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1 Introduction

The group logarithm is a fundamental tool in the study of K1 of the group ring
R[G] of a finite group G and a p-adically complete ring of coefficients R. The
goal of this article is to present both an accessible account of the basic theory of
the group logarithm and also to give an overview of some of its most important
applications.

Group logarithmic techniques were first used in the study of class groups of
group rings, and in particular they were used to construct easily calculable ho-
momorphic images of various subgroups of such class groups. In particular this
produces completely new insights on class groups of group rings (see [T1,2,3]).
There is a particularly readable account of this approach in Sect. 54 of [CR2].
R. Oliver used his own version of the group logarithm to study the subgroup
SK1(R[G]) of p-adic group rings when R is the valuation ring of a finite exten-
sion of a p-adic field. There is a good account of the state of knowledge of such
SK1 groups prior to Oliver’s work in Sect. 45 of [CR2]: from this one can see
the major progress that his work represented.

The key application of the group logarithm which was the driver for the third
named author’s work, was the Fröhlich conjecture, which relates the Galois
module structure of rings of algebraic integers to the constants occurring in
the functional equations of certain Artin L-functions. The resolution of the
Fröhlich conjecture involved two distinct uses of the group logarithm: the fixed
point theorem for determinants (see Theorem 13 in Sect. 5), and the proof
that certain Galois Gauss sums can be written as determinants of group ring
elements (see Sect. 6.2).

In recent time the group logarithm has been extended to various Iwasawa
algebras, with a view to tackling the non-commutative Iwasawa conjecture. (See
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for instance the initial work of Kato in [K] and then [Ka1-2] and [RW1].) This
conjecture has now been proved (under various hypotheses) by J. Ritter and
A. Weiss [RW2], and by M. Kakde [Ka3]. The main topic of this volume is
to present a detailed account of Kakde’s proof. The required extensions of the
group logarithm are fully described elsewhere in this volume; see in particular
the article of P. Schneider and O. Venjakob [SV].

A further recent use of the group logarithm has been in the construction
of a second Chern class for suitable equivariant vector bundles on arithmetic
surfaces, which can then be used to give an equivariant Riemann-Roch theorem
(see [CPT3]). This requires the use of a group logarithm for group rings with
higher dimensional coefficient rings. This development comes from [CPT1,2]
and involves a substantial generalization of the original work of both Oliver and
the third named author.

As explained above, it is our intention to provide a speedy and accessible
introduction to the group logarithm, together with an overview of some of its
many applications. For this reason we shall often focus on the case when G

is a p-group: this is in many ways the heart of the matter; one can then use
induction techniques to obtain results for arbitrary finite groups. This article is
therefore structured as follows. In Section 2 we define our notation and recall
some standard results in K-theory. In Section 3 we describe the group logarithm
for p-groups over a fairly general class of coefficient rings and in Section 4 we
then use Oliver’s work to describe SK1 for such group rings. Then in Section
5 we give a very brief insight into the role of induction techniques: this Section
is only a very cursory account: the reader is referred to [CPT1,2] and above all
Ch. 12 in Oliver’s book [O5] for more details. The article then concludes with
an account of some of the most important applications of the group logarithm.
We begin by describing some algebraic results including: the proof of Ullom’s
Conjecture on Swan groups and mentioning Oliver’s description of class groups
of group rings for p-groups. We then go on to consider two major applications
of a more arithmetic flavor: the proof of the Fröhlich conjecture and the proof
of an adelic Riemann-Roch theorem for an equivariant second Chern class. As
indicated previously, a number of articles in this volume deal with applications
to non-commutative Iwasawa theory, and so we avoid unnecessary duplication
and shall not go into this key-application here.
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2 Preliminaries

2.1 Notation.

Throughout this article R denotes an integral domain with field of fractions N
which has characteristic zero, and we write N c for a chosen algebraic closure of
N . We impose two further conditions:

Standing Hypotheses:

(i) R is p-adically complete, so that the natural map R→ lim←−nR/p
nR is an

isomorphism.

(ii) R supports a lift of Frobenius; that is to say there is a ring endomorphism
F of R with the property that F (r) ≡ rpmod pR.

Examples of such rings R are: the valuation ring of a non-ramified extension
of the p-adic field Qp; the p-adic completion of the polynomial ring over Zp in
indeterminates T1, . . . , Tn

Zp〈〈T1, . . . , Tn〉〉 = lim←−
n

Zp[T1, . . . , Tn]/(pn);

the p-adic completion of the ring of Laurent series over Zp in indeterminates
T1, . . . , Tn

Zp{{T1, . . . , Tn}} = lim←−
n

Zp((T1, . . . , Tn))/(pn).

In each of the latter two examples we may take F (Ti) = T pi .

2.2 Some elementary K-theory.

Let S denote a unitary ring (which is not necessarily commutative). In the
usual way we define GL(S) to be the direct limit of the groups GLn(S); in
particular we view the group of units S× = GL1(S) as a subgroup of GL(S)
by embedding S× into GLn(S) as the diagonal matrices which are 1 in the
non-leading diagonal positions. En(S) denotes the group of n × n elementary
matrices with coefficients in S, and we denote the direct limit of the En(S) by
E(S). Then, in the usual way, the group K1(S) is defined as:

K1(S) =
GL(S)
E(S)

.

For each n > 0 we write Mn(S) for the ring of n×n matrices with entries in S.
If S is commutative, then the determinant induces a homomorphism

det : K1(Mn(S))→ S×; (1)
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furthermore this map is an isomorphism if S is also a local ring. See [R] for
more details.

For a finite group G we form the group ring R[G]. The group algebra N c[G]
admits a natural algebra decomposition

N c[G] =
∏

χ
Mnχ(N c) (2)

where the product extends over the irreducible N c-characters of G. Hence, by
the above, we know that we have

K1(N c[G]) =
∏

χ
(N c)×. (3)

We shall write Det for the composite map

K1(R[G])→ K1(N c[G]) =
∏

χ
(N c)×. (4)

The group SK1(R[G]) is defined to be the kernel of Det, so that we have the
exact sequence

1→ SK1(R[G])→ K1(R[G])→ Det(K1(R[G]))→ 1. (5)

This exact sequence is fundamental for our understanding of K1(R[G]): note
that Det(K1(R[G])) and SK1(R[G]) have rather different properties but the
group logarithm gives great insight into both of these terms.

We shall write Det(R[G]×) for the image of Det on the image of R[G]× in
K1(R[G]). In the case when G is a p-group it follows easily by left and right
multiplication by elementary matrices that:

Proposition 1 Det(R[G]×) = Det(K1(R[G])).

Proof. See Theorem 1.2 in [CPT1].

If the group G is abelian, then we have a diagram

N c[G]× =
∏
χ(N c)×

↑ ↑
R[G]× Det→ Det(R[G]×)

where the vertical maps are inclusions; hence, in this case, Det is injective on
R[G]× and so we have shown:

Lemma 2 If G is abelian, then Det : R[G]× → Det(R[G]×) is an isomorphism.
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3 The group logarithm.

Throughout this section G is a finite p-group. We write IG(R) for the augmen-
tation ideal ker(ε : R[G] → R), where the augmentation map ε is the R-linear
ring homomorphism with ε(g) = 1 for all g ∈ G; and we let JG(R) denote the
Jacobson radical of R[G]. When R is clear from the context we shall write IG
for IG(R) and JG for JG(R). Note that IG(Fp[G]) is the Jacobson radical of
the Artinian ring Fp[G] it therefore follows that we can find a positive integer
m such that IG(Fp[G])m = 0. Note also that

JG(R) ≡ IG(R) = RIG(Zp) mod pR[G];

and so
IG(R)m ⊂ pR[G], JG(R)m ⊂ pR[G].

Therefore, for x ∈ JG(R), the logarithmic series

log(1− x) = −
∑

n>0

xn

n

converges to an element of N [G]. We now use passage to conjugacy classes,
together with a pth power map, to produce a logarithm which converges to
integral values. Let Conj(G) denote the set of conjugacy classes of G and let
τ = τG : N [G] → N [Conj(G)] be the N -linear map which maps each group
element to its conjugacy class. We define the p-th power operation Ψ = ΨF to
be the F -semi-linear endomorphism of R[Conj(G)] which maps the conjugacy
class of each group element to the conjugacy class of its pth power; so that for
r ∈ R, g ∈ G

Ψ(rτ(g)) = F (r)τ(gp).

We then define

L(1− x) = −
∑

n>0

τ(xn)
n

+
∑

n>0

Ψ ◦ τ(xn)
np

= −
∑

p-n>0

τ(xn)
n
−

∑
n>0

τ(xnp)
np

+
∑

n>0

Ψ ◦ τ(xn)
np

(6)

= −
∑

p-n>0

τ(xn)
n

+
∑

n>0

Ψ ◦ τ(xn)− τ(xnp)
np

. (7)

Theorem 3

L(1 + JG(R)) ⊂ R[Conj(G)] and L(1 + IG(R)) ⊂ τ(IG(R)). (8)

Although the group logarithm is defined on all of 1 + JG(R), we shall often
restrict it to 1 + IG(R) as this often gives a cleaner statement of results (see for
example Theorem 8).
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The proof of the theorem comes from a straightforward non-commutative
version of the binomial theorem (see 6.2 in [T1] and Lemma 5.3 in Ch. 2 in [F1]
for details). We need to prove that for each n > 0

Ψ ◦ τ(xn)− τ(xnp) ∈ npR[Conj(G)].

The key-idea can be seen from the case when the group G is abelian: indeed,
in that case τ is the identity and we know by the usual binomial theorem that
for any x =

∑
rgg ∈ R[G]

xp = (
∑

rgg)p ≡
∑

rpgg
p ≡

∑
F (rg)gp = Ψ(x)modpR[G]

and from this it follows easily that for any n > 0

xnp ≡ Ψ(x)n = Ψ(xn) modnpR[G]. �

We relate the logarithm to Det via the following lemma which depends on
the well known fact that “the logarithm of the determinant is trace of the
logarithm”:

Lemma 4 Let χ be an N c-valued virtual character of G. Recall that the p-th
Adams operation on χ is defined by the formula ψpχ(g) = χ(gp) and ψpχ is also
a virtual character of G. We extend F to R[G] by coefficientwise action; that is
to say

F (
∑

rgg) =
∑

F (rg)g.

Then, for any x ∈ IG(R) we have

pχ(L(1− x)) = log(Detpχ(1− x))− log(Detψpχ(1− F (x))). (9)

L is a homomorphism since the characters of G span the dual of N [Conj(G)].
Since Detχ(1− x) = 1 implies that Detχ(1−F (x)) = 1, it follows from (9) that
ker(Det) ⊂ ker(L), and so there is a unique map ν : Det(1 + IG)→ τ(IG) which
makes the following diagram commutative:

1 + IG
Det //

L ""EE
EE

EE
Det(1 + IG)

νyyssssss

τ(IG)

(10)

As τ(IG) ⊂ N [Conj(G)], clearly the elements of Det(1 + IG) of finite order lie
in ker ν. Using the fact that ψp is nilpotent on virtual characters of degree
zero, it easy to establish the reverse inclusion: namely, that ker ν is contained
in the subgroup elements of Det(1 + IG) of finite order. A result of C.T.C Wall
([W1,2]) extends readily (see Theorems 3.14 and 3.15 in [CPT1]) to give:
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Theorem 5
ker ν = Det(G).

In Lemma 2 we have seen that Det is an isomorphism on R[Gab]×; to get a
complete picture of Det on all of R[G] we now consider the ideal:

AG(R) = ker(R[G]→ R[Gab]).

Wall’s theorem tells us immediately that ν is injective on Det(1 + AG). The
fundamental result in the theory of the group logarithm is the fact that the
image of ν on Det(1 +AG) is a natural R-lattice (see Theorem 3.5 in [CPT1]):

Theorem 6 We have the equality in N [Conj(G)]

ν(Det(1 +AG)) = τ(AG).

We can then piece this result together the abelian result to get the important
exact sequences:

1 → τ(AG)→ Det(R[G]×)→ R[Gab]× → 1

1 → τ(AG)→ Det(1 + IG(R))→ 1 + IGab(R)→ 1. (11)

Application. As a first illustration of the power of the group logarithm, we
use this exact sequence to prove a fixed point theorem for determinants for group
rings over p-groups. Let S be a finite Galois extension of R with ∆ = Gal(S/R),
and suppose that S also satisfies the Standing Hypotheses in Section 2. For
the sake of simplicity we shall assume that the lift of Frobenius FS of S is
compatible with the lift of Frobenius FR of R in the sense that FS |R= FR. We
let ∆ act on Det(S[G]×) via coefficients; so that for δ ∈ ∆, x ∈ S[G]× we have
Det(x)δ defn= Det(xδ). Clearly Det(R[G]×) ⊂ Det(S[G]×)∆. Using the group
logarithm we can now show:

Theorem 7
Det(R[G]×) = Det(S[G]×)∆.

Remark. In fact, with a bit more effort, we can avoid the condition that
the lifts of Frobenius are compatible; see Section 4 of [CPT1] for details.

Proof. First note that

τ(AG(S)) = S ⊗R τ(AG(R)), (S[Gab]×)∆ = R[Gab]×.
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By the naturality of the group logarithm (which depends on a compatible choice
of lifts of Frobenius, so that LS[G]|R[G] = LS[G]), from (11) we have the com-
mutative diagram:

1 → τ(AG(R)) → Det(R[G]×) → R[Gab]× → 1
↓ ↓ ↓=

1 → (S ⊗R τ(AG(R)))∆ → Det(S[G]×)∆ → (S[Gab]×)∆ → 1

with the bottom row exact since S ⊗R τ(AG(R)) is R[∆]-projective, since S is
R[∆]-projective.

Since the left and right vertical arrows are equalities the central vertical
arrow is also an equality. �

We now complete our understanding of the group logarithm by describing
the cokernel of the map ν : Det(1+IG)→ τ(IG). The evaluation of this cokernel
was first carried out by R. Oliver in [O2] for the case when R is a non-ramified
p-adic ring of integers:

Theorem 8 Let iG denote the inclusion ν(Det(1 + IG)) ↪→ τ(IG); then there is
a natural isomorphism:

coker(iG) ∼= Gab ⊗Z
R

(1− F )R
.

Sketch proof. (For a full proof see 3.d in [CPT1].) First we observe that
by Theorem 6, coker(iG) ∼= coker(iGab) and so without loss of generality we
may suppose G to be abelian. We then have the standard differential map for
augmented commutative rings:

d : R[G]→ Ω1
R[G]/R =

IG(R)
IG(R)2

= G⊗Z R, x 7−→ x− ε(x) mod IG(R)2.

Thus F acts naturally on Ω1
R[G]/R via R. Recall that we also have the R-

semilinear endomorphism Ψ of RG] with the property that for r ∈ R, g ∈
G, Ψ(rg) = F (r)gp; and moreover, since G is now abelian, Ψ is now a ring
homomorphism. By using lifts to characteristic zero, it is possible to give a
sense to the following equality for each x ∈ IG

F (dx) =
1
p
dΨ(x); (12)

see 3.d in [CPT1] for details. Then we have the equalities:

d(L(1− x)) = d(log(1− x))− d(log
1
p

Ψ(1− x)) (13)

= −dx+ Fdx = (F − 1)dx
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and so d(ν(1 + IG)) ⊂ (1 − F )(R ⊗ G) = (1 − F )R ⊗ G. It is then relatively
straightforward to show the equality d(ν(1 + IG)) = (1 − F )R ⊗ G and to see
that d induces an isomorphism

1 + IG
ν(1 + IG)

∼=
R

(F − 1)R
⊗G.

4 SK1(R[G])

In this section we suppose that G is a p-group and that, in addition to the
Standing Hypotheses, pR is now a prime ideal of R; although it is not essential,
we shall also suppose, for the sake of presentational simplicity, that SK1(R) =
{1}. For the treatment of the more general case when SK1(R) is non-trivial see
[CPT2]. We now follow R. Oliver and use the more general group logarithm to
describe SK1(R[G]).

Recall that in general we have the long exact sequence of K-theory

· · · → K2(R)→ K1(R[G], IG)→ K1(R[G])→ K1(R)→ · · ·

We write K ′1(R[G], IG) for the image of K1(R[G], IG) in K1(R[G]). We denote
the Whitehead group K ′1(R[G], IG)/Im(G) by Wh′G(R), or Wh′G when R is clear
from the context. Since SK1(R) = {1} and since SK1(R[G]) ∩ [G] = {1}, we
note that SK1(R[G]) is naturally a subgroup of Wh′G(R). Using Theorems 5
and 8 we get the exact sequence:

1→ Det(1 + IG)
Det(G)

→ τ(IG)→ Gab ⊗Z
R

(1− F )R
→ 1

and using the exact sequence (5), together with our hypothesis that SK1(R) =
{1}, we get the further exact sequence

1→ SK1(R[G])→Wh′G(R)→ Det(1 + IG)
Det(G)

→ 1.

These two exact sequences may be spliced to together to give the four term
exact sequence

1→ SK1(R[G])→Wh′G(R)→ τ(IG)→ Gab ⊗Z
R

(1− F )R
→ 1. (14)

Suppose we have an extension of finite p-groups

1→ H
i→ G̃

α→ G→ 1; (15)
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then we have a commutative diagram:

1 → SK1(R[H]) → Wh′H → τH(IH) L99
→

Hab ⊗Z
R

(1−F )R → 1

↓ i∗ ↓ ↓ ↓ iab ⊗ 1
1 → SK1(R[G̃]) → Wh′eG L99

→
τ eG(I eG) → G̃ab ⊗Z

R
(1−F )R → 1

↓ α∗ ↓ ↓ ↓ αab ⊗ 1
1 → SK1(R [G]) → Wh′G → τG(IG) → Gab ⊗Z

R
(1−F )R → 1.

(16)
We then use the the dotted arrows, which are just set-theoretic lifts, - in a
similar manner to the construction to the boundary map in the snake lemma,
but done twice - to produce a map:

∆ : ker(iab
G )⊗Z

R

(1− F )R
→ coker(α∗).

Next we consider the following two subgroups of G :

H0 = H ∩ [G̃, G̃]

H1 = 〈h ∈ H | h = [g̃1,g̃2] for g̃1,g̃2 ∈ G̃〉;

that is to sayH1 is generated by G̃ commutators which lie inH, so that obviously
[H,H] ⊂ H1 ⊂ H0 and ker(iab

G ) = H0/[H,H]. We write κ̃α for the composite
map

κ̃α : H0 ⊗Z
R

(1− F )R
→ ker(iabG )⊗Z

R

(1− F )R
.

As in Proposition 16 in [O2] (see also 3.3 in [CPT2]) we know that

Proposition 9 The map κ̃α induces an isomorphism

κa :
H0

H1
⊗Z

R

(1− F )R
→ coker(α∗).

Suppose now that the extension (15) is a central extension. From [O2] and
[CPT2] we have:

Theorem 10 (a) (Hopf) There is a natural map δ∗α : H2(G,Z) → H and
Im(δ∗α) = H0;

(b) Define Hab
2 (G,Z) to be the subgroup of H2(G,Z) generated by the images

of the H2(A,Z) for all abelian subgroups of G; then δ∗α(Hab
2 (G,Z)) = H1.

We define

H2(G,Z) =
H2(G,Z)
Hab

2 (G,Z)
.
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Piecing the above together we get maps

SK1(R[G])� coker(α∗)
κ−1
α∼=

H0

H1
⊗Z

R

(1− F )R
δ∗α
� H2(G,Z)⊗Z

R

(1− F )R
.

By considering families of central extensions, as above, Oliver shows that it is
possible to find situations where δ∗α is injective (and hence an an isomorphism);
this then yields a surjective map (which by naturality is independent of the
particular such central extension and map α used)

Θ : SK1(R[G])→ H2(G,Z)⊗Z
R

(1− F )R
.

The following result is due to Oliver for p-adic rings of integers; it was
generalized to rings of integers of the completed maximal non-ramified extension
of Qp in [IV]; and in [CPT2] it is proved for general R in which the ideal pR is
prime and which satisfy the Standing Hypotheses of this article.

Theorem 11 The map Θ is an isomorphism which is natural in G and R.

5 Induction methods.

We have seen that the group logarithm is a powerful tool for the study of
K1(R[G]) when G is a p-group. There are a number of induction techniques
which allow us to use results for p-groups to obtain results for arbitrary finite
groups. In this section we assume that, in addition to satisfying the Standing
Hypotheses, R is also a Noetherian and normal ring. Then by Theorem 1.2 in
[CPT1] we have:

Theorem 12 For an arbitrary finite group G and for R as above

Det(K1(R[G])) = Det(R[G]×).

In Chapter 11 of [O5], Oliver presents an extremely effective set of induction
techniques using Green rings and Mackey functors - building on work of Dress
in [D]. For instance, under suitable circumstances, this allows one to describe
a result for an arbitrary finite group G as a direct limit over the elementary
p-groups of G. In [Sn], V. Snaith exhibits a technique of explicit Brauer induc-
tion. This has the remarkable property of being natural with respect to Adams
operations. Since the pth Adams operation plays a key-role in the properties
the group logarithm (see for instance Lemma 4), Snaith’s method is particularly
well adapted to inductive techniques involving the group logarithm. In a num-
ber of situations, however, it suffices to use the simpler technique of character
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action due to S. Ullom. We briefly illustrate this method by sketching a proof
of the following general version of the fixed point Theorem 7:

Theorem 13 Let G be an arbitrary finite group and we keep the notation of
Theorem 7. Suppose that, in addition to the Standing Hypotheses, S is both
Noetherian and normal. Then

Det(K1(S[G]))∆ = Det(K1(R[G])).

5.1 Character action on K1

We let G0(Zp[G]) denote the Grothendieck group of finitely generated Zp[G]-
modules and let GZp

0 (Zp[G]) denote the Grothendieck group of finitely generated
Zp[G]-modules which are projective over Zp. From 38.42 and 39.9 in [CR2] we
have:

Proposition 14

G
Zp
0 (Zp[G]) ∼= G0(Zp[G]) ∼= G0(Qp[G])

with the first isomorphism induced by the forgetful map and the second isomor-
phism induced by the extension of scalars map ⊗ZpQp .

Proposition 15 Let R be an integral domain containing Zp. Then GZp
0 (Zp[G])

and hence, by the previous proposition, G0(Qp[G]), acts naturally on K1(R[G])
via the rule that for an Zp[G]-lattice L and for an element of K1(R[G]) rep-
resented by a pair (P, α) (where P is a projective R[G]-module and α is an
R[G]-automorphism of P ), then

L · (P, α) = ((L⊗Zp P ), (1⊗Zp α)).

The functor G 7→ K1(R[G]) is a Frobenius module for the Frobenius functor
G 7→ G

Zp
0 (Zp[G]) (see page 4 in [CR2] and also [L]). SK1(R[G]) is a Frobenius

submodule of K1(R[G]) and therefore the action of G0(Qp[G]) on K1(R[G])
induces an action on Det(GL(R[G])). (See Ullom’s Theorem in 2.1 of [T1],
and see also below for his explicit description of this action).

Proof. From Ex 39.5 in [CR2] we know that G 7→ K1(Zp[G]) is a Frobe-
nius module for GZp

0 . Moreover, the extension of scalars map G
Zp
0 (Zp[G]) →

GR0 (R[G]) is a morphism of Frobenius modules over GZp
0 (Zp[G]) by 38.11 loc.

cit.. This then establishes the first part of the proposition. Let N denote the
field of fractions of R. Because GR0 (R[G])→ G0(N c[G]) is similarly a morphism
of Frobenius modules over GR0 (R[G]), it follows that the kernel

SK1(R[G]) = ker(K1(R[G])→ K1(N c[G]))
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is also a Frobenius module over GR0 (R[G]). �

Next we recall Ullom’s explicit formula for the action of the character ring
G0(Qp[G]) on Det(GL(R[G])).

We view G0(Qp[G]) as the ring of virtual characters of finitely generated
Qp[G]-modules and we let φ ∈ K0(Qc

p[G]) (which we identify with the ring of
virtual Qc

p-valued characters of G), and let r ∈ GL(R[G]) correspond to the pair
(P, α) under the two descriptions of K1(R[G]). Then Ullom has shown that the
induced Frobenius action of G0(Qp[G]) is given explicitly by

θ · (P, α) = θ · (φ 7→ Det(r)(φ)) = (φ 7→ Det(r)(θφ))

where θ denotes the contragredient of the character θ. In particular we have

(IndGHθ) ·Det(r) = IndGH(θ · (ResHG (Det(r)))) (17)

which is one of the standard identities for Frobenius modules. The proofs of
these standard facts are exactly the same as the proofs in Chapter 2 pages 21-25
in [T1].

5.2 Brauer Induction

For a given positive integer m, µm denotes the group of roots of of unity of
order m in Qc

p. We then identify Gal(Qp(µm)/Qp) as a subgroup of (Z/mZ)×

in the usual way. Let l be a prime number. Recall that a semi-direct product
of a cyclic group C (of order m, say, which is coprime to l) by an l-group L,
C o L, is called Qp-l-elementary (see page 112 in [S]) if for given λ ∈ L there
exists

t = t(λ) ∈ Gal(Qp(µm)/Qp) ⊆ (Z/mZ)×

such that for all c ∈ C
λcλ−1 = ct.

Theorem 16 For a given finite group G, there exists an integer m coprime to
l such that

mG0(Qp[G]) ⊆
∑
J

IndGJ (G0(Qp[J ]))

where J ranges over the Qp-l-elementary subgroups of G.

Proof. See Theorem 28 in [S]. �
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5.3 Qp-p-elementary groups

Suppose now that G is a Qp-p-elementary group, so that G may be written as
a semi-direct product C o P , where C is a cyclic normal subgroup of order s,
which is prime to p, and where P is p-group. We decompose the commutative
group ring Zp[C] according as the divisors m of s

Zp[C] =
∏
m

Zp[m], (18)

where Zp[m] is the semi-local ring

Zp[m] = Z[ζm]⊗Z Zp

and where ζm is a primitive mth root of unity. We set Rm = R ⊗Zp Zp[m],
although Rm is not an integral domain, by Section 6 in [CPT1] we know that
Rm decomposes as a product of integral domains each of which satisfies the
Standing Hypotheses.

For each m the conjugation action of P on C induces a homomorphism
αm : P → Aut〈ζm〉 and we let Hm = ker(αm) and Am = Im(αm). When m has
been fixed we shall feel free to drop the index m.

Tensoring the decomposition (18) with ⊗Zp[C]R[G] affords a decomposition
of R-algebras

R[G] =
∏
m

R[m] ◦ P (19)

where R[G]◦P denotes the natural twisted group ring. We shall study the group
Det(R[G]×) by studying the various subgroups Det(R[m] ◦ P×). Note that the
twisted group ring R[m] ◦ P contains the standard group ring R[m][Hm]. We
therefore have the inclusion map i : R[m][Hm] → R[m] ◦ P . We also have a
restriction map defined by choosing a transversal {ai} of P/Hm, which induces
a restriction homomorphism res : R[m] ◦ P× → GL|A|(R[m][Hm]]) and hence
using Theorem 12 above:

rm : Det(R[m] ◦ P×)→ Det(GL|A|(R[m][Hm])) ∼= Det(R[m][Hm]×).

Since for π ∈ P , x ∈ R[m] ◦ P×, we know that Det(πxπ−1) = Det(x), we see
that

rm : Det(R[m] ◦ P×)→ (Det(R[m][Hm]×))Am .

Here Am acts via αm on R[m] and by conjugation on Hm. One can then
relatively easily show (see Theorem 6.2 in [CPT1]):

Theorem 17 The map rm gives an isomorphism between Det(R[m] ◦P×) and
Det(R[m][Hm]×)Am .

14



Finally we show:

Theorem 18 Let S and R be as stated in Theorem 13 and let G be a finite
Qp-p-elementary group, then

Det(S[G]×)∆ = Det(R[G]×).

Proof. By (19) and Theorem 17 above

Det(S[G]×)∆ = ⊕mDet(S[m] ◦ P×)∆

= ⊕m(Det(S[m][Hm]×)Am)∆.

As the actions of ∆ and Am commute on S[m][Hm] = S ⊗R R[m][Hm] (∆ acts
via the first term and Am acts via the second term), we see that

Det(S[G]×)∆ = ⊕m(Det(S[m][Hm]×)∆)Am

and so by Theorem 7 we have equalities

Det(S[G]×)∆ = ⊕mDet(R[m][Hm]×)Am

= ⊕mDet(R[m] ◦ P×)

= Det(R[G]×). �

Corollary 19 For an arbitrary finite group G the quotient group

Det(S[G]×)∆/Det(R[G]×)

has order prime to p.

Proof. By Theorem 16 we can find an integer m which is coprime to p,
Qp-p-elementary subgroups Hi of G, integers ni, and θi ∈ K0(Qp[Hi]), such
that

m · 1G =
∑
i

ni · IndGHi(θi).

Thus, given Det(x) ∈ Det(S[G]×)∆, by the Frobenius module structure of
Det(S[G]×) over K0(Qp [G]) (see (17))

Det(x)m =
∏
i

IndGHi(θi · ResHiG (Det(x)))ni .

However, by the Theorem 18, we know that

θi · ResHiG (Det(x)) ∈ Det(S[Hi]×)∆ = Det(R[Hi]×).

Hence Det(x)m ∈ Det(R[G]×). �
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In order to prove Theorem 13 in full generality one now has to consider the
Qp-l-elementary subgroups of G for the primes l 6= p and then use Brauer induc-
tion to show that for each such prime l the quotient Det(S[G]×)∆/Det(R[G]×)
has order prime to l. In fact the argument for the primes different from p is much
more straightforward; the reader is referred to 6.b in [CPT1] for the details.

6 Applications of the group logarithm

The group logarithm has numerous applications in both algebra and arithmetic.
Although here we concentrate principally on the arithmetic, we begin our ac-
count by describing some algebraic applications. Historically these came first,
and also this will help us develop the notation that we will need for the subse-
quent arithmetic applications.

The intention is to give only a very brief overview of each chosen topic, but
to highlight the role played by the group logarithm.

6.1 Some algebraic applications

We denote by K0(Z[G]) the Grothendieck group of finitely generated projective
Z[G]-modules. There is a natural notion of Z[G]-rank which induces a surjective
homomorphism rk : K0(Z[G]) → Z; the kernel of the rank map is called the
class group of the group ring Z[G] and is denoted Cl(Z[G]).

In [F2] Fröhlich gave a description of Cl(Z[G]) in terms of adelic K1-groups
and described a natural isomorphism

Cl(Z[G]) ∼=
∏′

K1(Qp[G])
K1(Q[G])[

∏
K1(Zp[G])[

; (20)

here K1(Q[G])[ denotes the image of K1(Q[G]) in
∏
K1(Qp[G]) (product over

all primes p);
∏
K1(Zp[G])[ denotes the image of

∏
K1(Zp[G]) in

∏
K1(Qp[G]);

and
∏′

K1(Qp[G]) denotes the restricted product, which is the subgroup of
elements in

∏
K1(Qp[G]) with almost all but a finite number of the entries

lying in K1(Zp[G])[.
Let M denote a maximal Z-order in Q[G] which contains Z[G]; then Cl(M)

may be defined similarly and extension of scalars yields a surjective homomor-
phism Cl(Z[G])→ Cl(M); the kernel is called the kernel group and is denoted
D(Z[G]); it is independent of the particular choice of the maximal order M. Let
Mp= M⊗ZZp. The kernel group can also be written in terms of K1-groups:

D(Z[G]) ∼=
∏
K1(Mp)[

K1(Q[G])[
∏
K1(Zp[G])[

. (21)

16



However, it is often more practical to use the identification, deriving from the
isomorphism Det : K1(Qp[G]) →

∏
χ Qp(χ)× (where the product extends over

the irreducible Qc
p-characters of G). We let Qc denote a chosen algebraic closure

of Q and set Ω = Gal(Qc/Q); we let Qc
p denote a chosen algebraic closure

of Qp and set Ωp = Gal(Qc
p/Qp); and once and for all we fix an embedding

Qc → Qc
p. We let RG resp. RG,p denote the ring of virtual Qc-characters resp.

of virtual Qc
p-characters of G. The embedding Qc ↪→ Qc

p yields an isomorphism
RG ∼= RG,p and we have natural identifications (using the Hasse-Schilling norm
theorem)

K1(Zp[G])[ = Det(Zp[G]×), K1(M)[ = Det(M×) = Hom+
Ω(RG, O×Qc),

K1(Mp)[ = Det(M×p ) = HomΩp(RG, O×Qc
p
);

here Hom+
Ω(RG, O×Qc) denotes the subgroup of HomΩ(RG, O×Qc) of homomor-

phisms whose values on the symplectic characters of G are totally positive, in
the sense that they are real and positive at each Archimedean place of Qc. In
particular, if G is a p-group, then for l 6= p, we know that Zl[G] is a maximal
Zl-order and so Det(M×l ) = Det(Zl[G]×); and hence in this case we have the
very useful and practical isomorphism:

D(Z[G]) ∼=
HomΩp(RG,p, O×Qc

p
)

Hom+
Ω(RG, O×Qc)Det(Zp[G]×)

. (22)

In particular note that this isomorphism shows how, for calculations, we can
represent a class by a character function.

The exact sequence resulting from extension of scalars

1→ D(Z[G])→ Cl(Z[G])→ Cl(M)→ 1 (23)

is crucial in understanding the class group Cl(Z[G]). On the one hand the image
Cl(M) can readily be described as a product of various kinds of class groups of
rings of integers (see Theorem 3.7 in [F1] for details); and, on the other hand, the
group logarithm is an excellent tool in the study of the kernel group D(Z[G]).
To illustrate this latter point we now suppose that G is a p-group. Early on in
the study of such kernel groups Ullom showed (see for instance 50.19 in [CR2]
or Theorem 3.1 in [U]):

Theorem 20 If G is a non-trivial p-group, then D(Z[G]) is a finite p-group
whose exponent divides |G| p−1 if p > 2 and whose exponent divides |G| /4 if
p = 2.

This leads naturally to the question of when this bound for the exponent of
D(Z[G]) is attained. To begin to answer this question we introduce the notion
of Swan modules:
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Definition (See [U].) Let m be an integer which is coprime to p. The Swan
module (m,Σ) is the left (and in fact two-sided) Z[G]-ideal generated by m and
the trace element Σ =

∑
g∈G g. Then (m,Σ) is a projective Z[G]-module whose

class in Cl(Z [G]) lies in D(Z[G]). These classes form a subgroup of D(Z[G])
which is denoted T (Z[G]) and is called the Swan subgroup of D(Z[G]).

The class of (m,Σ) is denoted by [m,Σ]. Suppose again that G is a p-
group; then this class is represented under the isomorphism (22) by the character
function fm :

fm(χ) = m(χ,ε) (24)

where ε denotes the trivial character of G and and (χ, ε) denotes the standard
character inner product of χ with ε (see 3.1 in [T1]).

Definition. Recall that for n ≥ 4 the semi-dihedral group of order 2n has
presentation

〈σ, τ | σ2n−1
= 1 = τ2, τστ = σ−1+2n−2

〉.

A 2-group is called exceptional if it is dihedral, quaternion or semi-dihedral.

Theorem 21 (Kulakoff, Alperin, Feit, Thompson) If G is a p-group, then the
cardinality of the set {g ∈ G | gp = 1} is divisible by p2 unless G is cyclic or
p = 2 and G is exceptional.

S. Ullom conjectured the following result (see [U]) which was proved by the
third named author in [T2].

Theorem 22 If p > 2 and G is not cyclic, then T (Z[G]) is a cyclic group of
order |G| p−1. If p = 2 and G is neither cyclic nor exceptional, then T (Z[G]) is
a cyclic group of order |G| /4.

Remark. If G is cyclic, then by Corollary 1.3 in Ch. 3 of [T1] we know
that T (Z[G]) = {1}. If G is an exceptional 2-group, then from Theorems 2.5,
2.6 loc.cit. we know that T (Z[G]) = D(Z[G]) and has order two if G is semi-
dihedral or quaternion, and, if G is dihedral, then T (Z[G]) = D(Z[G]) = {1}.

Sketch proof. Let ρ denote the regular character of G. We define a map

h : HomΩp(RG,p, O×Qc
p
)→ pZp mod p |G|Zp

by the rule that for φ ∈ HomΩp(RG,p, O×Qc
p
),

h(φ) = log φ(pρ− ψpρ) mod p |G|Zp.

18



We note that, because pρ−ψpρ is a rational valued character, for φ in the group
HomΩ(RG, O×Qc), it follows that φ(pρ− ψpρ) = ±1 and so log φ(pρ− ψpρ) = 0.
For φ = Det(z) ∈ Det(Zp[G]×) by Lemma 4,

h(φ) = log φ(pρ− ψpρ) mod p |G|Zp
= ρ(pL(Det(z))) mod p |G|Zp

and by Theorem 3, ρ(pL(Det(z))) ∈ ρ(pZp[Conj[G]]) ⊂ p |G|Zp. It therefore
follows that h induces a map (denoted by the same symbol)

h : D(Z[G])→ pZp mod p |G|Zp.

We now evaluate h on the class [1 + p,Σ] by evaluating h(f1+p):

h(f1+p) = log(f1+p(pρ− ψpρ)) mod |G|Zp
= log((1 + p)(pρ−ψpρ,ε)) mod |G|Zp

and the character inner product (pρ−ψpρ, ε) = (pρ, ε)−(ψpρ, ε) can be evaluated
by

(pρ, ε) =
1
|G|

∑
g
pρ(g)ε(g−1) = p

(ψpρ, ε) =
1
|G|

∑
g
ψpρ(g)ε(g−1) =

1
|G|

∑
g
ρ(gp) =

∑
g|gp=1

1.

The result then follows at once from the Kulakoff-Alperin-Feit-Thompson the-
orem. �

The involution g 7−→ g−1 of the group G induces involutions denoted c 7→ c

on both Cl(Z[G]) and D(Z [G]). We define

D(Z[G])+ = {d ∈ D(Z[G]) | d = d}
D(Z[G])− = {d ∈ D(Z[G]) | d = −d}.

For the sake of simplicity we shall suppose for the remainder of this subsection
that p > 2. We then have the direct decomposition

D(Z[G]) = D(Z[G])+ ⊕D(Z[G])−.

In [O6] Oliver constructs a map

∆ : D(Z[G])+ → K0(Q[G])T (Z[G])
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where K0(Q[G]) acts on classes as in 5.1. Let A(Q[G]) denote the Artin ideal of
K0(Q[G]) obtained by inducing up the rational characters K0(Q[C]) of cyclic
subgroups C of G. Oliver then shows further that

K0(Q[G])T (Z[G]) ∼=
K0(Q[G])
A(Q[G])

and that if furthermore p is a regular prime number, then in fact ∆ is an
isomorphism (see Theorem 3.4 in [O6]). This then underlines the central role
played by Swan modules in the study of class groups of group rings.

To conclude this subsection we note that in Theorem 3.8 of [O6] Oliver gives
a closed formula for the cardinality of the group D(Z [G])−.

6.2 The Fröhlich conjecture

For a number field K we let OK denote the ring of algebraic integers of K.
We consider a finite Galois extension N/K of number fields and write G =
Gal(N/K). The group ring Z[G] acts on OK in the natural way, and by
Noether’s theorem ON is a projective Z[G]-module if, and only if, N/K is at
most tamely ramified. We suppose henceforth that the extension N/K is tame,
and so we may consider the virtual class

[ON ]− [OK [G]] ∈ Cl(Z[G]).

From the previous subsection we recall the K-theoretic description

Cl(Z[G]) =
∏′

K1(Ql[G])
K1(Q [G])[

∏
Det(Zl [G]×)

(25)

and for each prime l we have

K1(Ql[G]) = Det(Ql[G]×) =
∏

χ
Ql(χ)×. (26)

Let Λ(s, χ) denote the Artin L-function associated to the character χ of G (see
[M] for details); then Λ(s, χ) satisfies a functional equation

Λ(s, χ) = W (χ)Λ(1− s, χ)

where the constant W (χ), which is called the Artin root number, lies on the unit
circle in the complex plane. Note that if χ is a real valued character of G, then
W (χ)2 = 1 and so W (χ) = ±1. We then define the class [WN/K ] ∈ Cl(Z[G])
to be the class, represented under the isomorphism (25) and the description
K1(Qp[G]) in (26), by the element∏

l

∏
χ
wχ,l ∈

∏′
K1(Ql[G])
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where for irreducible Qc-characters χ of G

wχ,l =

{
W (χ) if χ is symplectic and p | |G|
1 otherwise.

Based on a considerable number of known examples, Fröhlich conjectured the
following result, which was proved by the third author (see [T4]) :

Theorem 23 There is an equality in Cl(Z [G])

[ON ]− [OK [G]] = [WN/K ].

We now very briefly indicate the role of the group logarithm in the proof
of this result. For illustrative purposes we henceforth suppose G to be a
p-group.

In Theorem 6 of [F1] Fröhlich gave an explicit representative∏
κl ∈

∏′
K1(Ql[G])

for the class [ON ]− [OK [G]]− [WN/K ] with κl = 1 if l 6= p.

Step 1. A key-ingredient in the definition of the κl is the Galois Gauss sum
τN/K which is related to the Artin root number W (χ) by the formula (see page
126 in [F1])

W∞(χ)W (χ)N f(χ)1/2 = τN/K(χ).

As in the corollary to Theorem 18 in [F1], we know that the τN/K(χ) can be
written naturally as a product

τN/K(χ) =
∏

l
τl(χ).

and almost all τl(χ) = 1.
Recall that we have fixed an embedding Qc → Qc

p. For x ∈ Qc we write (x)p
for the image of x in Qc

p. By using Frohlich’s Galois action formula for Gauss
sums (see Theorem 20B in [F1]), it is relatively straightforward to idenitfy where
for l 6= p the element (τl)p lies, and we get∏

χ
(τl(χ))p ∈

∏
χ

Qp(ζl)(χ)× = K1(Qp(ζl)[G]) = Det(Qp(ζl)[G]×).

For those τl 6= 1, it is convenient to make an adjustment and work with the
modified local Gauss sums τ∗l = ξlτl for a root of unity valued character function
ξl ∈ Hom+

Ω(RG, µ) where the precise formula for ξl is given on page151 of [F1].
(This change is very similar to the change from Deligne’s ε-constants to his
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ε0-constants in [De].) Moreover, if Mp,G denotes a maximal Zp[ζl]-order in
Qp(ζl)[G], then, since l 6= p, the τ∗l (χ) are all p-units, and it follows that

(τ∗l )p ∈ K1(Mp,G)[ = Det(M×p,G) .

The key-point in the proof of Theorem 23 is that we can show that (τ∗l )p lies
in the subgroup Det(Zp[ζl][G]×) and for this we make crucial use the group
logarithm L. (Note that this result would not be true for the unmodified Galois
Gauss sum.) Since Det(Zp[ζl][G]×) has finite index in Det(M×p,G) and since the
the group logarithm take values in the uniquely divisible group Qp(ζl)[Conj(G)],
ν extends naturally to a map

ν̃ : Det(M×p,G)→ Qp(ζl)[Conj(G)].

We wish to show that ν̃((τ∗l )p) lies in the integral lattice Zp[ζl][Conj(G)]. To
see this we write

ν̃((τ∗p )l) =
∑

c(g)∈Conj(G)
tc(g)c(g) ∈ Qp(ζl)[Conj(G)].

Then, by Fourier inversion, we may calculate tc(g):

tc(g) =
1
|c(g)|

∑
χ
χ(ν̃(τp)l)χ(g−1)

summing over the irreducible characters of G. By the explicit formula (9) in
Lemma 4 this may be written as

tc(g) =
1
|c(g)|

∑
χ
[log(τp)l(χ)− 1

p
log(τFp )l(ψpχ)]χ(h−1)

where F denotes the Frobenius of Qp(ζl)/Qp. Using again the Galois action
formula for Gauss sums loc. cit. we see that τFp (χ) differs from τp(χ) by a root
of unity. So by the above this expression can be written as

tc(g) =
1

p |c(g)|
∑

χ
[log(τp)l(pχ− ψpχ)]χ(g−1).

This sum can then be readily evaluated using the Hasse-Davenport Gauss sum
formulas, and we find that each tc(g) ∈ Zp[ζl], as required. See Ch. IV Sect.5 in
[F1] for details.

Step 2. The above work essentially shows that we can find zl ∈ Zp[G]×

so that Det(z)τ∗l ∈ ker ν̃. As G is a p-group, Zp[G]× = µp−1 × (1 + JG) and
we extend ν from Det(1 + JG) to ν′ on Det(Zp[G]×) by setting ν′ to be 0
on Det(µp−1). Then, with this convention, by Theorem 5 we now get that
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ker ν′ = µp−1 × Det(G); however, by the reasoning after in Lemma 4, we see
that ker ν̃ is the much larger group Det(M×p,G)tor consisting of all the elements
in Det(M×p,G) of finite order. The next step in the proof consists of finding
virtual characters χi of G and ideals ai of Zp[χi] with the property that the
following sequence is exact:

1→ ker ν → ker ν̃ →
∏

i
Zp[χi]×mod ai

where the right-hand arrow is induced by the product of evaluation of deter-
minants on χi followed by reduction mod ai. We then conclude the proof by
showing that for each i

Det(zl)(χi)τ∗l (χi) ≡ 1 mod ai.

This then allows us to deduce that τ∗l ∈ Det(Zp[G]×), as required.

Step 3. Fröhlich’s description of the representative κp allows us to write
it as

κp = λp
∏

p 6=l
(τ∗l (χ))p.

Here the term λp is made up of the corestriction of non-abelian resolvents and
the Gauss sum τp(χ). Using some elementary algebra and the Galois action
formula for Gauss sums and resolvents it is relatively straightforward to show
that λp ∈ Det(OT [G]×) for some tame extension T of Qp; and the work in Steps
1 and 2 shows that ∏

p 6=l
(τ∗l (χ))p ∈ Det(ON [G]×)

for some non-ramified extension N of Ql. Increasing T if necessary to a larger
tame and Galois extension of Ql, we have shown that

κp ∈ Det(OT [G]×) ∩K1(Qp[G]).

If we set ∆ = Gal(T/Qp), then this implies that κp ∈ Det(OT [G]×)∆ and, by
an easy extension of the fixed point result Theorem 18 (see for instance Ch 8 in
[T1]) we then have

κp ∈ Det(OT [G]×)∆ = Det(O∆
T [G]×) = Det(Zp[G]×)

and this then shows that the representative κp lies in the denominator of the
description of Cl(Z[G]) given in (25).

In summary, note that the group logarithm has played two essentially dif-
ferent roles in the proof of the Fröhlich Conjecture: firstly, in showing that the
adjusted Gauss sum is a group ring determinant; and secondly through the use
the fixed point theorem for determinants.
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6.3 Equivariant second Chern classes and Riemann-Roch

Next we give a flavour of some new applications of the above results on Det
and SK1 for the calculation of Euler characteristics of equivariant sheaves on
arithmetic surfaces.

Consider a finite group G, an irreducible, regular two dimensional regular
scheme Y with structure map f : Y → Spec(Z) which is projective and flat.
Suppose that all the fibers of f are reduced with smooth irreducible components
and that the fibers over all the divisors of |G| are irreducible and smooth. Let
E denote an OY [G]-vector bundle, i.e a coherent sheaf of OY [G]-modules on Y

which is locally free. We can then form the projective Euler characteristic of
E , denoted χ(Y, E), which lies in Cl(Z[G]). This class is constructed by first
finding a perfect Z[G]-complex, which is quasi-isomorphic to a Cech complex
which computes the cohomology of E . One then forms the alternating sum of the
classes of the terms in the perfect complex; see [CE] for details. We now indicate
briefly the role of group logarithmic techniques in forming a second Chern class,
which can be used to calculate such projective Euler characteristics.

We start by recalling some constructions due to Beilinson and Parshin. For
0 ≤ i ≤ 2 we let ηi denote a point of Y of codimension i. A Parshin pair is a
pair of points (ηi, ηj) with i < j and with ηj on the closure of ηi. A Parshin
triple is a triple of points (η0, η1, η2) with η2 on the closure of η1. (Since Y
is irreducible there is only one generic point on Y and so we do not need to
impose any additional conditions). We can then form the completed ring ÔY,ηi ;
following Parshin and Beilinson for a Parshin pair (ηi, ηj) resp. a Parshin triple
(η0, η1, η2) we can form the muticompletion ÔY,ηiηj resp. ÔY,η0η1η2 . For given
0 ≤ i ≤ 2 we then form the products of (Quillen) K2-groups

K2(AY,012[G]) =
∏

K2(ÔY,η0η1η2 [G]),

K2(AY,ij [G]) =
∏

K2(ÔY,ηiηj [G]).

Here the first product extends over all Parshin triples (η0, η1, η2) on Y , and the
second product extends over all Parshin pairs (ηi, ηj) on Y . For any such i < j

there is a natural map ÔY,ηiηj → ÔY,η0η1η2 and so we have mapsK2(AY,ij [G])→
K2(AY,012[G]) and we write K2(AY,ij [G])[ for the image of K2(AY,ij [G]) in
K2(AY,012[G]). Following Parshin and Beilinson, we define various restricted
adelic subgroups K ′2(AY,012[G]), K ′2(AY,ij [G]) (see Definition 2.2 in [CPT3])
and we define the second equivariant Chow group

CH2
A(Y [G]) =

K ′2(AY,012[G]) ·
∏

0≤i,j≤2K
′
2(AY,ij [G])[∏

0≤i,j≤2K
′
2(AY,ij [G])[

. (27)
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Note at this point that we can also interpret the class group Cl(Z[G]) as a first
equivariant Chow group CH1

A(Spec(Z)[G]). We will assume for simplicity that
the group ring is split, i.e that Q[G] ∼= Mni(Li) where Li are (commutative)
fields. Then in Section 4 of [CPT3] we describe a push down map

f∗ : CH2
A(Y [G])→ CH1

A(Spec(Z)[G]) = Cl(Z[G]).

For a suitable equivariant vector OY [G]-bundle E of rank n we now sketch the
construction of a second Chern class c2(E) ∈ CH2

A(Y [G]).

Definition. For each point ηi on Y we choose a basis {ei} of E ⊗OY ÔY,ηi
over ÔY,ηi [G]; we then have transition matrices λij ∈ GLn(ÔY,ηiηj [G]). We
say that E has elementary structure if the bases can be chosen so that all the
λij considered in GL(ÔY,ηiηj [G]) actually belong to the subgroup of elementary
matrices E(ÔY,ηiηj [G]).

We suppose henceforth that E has elementary structure.
The importance of elementary structure is that it allows us to form a second

Chern class as follows: for each triple 0 ≤ i, j ≤ 2 we have the corresponding
Steinberg sequence (see [R]) associated to the ring ÔY,ηiηj [G]:

1→ K2(ÔY,ηiηj [G])→ St(ÔY,ηiηj [G])→ E(ÔY,ηiηj [G])→ 1.

We can now choose lifts λ̃ij of λij in St(ÔY,ηiηj [G]) and we define the “2-cocycle”

z(η0, η1, η2) = λ̃02 · (λ̃12)−1 · (λ̃01)−1 ∈ K2(ÔY,η0η1η2 [G]).

In fact one can show that these lifts can be chosen so that
∏
z(η0, η1, η2) lies in

the restricted adelic product K ′2(AY,012[G]). The second equivariant Chern class
c2(E) ∈ CH2

A(Y [G]) is then defined to be the class represented in (27). Here of
course, among other things, one needs to check that the class is independent
of the bases {ei} and of the lifts of the corresponding transition matrices used.
The main result of [CPT3] then is:

Theorem 24 (Non-commutative adelic Riemann-Roch) Under the above as-
sumptions, there is an equality in Cl(Z[G])

χ(Y, E) = −f∗(c2(E)).

(Note here that the assumption that E has an elementary structure implies
that the appropriate generalization of the first Chern class of E is zero; this then
explains the shape of the identity above. Indeed, this agrees with the shape of
the classical Riemann-Roch formula for vector bundles of virtual rank zero and
trivial determinant.)
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The group logarithm is vital in this work for dealing with elementary struc-
tures. Indeed, the proof of the Riemann-Roch theorem in [CPT3] proceeds by
an elaborate reduction to the case of the projective line Y = P1

Z. There we
need to be able to show that certain OP1

Z
[G]-bundles on P1

Z which are con-
structed by gluing have an elementary structure. Now notice that given tran-
sition matrices {λij} as above, the group logarithm work on determinants can
help determine when the Det(λij) = 1; this then gives λij ∈ SLn(ÔY,ηiηj [G]),
where SLn(ÔY,ηiηj [G]) denotes the kernel of Det on GLn(ÔY,ηiηj [G]). In order
to determine whether λij ∈ E(ÔY,ηiηj [G]) we need to understand the quotient
group

SK1(ÔY,ηiηj [G]) =
SL(ÔY,ηiηj [G])

E(ÔY,ηiηj [G])
.

Here we use our work on the description of SK1(R[G]) for more general p-adic
rings R to describe some of the groups SK1(ÔY,ηiηj [G]) and show that the
bundles we use have elementary structure.
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