; to Qg(2)**/Q equals (ay, Qs(2)*"/Q), where «; de-
notes the idele whose [;-component is a primitive root modulo /; and all
other components are 1.
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The following result is well-known.

Theorem 3.1 (Frohlich, Koch). Let F' be the free pro-2-group on generators
Z1,...,Zyn. Then Gs(2) has a minimal presentation

1 R F —"— Gs(2) — 1,

where w is given by x; — 1;, 1 < i < n, and a minimal generating system of R
as a normal subgroup of F is given by R = {pm }1<m<n with

Pm = xi;;l—l(x;zl’ y;zl%

where y,, 1s any preimage of ,,. We have that

pm = xim ™1 H(xm,xj)zmvf mod F(3),

where

It is easily verified that the above congruences for the relations may be rewritten
as

pm = xm 1 H (x5, 2;)%™  mod F)

1<i<j<n

for all 1 < m < n, where

L.
(l—z> if m =1,

(_1)81.’]"7” = l]-
(l—]) if m=j.

There is the following definition due to Morishita [11].

Definition 3.2. Let I = (i1,...,i,) € M™ be a multi-index. We define the
Milnor pe-invariant of Gg(2) corresponding to I by

pa(I) = era(yi),

where I = (i1,...,4,—1). By convention we set py(/) = 0 for any multi-index [
of length 1.

We remark that it is shown in [11] that the Milnor invariants are independent of
the choices we made and are invariants of Gg(2). The following remark, see [11],
Rem. 3.1.6.(2), will be useful in our calculations.

Remark 3.3. Let S = {l1,...,1,,00} be asubset of S = {I1, ..., ln,lns1s - lm, 00}
and let I € M™ be a multi-index. If I € M" then the Milnor invariants ps (/)
defined via the Galois groups Gg(2) resp. G5(2) coincide.

There is a shuffle property for Milnor invariants which follows from 2.25. As it is
stated slightly incorrect in [11] we will restate it here.
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Remark 3.4. Let I = I1I, € M™ be a multi-index of length m. Then for all

1 < i <n we have
Y (K@) =0,

seS KeN(s)
where K (i) denotes the concatenation of the multi-indices K and (7). In partic-
ular, if us(J) = 0 for all multi-indices J with J < m, then

m ooy Jy1) =0
f12(J J,1)
forall 1 <1,j5 <n.

(It is the factor m that has been forgotten in [11], Thm. 3.1.8. In particular, that
result would imply that under the hypothesis that the second order Milnor invari-
ants vanish, the third order Milnor invariants of type pus (7, j,7) would vanish as
well. We will later give examples for the nonvanishing of such Milnor invariants.)

We are interested in the case where R C F(3) which we assume from now on. By
3.1 this is the case if and only if

()~

l
<%):1 forall 1<m,j<mn, m#j.

J

for all m with 1 <m <n and

The first condition is satisfied if and only if all /,, are congruent 1 modulo 4.

Rédei introduced a triple symbol [py, p2, ps] for primes pq, p2, ps taking values +1
which describes a prime decomposition law in a certain dihedral extension of de-
gree 8 (actually, his symbol is even a bit more general). In [11], a connection is
given between the Rédei symbols [l;, 1}, ;] and the Milnor invariants ps(i, 7, k) of
Gs(2) for pairwise distinct primes [;,l;,l, € S. We will generalize the result of
[11] to the case where some of the [;,[;,[; may coincide. This allows us to give
a complete description of the relation structure of Gg(2) modulo F4). Unfortu-
nately the presentation in [11] is incorrect in the sense that a dihedral extension
of degree 8 is constructed which is claimed to be unramified outside {p;, po} but
which may also ramify at 2 depending on some parameters, and the extension
explicitly given in [11], Ex. 3.2.6 is indeed ramified at 2. This makes the calcu-
lation of the Milnor numbers in [11] incorrect. Fortunately, the construction can
be rescued if we stay closer to the original work of [14]. For this reason we have
decided to give a more detailed view of the aforementioned construction and the
definition of the Rédei symbol.

Definition 3.5. Let k£ be a number field, a € k and p be a nonzero prime ideal
of the ring of integers Oy of k. Then we set

1 if p splits
<a—|k> = 0 if p is ramified
p —1 if pisinert

in k(o).
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We obtain the following result as a special case of [14], Satz 1.

Proposition 3.6. Let py,ps,ps be prime numbers with ged(py,pa,p3) = 1 and
pi =1 mod 4, i=1,2,3 with

pj

(&> =1 if pi#p and1<ij<3.
Then there exists an element ap € ky := Q(y/p1) with the following properties:

(i) Ny, /g0 = pa,
(i1) Niyjo(Dr(yaz)/k) = P2 where Dy, (jaz) k. is the discriminant of the ex-

tension ki(y/0a)/k1.

If as has the above properties then there exists a prime ps in ky over ps such that

(2 e

and for all choices of ag and p3 such that the above symbol does not vanish, it
has the same value.

We remark that by [14], as may be chosen as as = = + y,/p1 where x,y are
integral solutions to the equation

? —p1y® — 2zt =0
which have the property that ged(z,y,2) =1, 2|y and z —y =1 mod 4.

Definition 3.7. Let pq, ps, p3 be prime numbers with p;, =1 mod 4, i =1, 2, 3,
and

(&):1 if p;£pjandl<i,j<3.
pj

Then the Rédei symbol is defined as

L 062|/{31
[pl?p%pi’)] T 9
P3

where a5 and p3 are given as in 3.6.

We will later need the following lemma, which follows directly from [14], Satz 2,
Satz 4.

Lemma 3.8. For any permutation v € S3 we have
[p17p27p3] = [p’y(l)7p’y(2)7p’y(3)]‘

Let oy := ap + g + 2y/p2 € ky := Q(/p2) where a, denotes the conjugate of
ag. As remarked in [14], p.5, a4 fulfils the conditions (i) and (ii) of 3.6 where the
obvious replacements have to be made. Let K := kiko(\/a3).
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We consider the case where p; # ps. Then we have the following diagram of
fields:

where a; and @y denote the conjugates of a; and aq, respectively. It is shown in
[14], p.6 that K/Q is a Galois extension of degree 8 whose Galois group is the
dihedral group of order 8. The Galois group of K/Q is generated by elements s
and t which are defined by

Y Y e R Y N R L N L Y V)

and correspond to the subfields k;(y/az) and Q(,/pipz2), respectively. The rela-
tions between s and t are given by

s?=t"=1, stst =t
It follows from the consideration in [14] that the discriminant of K is given by
Drq = pips,
hence K is unramified outside {p;,p2,00}. (In [11] the conditions on «s are

somewhat less restrictive which may result in K being ramified at 2.)

By our assumptions py is completely decomposed in k. If we apply 3.6 to the
triple (p1, p2, p3), we see that there exists a prime p, in ks over ps which is unram-
ified in k1 (\/@z). Therefore we may choose a prime P, of K such that the inertia
group Ty, (K/Q) is generated by s. A similar argument using the above remark
concerning «; shows that we may choose a prime 3; of K such that the inertia
group Tip, (K/Q) is generated by st, which corresponds to the subfield ky(y/07).
Setting a; = st, ay = s, we have the following presentation of G(K/Q):

G(K/Q) = (aj,ay | a} = a3 = 1, (aya0)* = 1).

Now we set py = l;, p2 = lj, ps =l where [;, 1, [, € S—{oo}. By our assumptions,
the Rédei symbol [l;,1;, 1] is well-defined. We choose the primes [;, [; of Qg(2)
such that [ N Ox =P, [; N O = P2. We have a projection

m: F— Gs(2) = G(K/Q)

where F' is the free pro-2-group generated by xy,...,x, as in 3.1. By the choice
of the [; we know that x; — a1, z; — ag, x,, — 1, for m # i, 5. We obtain Thm.
3.2.5 of [M].
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Proposition 3.9 (Morishita). Let 1 < 1,7,k < n be pairwise distinct. Then
(—1)#2030) = 1,15 1.
We drop the assumption that [;, [}, [}, are pairwise distinct.
Proposition 3.10. Let 1 <i,5 <n. Ifi # j then
(=129 = {115, 1y),

(_1)u2(j,i,j) = [lj, li lj]

Proof. We claim that it is sufficient to prove the first assertion. Indeed, by 2.25
we obtain

0 = 313)2(PJ>+5wa)2(p3)+5(wj) (ps)
= Jm)2(Py>
= ]l])Q((x] ' ))

= caupe2y; )4’5(1‘71'),2(?/1‘_1)
= ;LQ(Z,j,])—F,UQ(],Z;])

By 3.8 the claim is proved. We set p; = [;, po = p3 = [;. The inertia field of 3,
over Q is given by kq(\/ag). If [p1, pa, p2] = 1, then ps decomposes in ki(y/az) as

p2(9k1(\/@) = CI1CI2CI;2:,7

where q1, g2, g3 are primes ideals of O, (/az) With P2 |q1 or B2|q2 because we know
that p, is ramified in k;(y/az). Hence m(y;) = 1 in this case. If [pq, p2, po] = —1,
then py decomposes in ky(y/az) as

p20k1(\/@) = CI1¢I§7

where qi,qy are primes ideals of O, (/az) With Pa|q1, so the Frobenius auto-
morphism of the extension k;(y/as)|k; is given by the nontrivial automorphism.
Therefore p = m(y;) is given by

P5\/19_1'—>\/E7 VO > —y /O, \/17_2'—>\/p_2
or

p:/P1L /D1, Vas = =g, /P2 —/Da.

By definition of o; the restriction of o; to the maximal abelian subextension
Qs(2)*/Q of Qs(2)/Q is equal to (A\j, Qs(2)**/Q), where \; denotes the idele
whose [;-component equals {; and all other components are 1. By local class field
theory it follows that o;(/pz2) = /P2, thus we obtain that 7(y;) = t*. Let R be
defined by the exact sequence

1 R F T GK/Q — 1
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It is generated by 7,23, (2;2;)* and the x,, for m # i, j as a normal subgroup of

F. The Magnus expansions of the generators are given by
azf = 1+ Xf,
_ 2
j L+ Xj ’
(ziz;)' = 1 mod deg > 4,
Tm = 14+ X,

&
o

For all generators it holds that £ ;)2 as well as £(;)2 and €(;) 2 vanish on them.
By 2.18 and the continuity of £(; ;) » we conclude that €(; j) 2, €(),2, €(j),2 vanish on

R. If n(y;) = 1 then y; € R, hence (i, j,j) = eie2(y;) = 0. If m(y;) = (a1a2)?
then y; = (x;x;)?r with an element r € R. We obtain

pa(iy 4, 3) = e 2((@irg)?) + ey a(r) +ewa((ziag)*)eg)2(r)
= 1,
because the Magnus expansion of (z;z;)* is given by
(zix;)? =14+ X7+ X7 + X, X; + X;X; mod deg > 3.
This proves the proposition. 0

Now we deal with the Milnor invariants ps(i,%, 7). Suppose that in the setting of
3.6, 3.7 we have p; = po. Then we have the following diagram of fields:

K = (/)

ki

Q

Here K/Q is a cyclic Galois extension of degree 4. From the considerations in
[14] it follows that

DK/Q = pi’,
hence K/Q is unramified outside {p;,00}. We set p; = ps = l;, p3 = [;. Using
the projection map
7. F— Gs(2) - G(K/Q)
we may choose the generator ¢ of G(K/Q) such that 7(y;) = t.

Proposition 3.11. Let 1 <i,j <n. Ifi # j then
(—1)”2(i’i’j) = [lz, li; lj]
Furthermore,
pe(iy i, i) = 0.
Proof. By the definition of the Rédei symbol we know that

B 2 if [lz,lwl]] = -1,
m(y;) = { 1if [l 0, 0] = 1.
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Let R be defined by the exact sequence

1 R F - GK/Q) — 1.
It is generated by z and the x,, for m # i as anormal subgroup of F. By 2.18 it
follows that £(; ;)2 as well as €(;) 2 vanish on R. If w(y;) = 1, then y; € R, hence

p2(i,4, ) = €uie(y;) = 0. If w(y;) = 2, then y; = z?r with an element r € R.
We obtain

E6)2(27) + €6 2(1) + €@y 2(@)e @) 2(r)
— 17

€(4,1),2 (3/])

which proves the first statement. The extension K/k is totally ramified at py,
hence 7(y;) = 1. Therefore y; € R, which implies that

:u2<i7 iv Z) = 5(i,i),2(yi) =0.
Hence the proposition is proved. l
We summarize our results in the following theorem.

Theorem 3.12. Let S = {ly,...,l
assume that

n,00} where l; =1 mod 4, i=1,...,n, and

L
(l_l) =1 foral 1<i,5<mn, i#j.
J

Let 1 <i,j,k <n. The third order Milnor invariants of Gs(2) are given by
(1)) — iUy U] af ged(li, 1, 1) =1
1 if 1=5=k.
For each 1 < m <n we have

pm= [ (@ie),2)=ss mod Fu,

1<i<j<n,
k<j
where
iy L, U] if m =j and m # k,
Ly L, U] if m # j and m = k,
(=1)cskm =& [l;, 15, U] if m =1 and j =k,
[lzaljalk] Zf m:.] :ka
1 otherwise.

Proof. The first result follows from 3.9, 3.10, 3.11. For 1 <1< j < n,k < j we
have

E(jik)2(Pm) 5(j,i,k;),2($f%” N um')
= cgan2((@n yn)
Oimb2(is K, J) + Ok mpa(J, i, k),
where we have made use of 2.18. By 2.21,

(_]_)ei,j,k,m _ (_1)5(j,i,k-),2(pm)
A similar calculation shows that
(_1)€i,j,j,m — (_1)5(2 ,J:3),2 pm

= [l e, [ + [, 1y, L]

= [, 1, L% + 1, 1, 1)
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This implies the second result. U

By the results of the appendix, the above theorem gives in particular a complete
description of pairings
(o)t HY(Gs(2)) x H'(Gs(2)) x H'(Gs(2)) — HX(Gs(2)) ™ L/2L

induced by the Massey triple product and the trace maps, where the coefficients
are Z/27.
Example 3.13. (cf. [11], Ex. 3.2.6) Set I} = 5, Iy = 41, I3 = 61, so S =
{5,41,61,00}. We may choose ay as ay = —11 +4+/5 (note that this differs from
[11] where it is chosen inappropriately). Computer calculations yield that the
Rédei symbol [l;,1;, 1] is —1 exactly for all permutations of the triples (i, j, k)
where (7,7, k) = (1,2,3), (1,2,2), (1,3,3), (2,2,3), (2,3,3). Hence
P11 = ((ﬂUl,xz) 9132)((331,533) 5133)((352,533),1?1) mod F(4)
P2 = (($1,5E2) $2)(($1,$3) )(($27$3),iEz)((@Js),ﬂUs) mod F(4)
p3 = ((Ilax?;) )(($1;$3) )((302;Is),xl)((l‘mx?)),xz)(($2,$3)753) mod F(4)-
In [11] the triple (5,41,61) is called a triple of Borromean primes modulo 2.
Example 3.14. Set [y = 13, I, = 61, I3 = 937. The Rédei symbol [l;,1;, ;] is —1
exactly for all permutations of (7,7, k) = (1,2, 3). Therefore we have

p1 = ((w2,23),71) mod Fy

02 ((z1,23),72) mod Fiy)

p3 = ((3317373),$2)((5627I3)71’1) = ((ilflywz),fb’s) mod F(4)
We call (13,61,937) a triple of proper Borromean primes modulo 2.
Example 3.15. Set [} =5, l; = 101, [3 = 8081. Then all Rédei symbols [l;, 1, li]

for 4,5,k € {1,2,3} vanish. This implies that the relations of Gg(2) are inside
F4). Hence we have that

Gs(2)/Gs(2)4) = F/Fu)
4. THE 2-CLASS FIELD TOWER OF A QUADRATIC NUMBER FIELD

Let K be a quadratic number field. Let S = {l;,...,[,, 00} be the set of primes
of Q which consists of all primes which are ramified in K /Q and the infinite prime
00. We denote by Kg_ the maximal 2-extension of K which is unramified outside
the archimedean primes of K. For an imaginary quadratic number field this is
the same as K4, the maximal unramified 2-extension of K.

We descend from Gg(2) to G(Kg,, /Q) using the following lemma, see [9], Prop.
7.1. As in the last section, let [,, be a fixed prime over [,, in Qg(2) for each
1 <m < n. We denote the inertia group of [,,, in Qg(2)/Q by T1,.

Lemma 4.1. Let Ng be the normal subgroup of Gs(2) generated by the groups
T, NG(Qs(2)/K) for 1 <m <n. Then there is an exact sequence
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We want to apply the results from the last section concerning G5(2) to the study
of the 2-class field tower of K. Therefore we have to ensure that S does not
contain 2. We write K = Q(v/D) where D is a squarefree integer which we
decompose as

D==dy-...-d,
where the d; are different prime numbers. We recall that the set Ram(K/Q) of
finite ramified primes of the extension K/Q is given by

B {d1,...,d,} if D=1 mod 4,
Ram;(K/Q) = { {2,dy,...,d,} otherwise.

There are two cases in which 2 does not occur in Ram(K/Q):

(i) D =1y ... 1y, all [; are odd and the cardinality of the set {/;|l; = 3
mod 4, 1 <i <n} is even.
(i) D = —=l; - ... l,, all [; are odd and the cardinality of the set {/;|l; = 3

mod 4, 1 <i<n}is odd.

We assume from now on that one of these cases applies. We order the [,, in such
a way that [;,...,[, are congruent 1 modulo 4 and l,4,...,[, are congruent 3
modulo 4.

For each 1 < m < n the group Ti, N G(Qs(2)/K) is generated by 72. Using the
minimal presentation

1 R F Gs(2) —— 1
of Gg(2) from Thm.3.1 we obtain an exact sequence
1 — R, F G(Ks,/Q) — 1,
where F' is the free pro-2-group on zy,...,x,, and R, is generated as a normal

subgroup by R and by the preimages z2, of 72, 1 < i < n. The following theorem,
see [9], Thm. 7.1, is an easy consequence.

Theorem 4.2 (Frohlich). The group G(Kg, /Q) has a minimal presentation
1 — R, F G(Ks,. /Q) —— 1,

where F' is the free pro-2-group generated by 1, ..., x,, and a system of generators
of R, as a normal subgroup of F' is given by

x?n, 1<m<n,

Pm = (mrmym)a 1<m<n.
We have that
pm=[] @m ;)™ mod Fy

1<j<n
j#m
where £y, ; has been defined in the previous section.

We turn our attention to the group G(Kg, /K). Its preimage in F is the free
pro-2-group H with the generator system

2

2 .2
T1Tp, X2Lpy v« oy 1Ly, L1, Loy oo oy Ty
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because the primes in S are ramified in K/Q. R, is generated as a normal
subgroup of H by the relations

2

m?

~1
Ty Pmy Ty PmTm, M =1,... n.

An elementary calculation shows that R, can be generated as a normal subgroup
of H already by the elements z2,, p,,, 1 < m < n. If we pass to the factor group
§ of H with respect to the normal subgroup N generated by x%,..., 22, we get a
presentation

1 R 9 G(Ks /K) — 1,
where § is the free pro-2-group on generators
Wy, = Ty, N, m=1,...,n—1,
and generating relations p,,N, m = 1,... n. Following these lines, Koch proved

the following theorem, see [9], Thm. 7.3.
Theorem 4.3 (Koch). There is a minimal presentation

1 R 5 G(Ks /K) — 1

of G(Ks, /K) by the free pro-2-group $) on generators wy, ..., w,—1 and defining
relations

Tm = pmN = w?imn H (wfnw?(wm,wj))em’f mod Hz), 1<m<n—1,
1<j<n—1
i7m
n—1
rn=polN = H (w?)m™  mod H3)-
m=1

From now on we assume that R C 3, i.e.

L; - o,

(Z_> =1 forall 1<i,5<mn,i+#].

J

By Gauss reciprocity this gives further restrictions on the [; which means that
one of the following two cases applies:

(i) D=1y -...-1, and all [; are congruent 1 modulo 4,
(il) D = =1y - ...-l,, where [, ...,l,_1 are congruent 1 modulo 4 and [, is
congruent 3 modulo 4.

This follows because if S contained two primes [;, [; which are congruent 3 modulo
4, then by quadratic reciprocity it would follow that ¢; ; + ¢;; = 1.

Theorem 4.4. Let K = Q(v/D) be a quadratic number field where D satisfies
one of the following conditions:

(i) D=1y-... 1, and all l; are congruent 1 modulo 4,
(i) D = =l ... Iy, where ly, ..., l,_1 are congruent 1 modulo 4 and l,, is
congruent 3 modulo 4,
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and assume that
[
(f) =1 forall 1<4d,j<mn, i#].

J
If we write the relations r,,, 1 < m < n, modulo $)(4) as

[T ((wiw)w)=orn mod 5,

1<i<j<n—1,
k<j

then for 1 <i<j<n—-1,k<j,i#kandl <m<n-—1 (in case (i) also
m = n is allowed) we have

T'm

(—1)E0akm = i, k) if m=j orm=kF,
1 otherwise.

Proof. Let v : H — F be the inclusion map. Its Jacobi matrix (¢; ;) with respect

to the bases
2 2 2
X1, ToLyy -+« + 3 Tn—1Ln; L1y Loy - -, Ty
of H and

T1yeooy, Ty

of F' is given by the n x (2n — 1)-matrix of the form

1 0 0 0
01 0
(Lg)w: : -
00 0 1 0
1 1 1 0 0 ... 0

Let 6 : H — $ be the projection map. Its Jacobi matrix (6; ;) with respect to
the bases
2 2 2
1Ty, LTy, v oy Ty 1Ly, Ty, Loy vy T
of H and
Wiy .-y Wn—1

of $ is given by the (n — 1) x (2n — 1)-matrix of the form

1 0 0 0
; 01 O
07)ig=1| . N :
o0 o0 1 0 ... 0

By the chain rule 2.23 we obtain that for h € H{) and multi-indices I =
(1,...,1,) with pairwise distinct iy,...,4, with 1 < 4y,...,4, < n — 1 the fol-
lowing relations hold:

5?2(hN) = 552@)7 5?2%) = Egz(h)-

We remark that for I as above the map 5{ , vanishes on N. The vanishing on
the generators is trivial and the vanishing on the whole of N follows by induction
on the length of I from 2.18. Let I = (i,7,k), and let 1 < m < n. By our



ON THE GALOIS GROUP OF 2-EXTENSIONS WITH RESTRICTED RAMIFICATION 25

assumptions we obtain that p,, € F(3), hence by [9], Lemma 7.2, we may write
pmN = pp N with p,, € H(z). Therefore we have

58’,1‘,16),2(7’771) = Sg,i,k),z(PmN) = 5871'7]@),2(&771]\[)
- 557i,k),2(ﬁm) = 56,z‘,k),2(l3m)
= 58,1‘,1@),2(/%)-
Hence, for m <n — 1 (and m < n in case (i)) we obtain
ik = €1 1),2(Tm) = Otz (i K, 3) + Ohmpta (5, 0, ).
This implies the result by 3.12 U

The above theorem gives a partial description of the pairings

Pu: H'(G(Ks /K)) x H'(G(Ks, /K)) x H\(G(Ks, /K))

“ H(G(Ks /K))
Zrm, Z/2Z

induced by the triple Massey product and the trace maps (see the appendix),
where the coefficients are Z/27Z. We remark that for imaginary quadratic num-
ber fields K the cohomology groups H(G(Ks. /K)) = H(G(Kz/K)) have the

following interpretations:
H'(G(Eg/K)) = (CUK)/2)"

where CI(K) denotes the ideal class group of K and * the Pontryagin dual, and
H?*(G(Kg/K)) can be described by the exact sequence

0 —— {+1} —— H*(G(Kg/K))* —— L,CI(K) —— 0.
In this case the above pairings are therefore pairings
(CI(K)/2)" x (CI(K)/2)" x (CUK)/2)" — Z/2Z.
Example 4.5. For the quadratic number fields
Q(V13-17-53-433), Q(v/17-89-373-257),Q(V/5 - 29 - 181 - 241),
Q(v/—=5-41-61-131), Q(+/=5-29-181-59),Q(/—13 - 17 - 53 - 43)

the pairings P;, P, P3 are nontrivial.

In particular, this yields new examples for nontrivial triple Massey products in
the Galois cohomology of number fields.

We remark that the appearance of the above pairings is much more natural in the
following context. Let p be an odd prime number, and K be a quadratic number
field. We denote the the p-class field tower of K by K. There is an operation of
G(K/Q) on the cohomology groups H'(G(Ky/K)) = H(G(Ky/K),Z/pZ). We
have a decomposition
H'(G(Kg/K)) = H(G(Kg/K))" ® H'(G(Kz/K))~

into eigenspaces. It is well-known, see [15], lemma 4.1, that

HY(G(Ko/K))" = H(G(Kg/K))* =0.
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In particular, the cup product
HY(G(Ko/K)) x H\(G(Ko/K)) = H*(G(Ko/K))

is trivial, since it is G(K/Q)-equivariant. In particular, there are triple Massey
products on H'(G(Ky)), which, together with the trace maps with respect to
relations 7, as in the case of p = 2, induce pairings

Pt H(G(Ko/K)) x H\(G(Ko/K)) x H'(G(Ka/K))

& H(G(K o/ K))
Srrm Z/pZ.

For imaginary quadratic number fields K, these are pairings of the form

Py + (CUK) p)" % (CUK) /p)* x (CUK)/p)" = (,CI(K))" "™ Z/p

It would be interesting to find examples where these pairings are nontrivial.

APPENDIX A. MASSEY PRODUCTS

In this appendix we give an account of the connection between Massey products
and Fox differential calculus. This has been studied by us independently from
Morishita, whose results have appeared in [12]. We prove a statement that is
contained in Cor. 2.2.3 of [12], but our approach seems different. This result is
sufficient to obtain a cohomological interpretation of our arithmetical results.

Let G be a pro-p-group and let A be a commutative ring considered as a trivial
discrete G-module. In this exposition we will be merely concerned with Massey
products on the group H'(G, A), hence we will give a definition of Massey prod-
ucts only in this restricted sense. For a general definition of Massey products
on the level of cochains we refer to [2], §1 and [10]. We denote by C*(G, A) the
standard inhomogeneous cochain complex. We recall some definitions from [4].

Definition A.1. Let vq,...,v,, be elements of H'(G, A). A collection a = (a;;),
1<i,5 <m, (i,j) # (1,m) of cochains in C*(G, A) is called a defining set for
the Massey product (vq,. .., v,,) if the following conditions are fulfilled:

(i) a; =v; for all 1 <i<m.
(i) If a;; is defined by
7j—1
a;j = Zailual+1j, 1<i<j <m,
=i

then for (4, j) # (1,m) it holds that a;; = da;;.

The element ay,, is a cocycle as well and its cohomology class in H%(G, A) is called
the value of the defining set a. We say that the Massey product (vi, ..., Um)
is defined if there exists a defining system for it. In this case the Massey
product is just the set of the values of all of its defining sets. The single Massey
product (v1) is v by definition. The indeterminacy In(v, ..., v,,) is defined as

In(vy,...,vm) ={a—>b|a,be€ (v1,...,0m)}
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The Massey product (vq,. .., v,,) is called uniquely defined if In(vy, ..., v,,) =
0. It is called strictly defined if for all 7, j with 1 < j —i < m — 2 we have that
<’Ui, e ,Uj) = 0.

Let
1= R—-F—-G—1

be a minimal presentation of G, where F' is the free pro-p-group on generators
Z1,...,T,. Then the inflation map

inf : H'Y(G,Z/pZ) — H*(F,Z/pZ)

is an isomorphism by which we identify both groups. Since F' is free we have
H?*(F,Z/pZ) = 0, and from the exact 5-term sequence we obtain an isomorphism

tg : H'(R,Z/pZ)% — H*(G,Z/pZ).
Therefore any element p € R gives rise to a map
tr, : H*(G,Z/pZ) — Z/pZ,
which is defined by ¢ — (tg™! )(p) and is called the trace map with respect to
p-

The following lemma is obtained as in [4]. For vi,...,v, € HY(G,Z/pZ) and
a multi-index I = (iy,...,7,) € M} we write (v;) for the Massey product

<U1‘1, PN 7’Uir>.

Lemma A.2. Let x1,. .., Xn be a basis of H(G,Z/pZ). Assume that0 € (x ;) for
all multi-indices J € M?™ with 1 <r < m. Let vy,...,v,, € HY(G,Z/pZ). Then
the Massey product (vy, ..., vy) is strictly and uniquely defined. In particular this
gives a multilinear map

<'7 SRR > : Hl(Gv Z/pZ)m - H2(G7 Z/pZ)
If the conclusion of the above lemma holds we say that there is a well-defined
m-fold Massey product on H*(G,Z/pZ).
We are now ready to state the main result of this appendix.

Theorem A.3. Assume that R C Fi,,). Then there is a well-defined m-fold
Massey product

<'a s > : Hl(G7Z/pZ)m - HQ(G7Z/pZ)
Let vy, ... v, € HY(G,Z/pZ) = H (F,Z/pZ). We have that

tre(vy, ..., v) = (=1)™! | Z vi(2i,) - U (T )Erp(f)

for all f € R.

Proof. Using A.2, we will establish the first assertion using the dual basis
X1, -5 Xn of HY(F,Z/pZ) of the basis xy,...,z, of F. It is easily seen that
in order to obtain the second statement, it suffices to show that

erp(f) = (=)™ try(xa)
for each I € M7..
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For a multi-index I = (i1,...,i,) e M"and 1 <k <[ <7 let
Iy = (igy -y 0p).
For I € M"™ with |I| < m we set
a; = (=1 ey, , for 1 <i < j < |I|.

We remark that this element of C!(F,Z/pZ) factorizes through F//R because of
our assumptions and can therefore be interpreted as an element of C*(G,Z/pZ)
as well. For I € M™ with 1 < |I| < m we will show by induction on |I| that the
following claim holds:

(i) The (a;;) form a defining set for (x;) C H*(G,Z/pZ) (vesp. H'(G,Z/pZ)
if |11 =1).
(ii) For 1 < |I| = r in C*(F,Z/pZ) there is the following identity:
inff ay, = (—1)""'0es,.
Let [I| =1, say I = (k). Because of 2.18 ¢(), is a homomorphism from F' to
Z/pZ, and we have that
£)0(%5) = 0ij = xi(2;)-
Hence €4;, = X; which implies the claim for |I| = 1. Let I = (i,...,1,),
1 < r < m. From the case |I| =1 it follows that
We have to show that
ax = Oak
holds for all 1 < k <1 <, (k1) # (1,7). Inductively, we obtain that
1nfg dkl = (—1)l_k851kl7p.
Due to our assumptions €y,, , factorizes over R and we even have that
A = (—1)l_k851klyp = Oday € CZ(G, Z/pZ)

At this point we remark that this implies in particular that 0 € (y;). It remains
to show that

inff ay, = (—1)""'0es,,.
We set
b= (—1)"""inff ay,.
Since H?(F,Z/pZ) = 0, there exists an element u; € C'(F,Z/pZ) with
b = Ouy.
By subtracting the homomorphism
h:F — Z/pZ, h(x;) = u(x;)

we may assume that
ur(z;) =0for j=1,...,n.
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The element b € H*(F,Z/pZ) is by definition given by
r—1

blz,y) = (=171 an(@)ai,(y)

~g~
._\n—l

= 511117 )(_l)r_l 1€Iz+1rp(y)
=1

= _Zglup €Il+1rp(y)

Hence we obtain
ur(zy) —erplay) = ) +ur(y) + Z Enp(T)En s, p(Y) — Erp(TY)

= ur(z) —erp(x) + Ul(y) —e1p(y)
for all z,y € F'. This equation implies
erp(ri’) = ur(z;)
for all i = 1,...,n. Furthermore it holds that
ur(z;) = erp(z;) =0

for all # = 1,...,n. An induction on the reduced word length using the above
equation shows that €, and u; coincide on the discrete free group generated by
x1,...,T,. Due to the continuity of both maps they are identical on F'. Therefore
the claim is proved.

By the induction we have additionally obtained that 0 € (x;) for all I € M"
with |I| < m. By A.2 this implies
(x1) =0 forall I e M with 1 < |I| <m

and that (x;) is uniquely defined for I € M™ with |I| = m. This implies the first
statement of the theorem.

Next we will show that
€rp € H'(R, Z/pZ>G

for all I € M with 1 <|I| < m. For |I| < m this is obvious as €/ ,|g = 0. Assume
that I = (i1,...,4,). The fact that €7, lies in H'(R,Z/pZ) follows, using 2.18,
from the vanishing of €, on R for |J| < m. We will show the G-invariance. Let
xr € R,y € F. Then

erp(y~ 2y) = erp(2(2,y)) = e1,(2) + erp((2,9)).
If we expand e7,((z,y)) with the help 2.18 we obtain

erp((T,y) = erpla) + 514}(*’”_1) +erp(y) + 5I,p(y_1> + 5i1,p(y)5iz--.im,(y_1)
ot i W)En 5 ()
erplza™t) +erplyy ™)
= 0
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which implies the G-invariance. In order to finish the proof of the theorem we
remark that

infl ay, = (—1)""0er 1

in combination with the explicit construction of the transgression map, cf. [13]
(1.6.5), yields

tg(erplr) = (=11 an] = (=) {xi).

By the definition of the trace map we obtain the statement of the theorem. [

As is already remarked in the proof of the above theorem, for the dual basis
X1, Xn Of HY(F,Z/pZ) of the basis z1,...,, of F we obtain the formula

erp(f) = (=1)" e (xa)

for each I € M} and f € R. In combination with 2.20 this shows that the
relation structure of G modulo F{,,;1) can be computed by Massey products.
This was already pointed out 25 years ago in [9], Remark after (2.22), where a
“connection between relations in F{,,), for m > 2, and the Massey products” is
mentioned, but no exact statement nor proof is given.
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