
ON THE GALOIS GROUP OF 2-EXTENSIONS WITH
RESTRICTED RAMIFICATION

DENIS VOGEL

Abstract. In this paper we study the relation structure of the Galois group
of the maximal outside a given set S of primes unramified 2-extension QS(2) of
Q and of the Galois group of the 2-class field tower of a quadratic number field.
We complete Morishita’s calculations of the triple Milnor invariants for QS(2)
and obtain the relation structure of G(QS(2)/Q) modulo the fourth step of the
Zassenhaus filtration. We use this result results in order to deduce information
on the Galois group of the 2-class field tower of a quadratic number field.

1. Introduction

The objective of this paper is the study of relations in certain Galois groups,
namely the Galois group of the maximal 2-extension of Q unramified outside a
set of primes S and the 2-class field tower of a quadratic number field. Let us
explain this now in more detail.

We consider the Galois group GS(2) of the maximal 2-extension QS(2) of Q which
is unramified outside a set S of odd primes which is given by

S = {l1, . . . , ln,∞}.
For 1 ≤ i ≤ n let li be a fixed extension of li to QS(2)/Q, and let σi be an element
of GS(2) with the following properties:

(i) σi is a lift of the Frobenius automorphism of li,
(ii) the restriction of σi to the maximal abelian subextension QS(2)ab/Q of

QS(2)/Q is equal to (λi,QS(2)ab/Q), where λi denotes the idèle whose
li-component equals li and all other components are 1.

For 1 ≤ i ≤ n let τi denote an element of GS(2) such that

(i) τi is a generator of the inertia group Tli of li in QS(2)/Q,
(ii) the restriction of τi to QS(2)ab/Q equals (αi,QS(2)ab/Q), where αi de-

notes the idèle whose li-component is a primitive root modulo li and all
other components are 1.

By a well-known result due to Fröhlich and Koch [9], there is a minimal presen-
tation

1 −−−→ R −−−→ F
π−−−→ GS(2) −−−→ 1
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of GS(2), where F is the free pro-2-group on generators x1, . . . , xn and π is given
by xi 7→ τi, 1 ≤ i ≤ n. A minimal generating system of R as a normal subgroup
of F is given by R = {ρm}1≤m≤n with

ρm = xlm−1
m (x−1

m , y−1
m ),

where ym ∈ F is any preimage of σm for 1 ≤ m ≤ n. Here, we write (a, b) =
a−1b−1ab for elements a, b ∈ F . We have

ρm ≡ xlm−1
m

∏
1≤i<j≤n

(xi, xj)
ei,j,m mod F(3)

for all 1 ≤ m ≤ n, where F(3) denotes the third step of the Zassenhaus filtration
of F which will be explained later and

(−1)ei,j,m =





(
li
lj

)
if m = i,

(
lj
li

)
if m = j,

where ( ··) denotes the Legendre symbol. If the relation subgroup R lies inside F(3),
one may ask what the relations {ρm}1≤m≤n look like when they are considered
modulo F(4).

The second question we are going to deal with is given by the following. Let
K = Q(

√
D) be a quadratic number field, where D is a squarefree integer. We

assume that D ≡ 1 mod 4, or equivalently, that 2 is unramified in K/Q. Let
S = {l1, . . . , ln,∞} be the set of primes of Q which consists of all primes which
are ramified in K/Q and the infinite prime∞. We denote by KS∞ the maximal 2-
extension of K which is unramified outside the archimedean primes of K. For an
imaginary quadratic number field this is the same as K∅, the maximal unramified
2-extension of K. There is the following theorem due to Koch[9]. We have a
minimal presentation

1 −−−→ R −−−→ H −−−→ G(KS∞/K) −−−→ 1

of G(KS∞/K) by the free pro-2-group H on generators w1, . . . , wn−1. The sub-
group R of H can be generated as a normal subgroup by certain elements {rm}1≤m≤n

which fulfill the congruences

rm ≡ w2`m,n
m

∏
1≤j≤n−1

j 6=m

(w2
mw2

j (wm, wj))
`m,j mod H(3), 1 ≤ m ≤ n− 1,

rn ≡
n−1∏
j=1

(w2
j )

`n,j mod H(3),

where

(−1)`m,j =

(
lm
lj

)

for all 1 ≤ m ≤ n. Once again, one may ask what happens if R lies inside H(3).
What do the {rm}1≤m≤n look like modulo H(4)?

Let us explain the techniques used to settle these questions. One important
ingredient is the theory of the Fox differential calculus on free pro-p-groups. This
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is a theory which is developed in analogy to the theory of the Fox differential
calculus on free discrete groups. Let F be the free pro-p-group on generators
x1, . . . , xn and Zp[[F ]] the completed group algebra of F over Zp. By a theorem
of Ihara [8], there exist unique continuous Zp-linear maps, the free derivatives

∂

∂xi

: Zp[[F ]] → Zp[[F ]],

such that every element α ∈ Zp[[F ]] can be uniquely written as

α = εZp[[F ]](α)1 +
n∑

i=1

∂α

∂xi

(xi − 1),

where εZp[[F ]] : Zp[[F ]] → Zp denotes the augmentation homomorphism. For I =
(i1, . . . , ir) we set

εI,p(f) = ε(i1,...,ir),p(f) = εZp[[F ]]

(
∂rf

∂xi1 . . . ∂xir

)

and denote by εI,p : F → Z/pZ the reduction of εI modulo p. For n ≥ 1 let
the ideal In(F ) of Fp[[F ]] be the n-th power of the augmentation ideal I(F ). The
filtration

F(n) = {f | f − 1 ∈ In(F )}, n ≥ 1,

is called the Zassenhaus filtration of F . We have that

f ∈ F(k) if and only if εI,p(f) = 0 for all I with |I| < k.

We construct bases for the quotients F(k)/F(k+1) as Fp-vector spaces. Assume
we are given an element f ∈ F(k) and know the εI,p(f) for all multi-indices I of
length k. We study how f modulo F(k+1) can be expressed in terms of our basis
of F(k)/F(k+1).

We mention that by results of Morishita [12], the Fox differential calculus has a
cohomological interpretation in terms of Massey products. We studied this con-
nection independently. In the appendix, we give a new proof of one of Morihita’s
results.

We now come back to the arithmetical questions we started with. Morishita
[11] introduced the notion of Milnor invariants of the group GS(2). Let r ≥ 1
and 1 ≤ i1, . . . , ir ≤ n. The Milnor µ2-invariant of GS(2) corresponding to
I = (i1, . . . , ir) is defined by

µ2(I) = εI′,2(yir),

where I ′ = (i1, . . . , ir−1). We remark that it is shown in [11] that the Milnor
invariants are independent of the choices we made and are invariants of GS(2).
We want to calculate the third order Milnor invariants of GS(2). The group R of
relations of GS(2) lies inside F(3) if and only if all li are ≡ 1 mod 4 and we have

(
li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

In this setting Morishita has calculated the third order Milnor invariants µ2(i, j, k)
for 1 ≤ i, j, k ≤ n pairwise distinct. We determine the third order Milnor invari-
ants also in the remaining cases. This gives us a description of the sought-after
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relation structure of GS(2). It turns out that the third order Milnor invariants
are described by the so-called Rédei symbol which was introduced in the 1930’s
by Rédei [14]. This triple symbol [p1, p2, p3] for primes p1, p2, p3 taking values ±1
describes a prime decomposition law in a certain dihedral extension of degree 8.
We prove the following

Theorem (Theorem 3.12). Let S = {l1, . . . , ln,∞} where li ≡ 1 mod 4, i =
1, . . . , n, and assume that

(
li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

Let 1 ≤ i, j, k ≤ n. The third order Milnor invariants of GS(2) are given by

(−1)µ2(i,j,k) =

{
[li, lj, lk] if gcd(li, lj, lk) = 1,

1 if i = j = k.

For each 1 ≤ m ≤ n we have

ρm ≡
∏

1≤i<j≤n,
k<j

((xi, xj), xk)
ei,j,k,m mod F(4),

where

(−1)ei,j,k,m =





[li, lj, lk] if m = j and m 6= k,
[li, lj, lk] if m 6= j and m = k,
[li, lj, lk] if m = i and j = k,
[li, lj, lk] if m = j = k,

1 otherwise.

We also give several examples in which we calculate the relations modulo F(4).

We apply the results about GS(2) to the study of the 2-class field tower of certain
quadratic number fields. We follow Koch’s construction from [9], and using the
Fox differential calculus, in particular a chain rule which is proved in the first
chapter, we are able to give a partial description of sought-after relation structure
of G(KS∞/K). We prove the following theorem.

Theorem (Theorem 4.4). Let K = Q(
√

D) be a quadratic number field where D
satisfies one of the following conditions:

(i) D = l1 · . . . · ln and all li are congruent 1 modulo 4,
(ii) D = −l1 · . . . · ln, where l1, . . . , ln−1 are congruent 1 modulo 4 and ln is

congruent 3 modulo 4,

and assume that (
li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

If we write the relations rm, 1 ≤ m ≤ n modulo H(4) as

rm ≡
∏

1≤i<j≤n−1,
k≤j

((wi, wj), wk)
ei,j,k,m mod H(4),
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then for 1 ≤ i < j ≤ n − 1, k < j, i 6= k and 1 ≤ m ≤ n − 1 (in case (i) also
m = n is allowed) we have

(−1)ei,j,k,m =

{
[li, lj, lk] if m = j or m = k,

1 otherwise.

We remark that for imaginary quadratic number fields there is an isomorphism

H1(G(KS∞),Z/2Z) = H1(G(K∅/K),Z/2Z) ∼= (Cl(K)/2)∗,

where Cl(K) denotes the ideal class group of K and ∗ denotes the Pontrya-
gin dual. In the situation of the theorem, we have a triple Massey product on
H1(G(K∅),Z/2Z). The pairings

H1(G(K∅/K))×H1(G(K∅/K))×H1(G(K∅/K))
〈·,·,·〉→ H2(G(K∅/K))

trrk→ Z/2Z
(here the coefficients are Z/2Z) induced by the Massey product and the trace
maps (see the appendix), are therefore pairings

(Cl(K)/2)∗ × (Cl(K)/2)∗ × (Cl(K)/2)∗ → Z/2Z.

By virtue of our above theorem, we give examples where these pairings are non-
trivial.

I would like to thank my supervisor Kay Wingberg for his suggestion to study
these problems and his constant encouragement. Furthermore, I would like to
thank Alexander Schmidt and Otmar Venjakob for numerous discussions on the
subject.

2. Algebraic prerequisites

Originally, the Fox differential calculus has been developed for discrete free groups.
It is possible to carry it over to free pro-p-groups, see [8] and [11].

Let F be the free pro-p-group on generators x1, . . . , xn and let Zp[[F ]] be the com-
pleted group algebra of F over Zp. Let εZp[[F ]] : Zp[[F ]] → Zp be the augmentation
homomorphism. We use the following result due to Ihara which essentially states
that free derivatives exist as in the case of discrete free groups and share the same
properties.

Theorem 2.1. ([8],Thm.2.1) For each i with 1 ≤ i ≤ n there exists a uniquely
determined continuous Zp-linear map, the free derivative

∂

∂xi

: Zp[[F ]] → Zp[[F ]],

such that every element α ∈ Zp[[F ]] can be uniquely written as

α = εZp[[F ]](α)1 +
n∑

i=1

∂α

∂xi

(xi − 1).

For properties of the free derivatives we refer to [8] and [11]. Before we continue
we introduce a notion that is needed in all what follows. Here and in the rest
of the exposition we mean by a multi-index I of height n a tuple of elements
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I = (i1, . . . , ir) where r is a natural number and 1 ≤ ik ≤ n for all 1 ≤ k ≤ r.
Usually we will assume that the height is clear from the context and omit it from
the notation. For a multi-index I = (i1, . . . , ir) we denote by |I| = r the length
of I. If multi-indices I1 = (i1, . . . , ir), I2 = (j1, . . . , js) are given, we denote by

I1I2 = (i1, . . . , ir, j1, . . . , js)

the concatenation of I1 and I2. We denote the set of multi-indices of height n by
Mn and the set of multi-indices of height n and length k by Mn

k .

The completed group algebra Zp[[F ]] is isomorphic to the ring Zp〈〈X1, . . . , Xn〉〉
of formal power series in n non-commuting variables X1, . . . , Xn over Zp, and an
isomorphism is given by

ψ : Zp[[F ]] → Zp〈〈X1, . . . , Xn〉〉, xi 7→ 1 + Xi.

The Magnus expansion M(f) of f ∈ F is given by

M(f) = ψ(f) = 1 +
∑

I∈Mn

εI(f)XI , εI(f) ∈ Zp,

For each multi-index I ∈Mn this gives us a map

εI : F → Zp.

This map stands in the following relation to free differential calculus, cf. [11],§2.

Proposition 2.2. Let f ∈ F and I = (i1, . . . , ir) ∈Mn. Then

εI(f) = εZp[[F ]]

(
∂rf

∂xi1 . . . ∂xir

)
.

Definition 2.3. The basic commutators of weight one are x1, . . . , xn, and
their ordering is x1 > . . . > xn. Assume we have defined the basic commutators
together with their ordering for all weights < k. Then the basic commutators of
weight k are the elements of F of the form (c1, c2) where c1, c2 are basic com-
mutators of weights k1, k2. Moreover we require c1 > c2, and if c1 = (c3, c4) we
also require that c2 ≤ c4. The ordering among the commutators of weight k is
lexicographically, i.e. (c1, c2) < (c′1, c

′
2) if and only if c1 < c′1, or c1 = c′1 and

c2 < c′2. Commutators of weight k are greater than all commutators of smaller
weight.

Example 2.4. The basic commutators of weight 3 are given by ((xi, xj), xk),
1 ≤ i < j ≤ n, k ≤ j.

For a pro-p-group G we denote by {Gk}k≥1 the descending central series of G
which is defined recursively by G1 = G, Gk+1 = (Gk, G) where (Gk, G) denotes
the closed subgroup of G generated by the commutators (a, b) = a−1b−1ab for
a ∈ Gk, b ∈ G. We have the following theorem, which follows directly from an
analogous statement for discrete free groups, cf. [6], Thm. 11.2.4, by completion.

Theorem 2.5. The basic commutators of weight k represent a basis of Fk/Fk+1

as a free Zp-module.

We want to study the effect of εI on the basic commutators or more generally on
the so-called bracket arrangements. We collect some definitions from [5].
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Definition 2.6. A bracket arrangement consists of brackets and asterisks
(which act as place holders) and comes assigned with a weight. The only bracket
arrangement of weight one is (∗) = ∗. Assume all bracket arrangements of weight
< k have been defined. The bracket arrangements of weight k are of the form β =
(β1, β2), where β1, β2 are bracket arrangements of weight k1, k2 and k = k1 + k2.
The weight of a bracket arrangement β is denoted by ω(β). Suppose a bracket
arrangement β with ω(β) = k and a multi-index I = (i1, . . . , ik) are given. Then
β(I) denotes the commutator in Fk, which is obtained from β by substitution of
xi1 , . . . , xik in consecutive locations.

To each bracket arrangement β we will associate a tree T (β) with a root.

Definition 2.7. If ω(β) = 1 then the tree T (β) consists of a single vertex, which
is the root. Assume these trees have been defined for all weights < k, and β is
of the form β = (β1, β2) und has weight k. Then T (β) is the tree in figure 1 and
ν is its root, where ν1 and ν2 are the roots of T (β1) and T (β2), respectively. We
orient the trees in such a way that left-right ordering is preserved and that the
new root is at the bottom. The weight of T (β) is defined as ω(β). We denote the
set of these trees by T .

Figure 1. T (β)

•ν1
•

•?
??

??
??

ν

•ÄÄÄÄÄÄÄÄ
ν2
•

T (β1) T (β2)

If ν is a vertex in T ∈ T , we can pick out an upper tree U(ν), a left-hand tree
L(ν) and a right-hand tree R(ν), see fig. 2.

Figure 2

•νL
•

•?
??

??
??

ν

•ÄÄÄÄÄÄÄÄ
νR
•

L(ν) R(ν)
U(ν) = L(ν) ∪R(ν)

νL = left-hand vertex
νR = right-hand vertex

Definition 2.8. Let β(I) ∈ Fk − Fk+1 (this is e.g. the case if β(I) is basic). To
β(I) we associate a labelled tree T (β, I) which is just T (β) with each vertex
having a label from the free group F . The labelling is defined inductively as
follows: If ω(β) = 1 and I = i, then T (β, I) = xi. . Assume the labelling has been
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accomplished for all trees of weight < k and β = (β1, β2) has weight k. We break
I up in I = I1I2 with l(I1) = ω(β1), I2 = ω(β2). Then the sub-trees T (β1) und
T (β2) are labelled and the root of T (β) is labelled with the commutator (L1, L2)
where L1 and L2 are the labels of the roots of T (β1) and T (β2), respectively. We
denote the set of labelled trees of this type by Tk. If a tree T = T (β, I) is given
we set I(T ) = I and B(T ) = β(I). The monomial u(T ) of a labelled tree T (β, I)
is defined by

u(T ) = XI = Xi1 · . . . ·Xir .

Definition 2.9. The admissible operations on T ∈ T are generated by the
following elementary operations: For a vertex ν ∈ T we interchange L(ν) and
R(ν) and preserve the left-right and up-down orderings within L(ν), R(ν) while
keeping ν and T−U(ν) fixed (see fig.3). The sign of an elementary operation is −1
and the sign of an admissible operation is the product the signs of its elementary
operations. An admissible operation on T ∈ Tk is an admissible operation on T
where T is interpreted as an element of T . The labelling is preserved by each
elementary operation in the sense that the labels remain attached to the vertices
they were originally attached to. We denote the set of admissible operations on
T by Op(T ).

Figure 3. elementary operation

•νL
•

•?
??

??

ν

•ÄÄÄÄÄÄ
νR
•

L(ν) R(ν)

•νR
•

•?
??

??

ν

•ÄÄÄÄÄÄ
νL
•

R(ν) L(ν)

elementary−−−−−−→
operation

Example 2.10. Let 1 ≤ k, l,m ≤ n, k 6= l. There are four admissible operations
on the labelled tree T = T (((∗, ∗), ∗), (k, l, m)). Their effect on T can be seen in
the following picture. The corresponding signs are noted below the trees.

•xk

•7
77

77
7

(xk, xl)

•̈
¨̈

¨̈
¨

xl

•7
77

77
7

((xk, xl), xm)

•̈
¨̈

¨̈
¨̈

¨̈
¨̈

xm •xl

•7
77

77
7

(xl, xk)

•̈
¨̈

¨̈
¨

xk

•7
77

77
7

((xl, xk), xm)

•̈
¨̈

¨̈
¨̈

¨̈
¨̈

xm

+1 −1

•xm

•7
77

77
77

77
77

(xm, (xl, xk))

•̈
¨̈

¨̈
¨

(xl, xk)

•777777
xl xk•

¨̈
¨̈
¨̈

•xm

•7
77

77
77

77
77

(xm, (xk, xl))

•̈
¨̈

¨̈
¨

(xk, xl)

•777777
xk xl•

¨̈
¨̈
¨̈

+1 −1
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For f ∈ F let L(f) denote the leading polynomial of the Magnus expansion M(f)
of f . If f ∈ Fk − Fk+1 it obviously holds that

L(f) =
∑

l(I)=k

εI(f)XI .

In complete analogy to [5], lemma 5.5, we obtain the following result.

Proposition 2.11. Let β be a bracket arrangement of weight k ≥ 1 and I =
(i1, . . . , ik) ∈Mn, such that β(I) ∈ Fk − Fk+1. Let T = T (β, I). Then

L(β(I)) =
∑

σ∈Op(T )

sgn(σ)u(σ(T )).

Example 2.12. Let β = ((∗, ∗), ∗), I = (k, l, m) with k 6= l. From the above
example we obtain

L(((xk, xl), xm)) = Xklm + Xmlk −Xmkl −Xlkm.

Let Ck denote the free Zp-module on the set Ck of basic commutators of weight
k. In later applications we will need a description of the map

ηk : Mn
k → Ck, I 7→

∑

β∈Ck

εI(β(I))β.

It is easily seen that the previous proposition implies the following result.

Proposition 2.13. The map ηk is given by

ηk(I) =
∑
T∈Tk
I(T )=I

∑

σ∈Op(T )
σ(T )∈Ck

sgn(σ)B(σ(T )).

Example 2.14. Let I = (k, l, m) with 1 ≤ k, l, m ≤ n and assume that l > k,
l > m and k 6= m. There are two trees T1, T2 ∈ T3 with I(Ti) = I, i = 1, 2:

•xk

•7
77

77
7

(xk, xl)

•̈
¨̈

¨̈
¨

xl

•7
77

77
7

((xk, xl), xm)

•̈
¨̈

¨̈
¨̈

¨̈
¨̈

xm •xk

•7
77

77
77

77
77

(xk, (xl, xm))

•̈
¨̈

¨̈
¨

(xl, xm)

•777777
xl xm•

¨̈
¨̈
¨̈

T1 T2

The labelled tree T1 corresponds to a basic commutator, and no nontrivial ad-
missible operation will produce a labelled tree from T1 that corresponds to a
basic commutator as well. The labelled tree T2 does not correspond to a basic
commutator, but the labelled tree

•xm

•7
77

77
7

(xm, xl)

•̈
¨̈

¨̈
¨

xl

•7
77

77
7

((xm, xl), xk)

•̈
¨̈

¨̈
¨̈

¨̈
¨̈

xk
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obtained from T2 by an admissible operation of sign +1 is the only one obtained
from T2 that does. Hence

η3(I) = ((xk, xl), xm) + ((xm, xl), xk).

Let G be a finitely generated pro-p-group, and for k ≥ 1 let the ideal Ik(G) of
Fp[[G]] be the k-th power of the augmentation ideal I(G). The filtration

G(k) = {g | g − 1 ∈ Ik(G)}, k ≥ 1,

is called the Zassenhaus filtration of G. There are the following results on the
Zassenhaus filtration, see [3], Thm. 12.9 and [3], Thm. 11.2, respectively.

Theorem 2.15. (i) The Zassenhaus filtration can be recursively described
as follows:

G(k) = Gp
(dk/pe)

∏
i,j≥1
i+j=k

(G(i), G(j)),

where dk/pe denotes the least integer m such that pm ≥ k.
(ii) For each k,

G(k) =
∏
i,j≥0
ipj≥k

Gpj

i .

These results last allows us in particular to write down bases for the quotients
F(k)/F(k+1) as Fp-vector spaces using the description of the bases of Fk/Fk+1 as
given in 2.5. We denote by Ck the set of basic commutators of weight k and we

set Ca
k = {ca | c ∈ Ck}. We remark that if F pj

i ⊂ F(k), then F pj

i+1 ⊂ F(k+1). If

i - k, then F pj

i ⊂ F(k) implies F pj

i ⊂ F(k+1). In particular we have the following

Corollary 2.16. For each k ≥ 1 there exists a uniquely determined set

Vk ⊆ {(i, j) ∈ Z× Z | i, j ≥ 0, ipj = k}
such that

Bk = Cpj1

i1

.∪ Cpj2

i2

.∪ . . .
.∪ Cpjm

im
, (ir, jr) ∈ Vk for all r = 1, . . . , m

represents a basis for F(k)/F(k+1) as an Fp-vector space.

Example 2.17. We have that

F(3)/F(4) =

{
F3/F

p
3 F4 if p 6= 3,

F 3F3/F
9F 3

2 F4 if p = 3.

For p 6= 3 the set C3 of basic commutators of weight 3 represents a basis of
F(3)/F(4) as an Fp-vector space. For p = 3 such a basis is represented by C3

1 ∪C3.

Let εI,p : F → Z/pZ denote the reduction of εI modulo p. For the following
technical result, see [5].

Proposition 2.18. Let α, β ∈ F , f ∈ F(i), g ∈ F(j) and let I ∈ Mn. Then the
following assertions hold:
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(i)

εI,p(αβ) =
∑

I1I2=I

εI1,p(α)εI2,p(β).

(ii) If |I| < i, then εI,p(f) = 0.
(iii) If |I| ≤ min(i, j), then εI,p(fg) = εI,p(f) + εI,p(g).
(iv) If |I| = i + j, I = I1I2 = I ′2I

′
1, where I1, I2, I

′
1, I

′
2 are multi-indices with

|I1| = |I ′1| = i, |I2| = |I ′2| = j, then

εI,p((f, g)) = εI1,p(f)εI2,p(g)− εI′1,p(f)εI′2,p(g).

The next result gives a characterization of the descending central series and the
Zassenhaus filtration by means of differential calculus.

Lemma 2.19. Let f ∈ F . Then:

(i) f ∈ Fk if and only if εI(f) = 0 for all multi-indices I with |I| < k.
(ii) f ∈ F(k) if and only if εI,p(f) = 0 for all multi-indices I with |I| < k.

Proof. (i) follows as in the discrete case, see [4], 4.4.5. (ii) follows by looking at
the Magnus expansion of f modulo p and a consideration of the generators of
In(F ). ¤

Let I be a multi-index of length k. The results above allow us to reduce the
calculation of εI,p on F(k) to a calculation of εI,p applied to a basis of F(k) modulo
F(k+1) as given in 2.16. We have already studied the effect of the εI on basic
commutators. The next result shows that this is sufficient for the calculation of
εI,p on F(k).

Proposition 2.20. The linear map

F(k)/F(k+1) → (Z/pZ)M
n
k , f mod F(k+1) 7→ (εI,p(f))I∈Mn

k

is injective, and its representation matrix with respect to Bk and the standard
basis of (Z/pZ)M

n
k can be computed in terms of the maps ηi, i ∈ pr1 Vk.

Proof. Linearity and injectivity of the above map follow from 2.18 and 2.19,
respectively. Let cpr ∈ Cpr

s where spr = k. Then

εI,p(c
pr

) =
∑

I=I1...Ipr

εI1,p(c) · . . . · εIpr ,p(c)

We call the decomposition I = I1 . . . Ipr of type w, where w is a natural number,
if w of the multi-indices I1, . . . , Ipr are empty. There is exactly one decomposition
of type 0. It is given by

I = (i1, . . . , is)(is+1, . . . , i2s) . . . (i(pr−1)s, . . . , iprs)

To a decomposition I = I1 . . . Ipr of type w we associate a reduced decomposition

Ĩ = Ĩ1 . . . Ĩpr−w of type 0 by leaving out the empty multi-indices. We may then
write

εI,p(c
pr

) =

pr−1∑
w=0

∑
I=I1...Ipr

of type w

εĨ1,p(c) · . . . · εĨpr−w,p(c)
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Each reduced decomposition Ĩ = Ĩ1 . . . Ĩpr−w occurs exactly
(

pr

w

)
times in the

above summation. Since

vp(

(
pr

w

)
) = r − vp(w) > 0

for w = 0, . . . , pr − 1, where vp denotes the p-adic valuation, it follows that

εI,p(c
pr

) = ε(i1,...,is),p(c) · . . . ε(i(pr−1)s,...,iprs),p(c),

hence εI,p(c
pr

) is determined by the knowledge of the map ηs from 2.13. ¤
Example 2.21. Let f ∈ F(3). Then we have

f ≡
∏

1≤k<l≤n
m≤l

((xk, xl), xm)p−ε(l,k,m),p(f)
∏

1≤k<l≤n

((xk, xl), xl)
ε(k,l,l),p(f) mod F(4)

if p 6= 3, and

f ≡
n∏

k=1

x
3ε(k,k,k),3(f)

k

∏

1≤k<l≤n
m≤l

((xk, xl), xm)3−ε(l,k,m),3(f)
∏

1≤k<l≤n

((xk, xl), xl)
ε(k,l,l),3(f)

mod F(4)

if p = 3.

A useful tool for making explicit calculations is the following chain rule.

Definition 2.22. Let F be the free pro-p group on x1, . . . , xn and let F ′ be the
free pro-p-group on x′1, . . . , x

′
m. Let φ : F → F ′ be a homomorphism. We will

denote by εF
I,p and εF ′

I,p the corresponding maps εI,p in order to avoid confusion.
We set

φj
i = εF ′

(i),p(φ(xj)), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and call the matrix (φj
i )i,j the Jacobi matrix of φ.

φj1,...,jk
i1,...,ik

= φj1
i1

φj2
i2
· . . . · φjk

ik
.

Proposition 2.23. Let the notation be as in 2.22, and let f ∈ F(k). Then

εF ′
(i1,...,ik),p(φ(f)) =

∑
j1,...,jk

φj1,...,jk
i1,...,ik

εF
(j1,...,jk),p(f).

Proof. This is easily proved by induction on k and makes use of 2.15(i) and
2.18. ¤

We mention a special case in which much more holds than the above chain rule.
Let F be the free pro-p-group on x1, . . . , xn. We denote by N the normal subgroup
generated by xh+1, . . . , xn where h ≥ 0, and by φ : F → F ′ = F/N the canonical
projection. We set x′i = xiN for i = 1, . . . , h. Then for each multi-index I ∈Mh

of height h, and each f ∈ F , it holds that εF ′
I,p(φ(f)) = εF

I,p(f). This follows
immediately from the definition of εI,p.

In our applications we will make use of the shuffle property of the εI,p. For that
purpose we introduce the notion of shuffles, cf. [1].
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Definition 2.24. Let I = (a1, . . . , al) and J = (b1, . . . , bm) be multi-indices. A
shuffle of I and J is a pair (α, β) of sequences α = (α(1), . . . α(l)) and β =
(β(1), . . . , β(m)) such that 1 ≤ α(1) < α(2) < . . . < α(l) ≤ m+ l and 1 ≤ β(1) <
β(2) < . . . < β(m) ≤ m+ l. If α(i) is always distinct from β(j) the shuffle will be
called a proper shuffle. We denote the set of shuffles of I and J by S(I, J) and

the set of proper shuffles of I and J by Ŝ(I, J). A multi-index K = (c1, . . . , cn)
is called the result of a shuffle (α, β) ∈ S(I, J) if

(i) cα(i) = ai for i = 1, . . . , l and cβ(j) = bj for j = 1, . . . ,m.
(ii) Each index k = 1, . . . , n is either an α(i) for some i or an β(j) for some

j or both.

For s ∈ S we denote by K = R(s) the set of results of the shuffle s. If s is a
proper shuffle then R(s) consists of one element which we denote by r(s).

We note that if K is the result of a proper shuffle of I and J , then |K| = |I|+ |J |.
For multi-indices I and J we define the map εI,p · εJ,p as

(εI,p · εJ,p)(f) = εI,p(f)εJ,p(f), f ∈ F.

The following lemma comes from the classical theory of the free differential cal-
culus, see [1], lemma 3.3, and carries over directly to our situation.

Proposition 2.25. Let I and J be multi-indices. Then

εI,p · εJ,p =
∑

s∈S(I,J)

∑

K∈R(s)

εK,p.

In particular, if f ∈ F(k) with k = |I|+ |J |, then
∑

s∈Ŝ(I,J)

εr(s),p = 0.

3. The maximal 2-extension of Q with restricted ramification

Let S = {l1, . . . , ln,∞} be a finite set consisting of odd prime numbers l1, . . . , ln
and the infinite prime ∞ of Q. In this section we study the relation structure of
the Galois group of the maximal outside S unramified 2-extension QS(2) of Q.
For i = 1, . . . , n let li be a fixed prime over li in QS(2), and let σi be an element
of GS(2) = G(QS(2)/Q) with the following properties:

(i) σi is a lift of the Frobenius automorphism of li,
(ii) the restriction of σi to the maximal abelian subextension QS(2)ab/Q of

the extension QS(2)/Q is equal to (λi,QS(2)ab/Q), where λi denotes the
idèle whose li-component equals li and all other components are 1.

For 1 ≤ i ≤ n let τi denote an element of GS(2) such that

(i) τi is a generator of the inertia group Tli of li in QS(2)/Q,
(ii) the restriction of τi to QS(2)ab/Q equals (αi,QS(2)ab/Q), where αi de-

notes the idèle whose li-component is a primitive root modulo li and all
other components are 1.
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The following result is well-known.

Theorem 3.1 (Fröhlich, Koch). Let F be the free pro-2-group on generators
x1, . . . , xn. Then GS(2) has a minimal presentation

1 −−−→ R −−−→ F
π−−−→ GS(2) −−−→ 1,

where π is given by xi 7→ τi, 1 ≤ i ≤ n, and a minimal generating system of R
as a normal subgroup of F is given by R = {ρm}1≤m≤n with

ρm = xlm−1
m (x−1

m , y−1
m ),

where ym is any preimage of σm. We have that

ρm ≡ xlm−1
m

∏

j 6=m

(xm, xj)
`m,j mod F(3),

where

(−1)`m,j =

(
lm
lj

)
.

It is easily verified that the above congruences for the relations may be rewritten
as

ρm ≡ xlm−1
m

∏
1≤i<j≤n

(xi, xj)
ei,j,m mod F(3)

for all 1 ≤ m ≤ n, where

(−1)ei,j,m =





(
li
lj

)
if m = i,

(
lj
li

)
if m = j.

There is the following definition due to Morishita [11].

Definition 3.2. Let I = (i1, . . . , ir) ∈ Mn be a multi-index. We define the
Milnor µ2-invariant of GS(2) corresponding to I by

µ2(I) = εI′,2(yir),

where I ′ = (i1, . . . , ir−1). By convention we set µ2(I) = 0 for any multi-index I
of length 1.

We remark that it is shown in [11] that the Milnor invariants are independent of
the choices we made and are invariants of GS(2). The following remark, see [11],
Rem. 3.1.6.(2), will be useful in our calculations.

Remark 3.3. Let S = {l1, . . . , ln,∞} be a subset of S̃ = {l1, . . . , ln, ln+1, . . . , lm,∞}
and let I ∈ Mm be a multi-index. If I ∈ Mn then the Milnor invariants µ2(I)
defined via the Galois groups GS(2) resp. GS̃(2) coincide.

There is a shuffle property for Milnor invariants which follows from 2.25. As it is
stated slightly incorrect in [11] we will restate it here.
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Remark 3.4. Let I = I1I2 ∈ Mn be a multi-index of length m. Then for all
1 ≤ i ≤ n we have ∑

s∈Ŝ

∑

K∈R(s)

µ2(K(i)) = 0,

where K(i) denotes the concatenation of the multi-indices K and (i). In partic-
ular, if µ2(J) = 0 for all multi-indices J with J ≤ m, then

mµ2(j, . . . , j︸ ︷︷ ︸
m

, i) = 0

for all 1 ≤ i, j ≤ n.

(It is the factor m that has been forgotten in [11], Thm. 3.1.8. In particular, that
result would imply that under the hypothesis that the second order Milnor invari-
ants vanish, the third order Milnor invariants of type µ2(j, j, i) would vanish as
well. We will later give examples for the nonvanishing of such Milnor invariants.)

We are interested in the case where R ⊆ F(3) which we assume from now on. By
3.1 this is the case if and only if (

lm − 1

2

)
= 0

for all m with 1 ≤ m ≤ n and(
lm
lj

)
= 1 for all 1 ≤ m, j ≤ n, m 6= j.

The first condition is satisfied if and only if all lm are congruent 1 modulo 4.

Rédei introduced a triple symbol [p1, p2, p3] for primes p1, p2, p3 taking values ±1
which describes a prime decomposition law in a certain dihedral extension of de-
gree 8 (actually, his symbol is even a bit more general). In [11], a connection is
given between the Rédei symbols [li, lj, lk] and the Milnor invariants µ2(i, j, k) of
GS(2) for pairwise distinct primes li, lj, lk ∈ S. We will generalize the result of
[11] to the case where some of the li, lj, lk may coincide. This allows us to give
a complete description of the relation structure of GS(2) modulo F(4). Unfortu-
nately the presentation in [11] is incorrect in the sense that a dihedral extension
of degree 8 is constructed which is claimed to be unramified outside {p1, p2} but
which may also ramify at 2 depending on some parameters, and the extension
explicitly given in [11], Ex. 3.2.6 is indeed ramified at 2. This makes the calcu-
lation of the Milnor numbers in [11] incorrect. Fortunately, the construction can
be rescued if we stay closer to the original work of [14]. For this reason we have
decided to give a more detailed view of the aforementioned construction and the
definition of the Rédei symbol.

Definition 3.5. Let k be a number field, α ∈ k and p be a nonzero prime ideal
of the ring of integers Ok of k. Then we set

(
α|k
p

)
=





1 if p splits
0 if p is ramified

−1 if p is inert

in k(
√

α).
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We obtain the following result as a special case of [14], Satz 1.

Proposition 3.6. Let p1, p2, p3 be prime numbers with gcd(p1, p2, p3) = 1 and
pi ≡ 1 mod 4, i = 1, 2, 3 with

(
pi

pj

)
= 1 if pi 6= pj and 1 ≤ i, j ≤ 3.

Then there exists an element α2 ∈ k1 := Q(
√

p1) with the following properties:

(i) Nk1/Qα2 = p2,
(ii) Nk1/Q(Dk1(

√
α2)/k1) = p2 where Dk1(

√
α2)/k1 is the discriminant of the ex-

tension k1(
√

α2)/k1.

If α2 has the above properties then there exists a prime p3 in k1 over p3 such that
(

α2|k1

p3

)
6= 0,

and for all choices of α2 and p3 such that the above symbol does not vanish, it
has the same value.

We remark that by [14], α2 may be chosen as α2 = x + y
√

p1 where x, y are
integral solutions to the equation

x2 − p1y
2 − p2z

2 = 0

which have the property that gcd(x, y, z) = 1, 2|y and x− y ≡ 1 mod 4.

Definition 3.7. Let p1, p2, p3 be prime numbers with pi ≡ 1 mod 4, i = 1, 2, 3,
and (

pi

pj

)
= 1 if pi 6= pj and 1 ≤ i, j ≤ 3.

Then the Rédei symbol is defined as

[p1, p2, p3] :=

(
α2|k1

p3

)
,

where α2 and p3 are given as in 3.6.

We will later need the following lemma, which follows directly from [14], Satz 2,
Satz 4.

Lemma 3.8. For any permutation γ ∈ S3 we have

[p1, p2, p3] = [pγ(1), pγ(2), pγ(3)].

Let α1 := α2 + ᾱ2 + 2
√

p2 ∈ k2 := Q(
√

p2) where ᾱ2 denotes the conjugate of
α2. As remarked in [14], p.5, α1 fulfils the conditions (i) and (ii) of 3.6 where the
obvious replacements have to be made. Let K := k1k2(

√
α2).
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We consider the case where p1 6= p2. Then we have the following diagram of
fields:

K

hhhhhhhhhhhhhhhhhhhhhhhh

qqqqqqqqqqq

MMMMMMMMMMM

VVVVVVVVVVVVVVVVVVVVVVVV

k2(
√

ᾱ1)

LLLLLLLLLLLL
k2(
√

α1) k1k2

rrrrrrrrrrrr

LLLLLLLLLLLL
k1(
√

α2) k1(
√

ᾱ2)

rrrrrrrrrrrr

k2

LLLLLLLLLLLLL Q√p1p2 k1

rrrrrrrrrrrrr

Q

where ᾱ1 and ᾱ2 denote the conjugates of α1 and α2, respectively. It is shown in
[14], p.6 that K/Q is a Galois extension of degree 8 whose Galois group is the
dihedral group of order 8. The Galois group of K/Q is generated by elements s
and t which are defined by

s :
√

p2 7→ −√p2, t :
√

p1 7→ −√p1,
√

α2 7→ −√ᾱ2,
√

p2 7→ −√p2

and correspond to the subfields k1(
√

α2) and Q(
√

p1p2), respectively. The rela-
tions between s and t are given by

s2 = t4 = 1, sts−1 = t−1.

It follows from the consideration in [14] that the discriminant of K is given by

DK/Q = p4
1p

4
2,

hence K is unramified outside {p1, p2,∞}. (In [11] the conditions on α2 are
somewhat less restrictive which may result in K being ramified at 2.)

By our assumptions p2 is completely decomposed in k1. If we apply 3.6 to the
triple (p1, p2, p3), we see that there exists a prime p2 in k2 over p2 which is unram-
ified in k1(

√
α2). Therefore we may choose a prime P2 of K such that the inertia

group TP2(K/Q) is generated by s. A similar argument using the above remark
concerning α1 shows that we may choose a prime P1 of K such that the inertia
group TP1(K/Q) is generated by st, which corresponds to the subfield k2(

√
α1).

Setting a1 = st, a2 = s, we have the following presentation of G(K/Q):

G(K/Q) = 〈a1, a2 | a2
1 = a2

2 = 1, (a1a2)
4 = 1〉.

Now we set p1 = li, p2 = lj, p3 = lk where li, lj, lk ∈ S−{∞}. By our assumptions,
the Rédei symbol [li, lj, lk] is well-defined. We choose the primes li, lj of QS(2)
such that li ∩ OK = P1, lj ∩ OK = P2. We have a projection

π : F → GS(2) → G(K/Q)

where F is the free pro-2-group generated by x1, . . . , xn as in 3.1. By the choice
of the li we know that xi 7→ a1, xj 7→ a2, xm 7→ 1, for m 6= i, j. We obtain Thm.
3.2.5 of [M].
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Proposition 3.9 (Morishita). Let 1 ≤ i, j, k ≤ n be pairwise distinct. Then

(−1)µ2(i,j,k) = [li, lj, lk].

We drop the assumption that li, lj, lk are pairwise distinct.

Proposition 3.10. Let 1 ≤ i, j ≤ n. If i 6= j then

(−1)µ2(i,j,j) = [li, lj, lj],

(−1)µ2(j,i,j) = [lj, li, lj].

Proof. We claim that it is sufficient to prove the first assertion. Indeed, by 2.25
we obtain

0 = ε(j,i,j),2(ρj) + ε(i,j,j),2(ρj) + ε(i,j,j),2(ρj)

= ε(j,i,j),2(ρj)

= ε(j,i,j),2((x
−1
j , y−1

j ))

= ε(i,j),2(y
−1
j ) + ε(j,i),2(y

−1
j )

= µ2(i, j, j) + µ2(j, i, j).

By 3.8 the claim is proved. We set p1 = li, p2 = p3 = lj. The inertia field of P2

over Q is given by k1(
√

α2). If [p1, p2, p2] = 1, then p2 decomposes in k1(
√

α2) as

p2Ok1(
√

α2) = q1q2q
2
3,

where q1, q2, q3 are primes ideals of Ok1(
√

α2) with P2|q1 or P2|q2 because we know
that p2 is ramified in k1(

√
α2). Hence π(yj) = 1 in this case. If [p1, p2, p2] = −1,

then p2 decomposes in k1(
√

α2) as

p2Ok1(
√

α2) = q1q
2
2,

where q1, q2 are primes ideals of Ok1(
√

α2) with P2|q1, so the Frobenius auto-
morphism of the extension k1(

√
α2)|k1 is given by the nontrivial automorphism.

Therefore ρ = π(yj) is given by

ρ :
√

p1 7→ √
p1,

√
α2 7→ −√α2,

√
p2 7→ √

p2

or

ρ :
√

p1 7→ √
p1,

√
α2 7→ −√α2,

√
p2 7→ −√p2.

By definition of σj the restriction of σj to the maximal abelian subextension
QS(2)ab/Q of QS(2)/Q is equal to (λj,QS(2)ab/Q), where λj denotes the idèle
whose lj-component equals lj and all other components are 1. By local class field

theory it follows that σj(
√

p2) =
√

p2, thus we obtain that π(yj) = t2. Let R̃ be
defined by the exact sequence

1 −−−→ R̃ −−−→ F
π−−−→ G(K/Q) −−−→ 1.
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It is generated by x2
i , x

2
j , (xixj)

4 and the xm for m 6= i, j as a normal subgroup of
F . The Magnus expansions of the generators are given by

x2
i = 1 + X2

i ,

x2
j = 1 + X2

j ,

(xixj)
4 ≡ 1 mod deg ≥ 4,

xm = 1 + Xm

For all generators it holds that ε(i,j),2 as well as ε(i),2 and ε(j),2 vanish on them.
By 2.18 and the continuity of ε(i,j),2 we conclude that ε(i,j),2, ε(i),2, ε(j),2 vanish on

R̃. If π(yj) = 1 then yj ∈ R̃, hence µ2(i, j, j) = ε(i,j),2(yj) = 0. If π(yj) = (a1a2)
2

then yj = (xixj)
2r with an element r ∈ R. We obtain

µ2(i, j, j) = ε(i,j),2((xixj)
2) + ε(i,j),2(r) + ε(i),2((xixj)

2)ε(j),2(r)

= 1,

because the Magnus expansion of (xixj)
2 is given by

(xixj)
2 ≡ 1 + X2

i + X2
j + XiXj + XjXi mod deg ≥ 3.

This proves the proposition. ¤

Now we deal with the Milnor invariants µ2(i, i, j). Suppose that in the setting of
3.6, 3.7 we have p1 = p2. Then we have the following diagram of fields:

K = k1(
√

α2)

k1

Q

Here K/Q is a cyclic Galois extension of degree 4. From the considerations in
[14] it follows that

DK/Q = p3
1,

hence K/Q is unramified outside {p1,∞}. We set p1 = p2 = li, p3 = lj. Using
the projection map

π : F → GS(2) → G(K/Q)

we may choose the generator t of G(K/Q) such that π(yi) = t.

Proposition 3.11. Let 1 ≤ i, j ≤ n. If i 6= j then

(−1)µ2(i,i,j) = [li, li, lj].

Furthermore,
µ2(i, i, i) = 0.

Proof. By the definition of the Rédei symbol we know that

π(yj) =

{
t2 if [li, li, lj] = −1,
1 if [li, li, lj] = 1.
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Let R̃ be defined by the exact sequence

1 −−−→ R̃ −−−→ F
π−−−→ G(K/Q) −−−→ 1.

It is generated by x4
i and the xm for m 6= i as a normal subgroup of F . By 2.18 it

follows that ε(i,i),2 as well as ε(i),2 vanish on R̃. If π(yj) = 1, then yj ∈ R̃, hence
µ2(i, i, j) = ε(i,i),2(yj) = 0. If π(yj) = t2, then yj = x2

i r with an element r ∈ R.
We obtain

ε(i,i),2(yj) = ε(i,i),2(x
2
i ) + ε(i,i),2(r) + ε(i),2(x

2
i )ε(i),2(r)

= 1,

which proves the first statement. The extension K/k is totally ramified at p1,
hence π(yi) = 1. Therefore yi ∈ R̃, which implies that

µ2(i, i, i) = ε(i,i),2(yi) = 0.

Hence the proposition is proved. ¤

We summarize our results in the following theorem.

Theorem 3.12. Let S = {l1, . . . , ln,∞} where li ≡ 1 mod 4, i = 1, . . . , n, and
assume that (

li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

Let 1 ≤ i, j, k ≤ n. The third order Milnor invariants of GS(2) are given by

(−1)µ2(i,j,k) =

{
[li, lj, lk] if gcd(li, lj, lk) = 1,

1 if i = j = k.

For each 1 ≤ m ≤ n we have

ρm ≡
∏

1≤i<j≤n,
k<j

((xi, xj), xk)
ei,j,k,m mod F(4),

where

(−1)ei,j,k,m =





[li, lj, lk] if m = j and m 6= k,
[li, lj, lk] if m 6= j and m = k,
[li, lj, lk] if m = i and j = k,
[li, lj, lk] if m = j = k,

1 otherwise.

Proof. The first result follows from 3.9, 3.10, 3.11. For 1 ≤ i < j ≤ n, k < j we
have

ε(j,i,k),2(ρm) = ε(j,i,k),2(x
lm−1
m (x−1

m , y−1
m ))

= ε(j,i,k),2((x
−1
m , y−1

m ))

= δi,mµ2(i, k, j) + δk,mµ2(j, i, k),

where we have made use of 2.18. By 2.21,

(−1)ei,j,k,m = (−1)ε(j,i,k),2(ρm) = [li, lk, lj]
δj,m + [lj, li, lk]

δk,m .

A similar calculation shows that

(−1)ei,j,j,m = (−1)ε(i,j,j),2(ρm) = [lj, lj, li]
δi,m + [li, lj, lj]

δj,m .
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This implies the second result. ¤

By the results of the appendix, the above theorem gives in particular a complete
description of pairings

〈·, ·, ·〉 : H1(GS(2))×H1(GS(2))×H1(GS(2)) → H2(GS(2))
trρm→ Z/2Z

induced by the Massey triple product and the trace maps, where the coefficients
are Z/2Z.

Example 3.13. (cf. [11], Ex. 3.2.6) Set l1 = 5, l2 = 41, l3 = 61, so S =
{5, 41, 61,∞}. We may choose α2 as α2 = −11+4

√
5 (note that this differs from

[11] where it is chosen inappropriately). Computer calculations yield that the
Rédei symbol [li, lj, lk] is −1 exactly for all permutations of the triples (i, j, k)
where (i, j, k) = (1, 2, 3), (1, 2, 2), (1, 3, 3), (2, 2, 3), (2, 3, 3). Hence

ρ1 ≡ ((x1, x2), x2)((x1, x3), x3)((x2, x3), x1) mod F(4),

ρ2 ≡ ((x1, x2), x2)((x1, x3), x2)((x2, x3), x2)((x2, x3), x3) mod F(4),

ρ3 ≡ ((x1, x3), x2)((x1, x3), x3)((x2, x3), x1)((x2, x3), x2)((x2, x3), x3) mod F(4).

In [11] the triple (5, 41, 61) is called a triple of Borromean primes modulo 2.

Example 3.14. Set l1 = 13, l2 = 61, l3 = 937. The Rédei symbol [li, lj, lk] is −1
exactly for all permutations of (i, j, k) = (1, 2, 3). Therefore we have

ρ1 ≡ ((x2, x3), x1) mod F(4),

ρ2 ≡ ((x1, x3), x2) mod F(4),

ρ3 ≡ ((x1, x3), x2)((x2, x3), x1) ≡ ((x1, x2), x3) mod F(4)

We call (13, 61, 937) a triple of proper Borromean primes modulo 2.

Example 3.15. Set l1 = 5, l2 = 101, l3 = 8081. Then all Rédei symbols [li, lj, lk]
for i, j, k ∈ {1, 2, 3} vanish. This implies that the relations of GS(2) are inside
F(4). Hence we have that

GS(2)/GS(2)(4)
∼= F/F(4)

4. The 2-class field tower of a quadratic number field

Let K be a quadratic number field. Let S = {l1, . . . , ln,∞} be the set of primes
of Q which consists of all primes which are ramified in K/Q and the infinite prime
∞. We denote by KS∞ the maximal 2-extension of K which is unramified outside
the archimedean primes of K. For an imaginary quadratic number field this is
the same as K∅, the maximal unramified 2-extension of K.

We descend from GS(2) to G(KS∞/Q) using the following lemma, see [9], Prop.
7.1. As in the last section, let lm be a fixed prime over lm in QS(2) for each
1 ≤ m ≤ n. We denote the inertia group of lm in QS(2)/Q by Tlm .

Lemma 4.1. Let NS be the normal subgroup of GS(2) generated by the groups
Tlm ∩G(QS(2)/K) for 1 ≤ m ≤ n. Then there is an exact sequence

1 −−−→ NS −−−→ GS(2) −−−→ G(KS∞/Q) −−−→ 1.
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We want to apply the results from the last section concerning GS(2) to the study
of the 2-class field tower of K. Therefore we have to ensure that S does not
contain 2. We write K = Q(

√
D) where D is a squarefree integer which we

decompose as

D = ±d1 · . . . · dn

where the di are different prime numbers. We recall that the set Ramf (K/Q) of
finite ramified primes of the extension K/Q is given by

Ramf (K/Q) =

{ {d1, . . . , dn} if D ≡ 1 mod 4,
{2, d1, . . . , dn} otherwise.

There are two cases in which 2 does not occur in Ramf (K/Q):

(i) D = l1 · . . . · ln, all li are odd and the cardinality of the set {li|li ≡ 3
mod 4, 1 ≤ i ≤ n} is even.

(ii) D = −l1 · . . . · ln, all li are odd and the cardinality of the set {li|li ≡ 3
mod 4, 1 ≤ i ≤ n} is odd.

We assume from now on that one of these cases applies. We order the lm in such
a way that l1, . . . , lr are congruent 1 modulo 4 and lr+1, . . . , ln are congruent 3
modulo 4.

For each 1 ≤ m ≤ n the group Tlm ∩G(QS(2)/K) is generated by τ 2
m. Using the

minimal presentation

1 −−−→ R −−−→ F −−−→ GS(2) −−−→ 1

of GS(2) from Thm.3.1 we obtain an exact sequence

1 −−−→ Ra −−−→ F −−−→ G(KS∞/Q) −−−→ 1,

where F is the free pro-2-group on x1, . . . , xn, and Ra is generated as a normal
subgroup by R and by the preimages x2

m of τ 2
m, 1 ≤ i ≤ n. The following theorem,

see [9], Thm. 7.1, is an easy consequence.

Theorem 4.2 (Fröhlich). The group G(KS∞/Q) has a minimal presentation

1 −−−→ Ra −−−→ F −−−→ G(KS∞/Q) −−−→ 1,

where F is the free pro-2-group generated by x1, . . . , xn, and a system of generators
of Ra as a normal subgroup of F is given by

x2
m, 1 ≤ m ≤ n,

ρm = (xm, ym), 1 ≤ m ≤ n.

We have that

ρm ≡
∏

1≤j≤n
j 6=m

(xm, xj)
`m,j mod F(3)

where `m,j has been defined in the previous section.

We turn our attention to the group G(KS∞/K). Its preimage in F is the free
pro-2-group H with the generator system

x1xn, x2xn, . . . , xn−1xn, x2
1, x

2
2, . . . , x

2
n,
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because the primes in S are ramified in K/Q. Ra is generated as a normal
subgroup of H by the relations

x2
m, ρm, x−1

m ρmxm, m = 1, . . . , n.

An elementary calculation shows that Ra can be generated as a normal subgroup
of H already by the elements x2

m, ρm, 1 ≤ m ≤ n. If we pass to the factor group
H of H with respect to the normal subgroup N generated by x2

1, . . . , x
2
n, we get a

presentation

1 −−−→ R −−−→ H −−−→ G(KS∞/K) −−−→ 1,

where H is the free pro-2-group on generators

wm = xmxnN, m = 1, . . . , n− 1,

and generating relations ρmN , m = 1, . . . , n. Following these lines, Koch proved
the following theorem, see [9], Thm. 7.3.

Theorem 4.3 (Koch). There is a minimal presentation

1 −−−→ R −−−→ H −−−→ G(KS∞/K) −−−→ 1

of G(KS∞/K) by the free pro-2-group H on generators w1, . . . , wn−1 and defining
relations

rm = ρmN ≡ w2`m,n
m

∏
1≤j≤n−1

j 6=m

(w2
mw2

j (wm, wj))
`m,j mod H(3), 1 ≤ m ≤ n− 1,

rn = ρnN ≡
n−1∏
m=1

(w2
m)`n,m mod H(3).

From now on we assume that R ⊆ H(3), i.e.
(

li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

By Gauss reciprocity this gives further restrictions on the li which means that
one of the following two cases applies:

(i) D = l1 · . . . · ln and all li are congruent 1 modulo 4,
(ii) D = −l1 · . . . · ln, where l1, . . . , ln−1 are congruent 1 modulo 4 and ln is

congruent 3 modulo 4.

This follows because if S contained two primes li, lj which are congruent 3 modulo
4, then by quadratic reciprocity it would follow that `i,j + `j,i = 1.

Theorem 4.4. Let K = Q(
√

D) be a quadratic number field where D satisfies
one of the following conditions:

(i) D = l1 · . . . · ln and all li are congruent 1 modulo 4,
(ii) D = −l1 · . . . · ln, where l1, . . . , ln−1 are congruent 1 modulo 4 and ln is

congruent 3 modulo 4,
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and assume that (
li
lj

)
= 1 for all 1 ≤ i, j ≤ n, i 6= j.

If we write the relations rm, 1 ≤ m ≤ n, modulo H(4) as

rm ≡
∏

1≤i<j≤n−1,
k≤j

((wi, wj), wk)
ei,j,k,m mod H(4),

then for 1 ≤ i < j ≤ n − 1, k < j, i 6= k and 1 ≤ m ≤ n − 1 (in case (i) also
m = n is allowed) we have

(−1)ei,j,k,m =

{
[li, lj, lk] if m = j or m = k,

1 otherwise.

Proof. Let ι : H → F be the inclusion map. Its Jacobi matrix (ιi,j) with respect
to the bases

x1xn, x2xn, . . . , xn−1xn, x
2
1, x

2
2, . . . , x

2
n

of H and

x1, . . . , xn

of F is given by the n× (2n− 1)-matrix of the form

(ιji )i,j =




1 0 0 . . . 0
0 1 0
...

. . .
...

0 0 0 1 0
1 1 . . . 1 0 0 . . . 0




Let θ : H → H be the projection map. Its Jacobi matrix (θi,j) with respect to
the bases

x1xn, x2xn, . . . , xn−1xn, x
2
1, x

2
2, . . . , x

2
n

of H and

w1, . . . , wn−1

of H is given by the (n− 1)× (2n− 1)-matrix of the form

(θj
i )i,j =




1 0 0 . . . 0
0 1 0
...

. . .
...

0 0 0 1 0 . . . 0




By the chain rule 2.23 we obtain that for h ∈ H(r) and multi-indices I =
(i1, . . . , ir) with pairwise distinct i1, . . . , ir with 1 ≤ i1, . . . , ir ≤ n − 1 the fol-
lowing relations hold:

εH
I,2(hN) = εH

I,2(h), εF
I,2(h) = εH

I,2(h).

We remark that for I as above the map εF
I,2 vanishes on N . The vanishing on

the generators is trivial and the vanishing on the whole of N follows by induction
on the length of I from 2.18. Let I = (i, j, k), and let 1 ≤ m ≤ n. By our
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assumptions we obtain that ρm ∈ F(3), hence by [9], Lemma 7.2, we may write
ρmN = ρ̃mN with ρ̃m ∈ H(3). Therefore we have

εH
(j,i,k),2(rm) = εH

(j,i,k),2(ρmN) = εH
(j,i,k),2(ρ̃mN)

= εH
(j,i,k),2(ρ̃m) = εF

(j,i,k),2(ρ̃m)

= εF
(j,i,k),2(ρm).

Hence, for m ≤ n− 1 (and m ≤ n in case (i)) we obtain

ei,j,k,m = εH
(j,i,k),2(rm) = δj,mµ2(i, k, j) + δk,mµ2(j, i, k).

This implies the result by 3.12 ¤

The above theorem gives a partial description of the pairings

Pm : H1(G(KS∞/K))×H1(G(KS∞/K))×H1(G(KS∞/K))
〈·,·,·〉−→ H2(G(KS∞/K))
trrm−→ Z/2Z

induced by the triple Massey product and the trace maps (see the appendix),
where the coefficients are Z/2Z. We remark that for imaginary quadratic num-
ber fields K the cohomology groups H i(G(KS∞/K)) = H i(G(K∅/K)) have the
following interpretations:

H1(G(K∅/K)) = (Cl(K)/2)∗

where Cl(K) denotes the ideal class group of K and ∗ the Pontryagin dual, and
H2(G(K∅/K)) can be described by the exact sequence

0 −−−→ {±1} −−−→ H2(G(K∅/K))∗ −−−→ 2 Cl(K) −−−→ 0.

In this case the above pairings are therefore pairings

(Cl(K)/2)∗ × (Cl(K)/2)∗ × (Cl(K)/2)∗ → Z/2Z.

Example 4.5. For the quadratic number fields

Q(
√

13 · 17 · 53 · 433), Q(
√

17 · 89 · 373 · 257),Q(
√

5 · 29 · 181 · 241),

Q(
√−5 · 41 · 61 · 131), Q(

√−5 · 29 · 181 · 59),Q(
√−13 · 17 · 53 · 43)

the pairings P1, P2, P3 are nontrivial.

In particular, this yields new examples for nontrivial triple Massey products in
the Galois cohomology of number fields.

We remark that the appearance of the above pairings is much more natural in the
following context. Let p be an odd prime number, and K be a quadratic number
field. We denote the the p-class field tower of K by K∅. There is an operation of
G(K/Q) on the cohomology groups H i(G(K∅/K)) = H i(G(K∅/K),Z/pZ). We
have a decomposition

H i(G(K∅/K)) = H i(G(K∅/K))+ ⊕H i(G(K∅/K))−

into eigenspaces. It is well-known, see [15], lemma 4.1, that

H1(G(K∅/K))+ = H2(G(K∅/K))+ = 0.
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In particular, the cup product

H1(G(K∅/K))×H1(G(K∅/K))
∪→ H2(G(K∅/K))

is trivial, since it is G(K/Q)-equivariant. In particular, there are triple Massey
products on H1(G(K∅)), which, together with the trace maps with respect to
relations rm as in the case of p = 2, induce pairings

Pm : H1(G(K∅/K))×H1(G(K∅/K))×H1(G(K∅/K))
〈·,·,·〉−→ H2(G(K∅/K))
trrm−→ Z/pZ.

For imaginary quadratic number fields K, these are pairings of the form

Pm : (Cl(K)/p)∗ × (Cl(K)/p)∗ × (Cl(K)/p)∗
〈·,·,·〉→ (pCl(K))∗

trrm→ Z/pZ
It would be interesting to find examples where these pairings are nontrivial.

Appendix A. Massey products

In this appendix we give an account of the connection between Massey products
and Fox differential calculus. This has been studied by us independently from
Morishita, whose results have appeared in [12]. We prove a statement that is
contained in Cor. 2.2.3 of [12], but our approach seems different. This result is
sufficient to obtain a cohomological interpretation of our arithmetical results.

Let G be a pro-p-group and let A be a commutative ring considered as a trivial
discrete G-module. In this exposition we will be merely concerned with Massey
products on the group H1(G,A), hence we will give a definition of Massey prod-
ucts only in this restricted sense. For a general definition of Massey products
on the level of cochains we refer to [2], §1 and [10]. We denote by C∗(G,A) the
standard inhomogeneous cochain complex. We recall some definitions from [4].

Definition A.1. Let v1, . . . , vm be elements of H1(G,A). A collection a = (aij),
1 ≤ i, j ≤ m, (i, j) 6= (1,m) of cochains in C1(G,A) is called a defining set for
the Massey product 〈v1, . . . , vm〉 if the following conditions are fulfilled:

(i) aii = vi for all 1 ≤ i ≤ m.
(ii) If ãij is defined by

ãij =

j−1∑

l=i

ail ∪ al+1j, 1 ≤ i < j ≤ m,

then for (i, j) 6= (1,m) it holds that ãij = ∂aij.

The element ã1m is a cocycle as well and its cohomology class in H2(G, A) is called
the value of the defining set a. We say that the Massey product 〈v1, . . . , vm〉
is defined if there exists a defining system for it. In this case the Massey
product is just the set of the values of all of its defining sets. The single Massey
product 〈v1〉 is v1 by definition. The indeterminacy In〈v1, . . . , vm〉 is defined as

In〈v1, . . . , vm〉 = {a− b | a, b ∈ 〈v1, . . . , vm〉}.
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The Massey product 〈v1, . . . , vm〉 is called uniquely defined if In〈v1, . . . , vm〉 =
0. It is called strictly defined if for all i, j with 1 ≤ j − i ≤ m− 2 we have that
〈vi, . . . , vj〉 = 0.

Let
1 → R → F → G → 1

be a minimal presentation of G, where F is the free pro-p-group on generators
x1, . . . , xn. Then the inflation map

inf : H1(G,Z/pZ) → H1(F,Z/pZ)

is an isomorphism by which we identify both groups. Since F is free we have
H2(F,Z/pZ) = 0, and from the exact 5-term sequence we obtain an isomorphism

tg : H1(R,Z/pZ)G → H2(G,Z/pZ).

Therefore any element ρ ∈ R gives rise to a map

trρ : H2(G,Z/pZ) → Z/pZ,

which is defined by ϕ 7→ (tg−1 ϕ)(ρ) and is called the trace map with respect to
ρ.

The following lemma is obtained as in [4]. For v1, . . . , vm ∈ H1(G,Z/pZ) and
a multi-index I = (i1, . . . , ir) ∈ Mn

r we write 〈vI〉 for the Massey product
〈vi1 , . . . , vir〉.
Lemma A.2. Let χ1, . . . , χn be a basis of H1(G,Z/pZ). Assume that 0 ∈ 〈χJ〉 for
all multi-indices J ∈ Mn

r with 1 < r < m. Let v1, . . . , vm ∈ H1(G,Z/pZ). Then
the Massey product 〈v1, . . . , vm〉 is strictly and uniquely defined. In particular this
gives a multilinear map

〈·, . . . , ·〉 : H1(G,Z/pZ)m → H2(G,Z/pZ).

If the conclusion of the above lemma holds we say that there is a well-defined
m-fold Massey product on H1(G,Z/pZ).

We are now ready to state the main result of this appendix.

Theorem A.3. Assume that R ⊆ F(m). Then there is a well-defined m-fold
Massey product

〈·, . . . , ·〉 : H1(G,Z/pZ)m → H2(G,Z/pZ)

Let v1, . . . , vm ∈ H1(G,Z/pZ) = H1(F,Z/pZ). We have that

trf〈v1, . . . , vm〉 = (−1)m−1
∑

I=(i1,...,im)∈Mn
m

v1(xi1) · . . . · vm(xim)εI,p(f)

for all f ∈ R.

Proof. Using A.2, we will establish the first assertion using the dual basis
χ1, . . . , χn of H1(F,Z/pZ) of the basis x1, . . . , xn of F . It is easily seen that
in order to obtain the second statement, it suffices to show that

εI,p(f) = (−1)m−1 trf〈χI〉
for each I ∈Mn

m.
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For a multi-index I = (i1, . . . , ir) ∈Mn and 1 ≤ k < l ≤ r let

Ikl = (ik, . . . , il).

For I ∈Mn with |I| < m we set

aij = (−1)j−iεIij ,p for 1 ≤ i < j ≤ |I|.
We remark that this element of C1(F,Z/pZ) factorizes through F/R because of
our assumptions and can therefore be interpreted as an element of C1(G,Z/pZ)
as well. For I ∈Mn with 1 ≤ |I| ≤ m we will show by induction on |I| that the
following claim holds:

(i) The (aij) form a defining set for 〈χI〉 ⊆ H2(G,Z/pZ) (resp. H1(G,Z/pZ)
if |I| = 1).

(ii) For 1 < |I| = r in C2(F,Z/pZ) there is the following identity:

infF
G ã1r = (−1)r−1∂εI,p.

Let |I| = 1, say I = (k). Because of 2.18 ε(k),p is a homomorphism from F to
Z/pZ, and we have that

ε(i),p(xj) = δij = χi(xj).

Hence ε(i),p = χi which implies the claim for |I| = 1. Let I = (i1, . . . , ir),
1 < r ≤ m. From the case |I| = 1 it follows that

akk = ε(ik),p = χik .

We have to show that

ãkl = ∂akl

holds for all 1 ≤ k < l ≤ r, (k, l) 6= (1, r). Inductively, we obtain that

infF
G ãkl = (−1)l−k∂εIkl,p.

Due to our assumptions εIkl,p factorizes over R and we even have that

ãkl = (−1)l−k∂εIkl,p = ∂akl ∈ C2(G,Z/pZ).

At this point we remark that this implies in particular that 0 ∈ 〈χI〉. It remains
to show that

infF
G ã1r = (−1)r−1∂εI,p.

We set

b = (−1)r−1 infF
G ã1r.

Since H2(F,Z/pZ) = 0, there exists an element uI ∈ C1(F,Z/pZ) with

b = ∂uI .

By subtracting the homomorphism

h : F → Z/pZ, h(xj) = uI(xj)

we may assume that

uI(xj) = 0 for j = 1, . . . , n.
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The element b ∈ H2(F,Z/pZ) is by definition given by

b(x, y) = (−1)r−1

r−1∑

l=1

a1l(x)al+1,r(y)

= (−1)r−1

r−1∑

l=1

(−1)l−1εI1l,p(x)(−1)r−l−1εIl+1,r,p(y)

= −
r−1∑

l=1

εI1l,p(x)εIl+1,r,p(y).

Hence we obtain

uI(xy)− εI,p(xy) = uI(x) + uI(y) +
r−1∑

l=1

εI1l,p(x)εIl+1,r,p(y)− εI,p(xy)

= uI(x)− εI,p(x) + uI(y)− εI,p(y)

for all x, y ∈ F . This equation implies

εI,p(x
−1
i ) = uI(x

−1
i )

for all i = 1, . . . , n. Furthermore it holds that

uI(xi) = εI,p(xi) = 0

for all i = 1, . . . , n. An induction on the reduced word length using the above
equation shows that εI,p and uI coincide on the discrete free group generated by
x1, . . . , xn. Due to the continuity of both maps they are identical on F . Therefore
the claim is proved.

By the induction we have additionally obtained that 0 ∈ 〈χI〉 for all I ∈ Mn

with |I| < m. By A.2 this implies

〈χI〉 = 0 for all I ∈M with 1 < |I| < m

and that 〈χI〉 is uniquely defined for I ∈Mn with |I| = m. This implies the first
statement of the theorem.

Next we will show that

εI,p ∈ H1(R,Z/pZ)G

for all I ∈M with 1 ≤ |I| ≤ m. For |I| < m this is obvious as εI,p|R = 0. Assume
that I = (i1, . . . , im). The fact that εI,p lies in H1(R,Z/pZ) follows, using 2.18,
from the vanishing of εJ,p on R for |J | < m. We will show the G-invariance. Let
x ∈ R, y ∈ F . Then

εI,p(y
−1xy) = εI,p(x(x, y)) = εI,p(x) + εI,p((x, y)).

If we expand εI,p((x, y)) with the help 2.18 we obtain

εI,p((x, y)) = εI,p(x) + εI,p(x
−1) + εI,p(y) + εI,p(y

−1) + εi1,p(y)εi2...im,(y
−1)

+ . . . + εi1...im−1,p(y)εir,p(y
−1)

= εI,p(xx−1) + εI,p(yy−1)

= 0
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which implies the G-invariance. In order to finish the proof of the theorem we
remark that

infF
G ã1r = (−1)r−1∂εI,pI

in combination with the explicit construction of the transgression map, cf. [13]
(1.6.5), yields

tg(εI,p|R) = [(−1)|I|−1ã1r] = (−1)|I|−1〈χI〉.
By the definition of the trace map we obtain the statement of the theorem. ¤

As is already remarked in the proof of the above theorem, for the dual basis
χ1, . . . , χn of H1(F,Z/pZ) of the basis x1, . . . , xn of F we obtain the formula

εI,p(f) = (−1)m−1 trf〈χI〉

for each I ∈ Mn
m and f ∈ R. In combination with 2.20 this shows that the

relation structure of G modulo F(m+1) can be computed by Massey products.
This was already pointed out 25 years ago in [9], Remark after (2.22), where a
“connection between relations in F(m), for m ≥ 2, and the Massey products” is
mentioned, but no exact statement nor proof is given.
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