
Congruences between abelian p-adic zeta
functions

Mahesh Kakde

This article is a reproduction of lectures in the workshop based on section 6 of
[Kak10] with a slight change in the notation to make it consistent with previous
articles in the volume. Let p be an odd prime. Let F be a totally real number field.
Let F∞ be an admissible p-adic Lie extension of F satisfying the Iwasawa conjec-
ture (see [Coa11]). To prove the main conjecture (theorem 5.1 [Coa11]) we need to
prove it (by virtue of the reductions [Suj11]; more precisely theorems 3.3, 3.8, 3.15
and 3.17 in [Suj11]) only for admissible p-adic Lie extension F∞/F satisfying the
Iwasawa conjecture such that Gal(F∞/F) = ∆ ×G , where G is a pro-p p-adic Lie
group of dimension one and ∆ is a finite cyclic group of order prime to p.

1 Notations

For a pro-finite group P and a ring O, we let

ΛO(P) := lim←−
U

O[P/U ],

where U runs through open normal subgroups of P. We denote ΛZp[∆ ](P) simply by
Λ(P). Note that Λ(P) = ΛZp(∆ ×P) (Warning: this notation is inconsistent with
[Coa11]). We use results and notations from [Sch11]. The results in loc. cit. are
proven for ΛO(G ), where O is the ring of integers in a finite unramified extension
of Qp. It is easy to see that the statements and the proofs in loc. cit. extend easily
to Λ(G ) = ΛZp[∆ ](G ) because the ring Zp[∆ ] decomposes into direct sum of rings
of integers in finite unramified extensions of Qp. Let H := Gal(F∞/Fcyc) and Γ :=
Gal(Fcyc/F). Then
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S := { f ∈Λ(G ) : Λ(G )/Λ(G ) f is a f.g. ΛZp(H)−module}

Then according to [Coa05] S is an Ore set in Λ(G ) consisting of regular elements.
Hence we form the localisation A(G ) := Λ(G )S as well as its Jac(ΛZp(H))-adic
completion

B(G ) = Â(G ).

We fix an open central pro-cyclic subgroup Z of G . Let S(G ,Z) be the set of all
subgroups U of G such that Z ⊂U and let C(G ,Z) be the set of all U ∈ S(G ,Z) such
that U/Z is cyclic. For U ∈C(G ,Z) put

Pc(U) = {W ∈C(G ,Z) : [W : U ] = p}.

We have a maps
θ : K′1(Λ(G ))→ ∏

U∈S(G ,Z)
Λ(Uab)×

θA : K′1(A(G ))→ ∏
U∈S(G ,Z)

A(Uab)×

and
θB : K′1(B(G ))→ ∏

U∈S(G ,Z)
B(Uab)×

defined in [Sch11]. Recall also the subgroups

Φ := Φ
G
Z ⊂ ∏

U∈S(G ,Z)
Λ(Uab)×,

ΦA := (ΦG
Z )A ⊂ ∏

U∈S(G ,Z)
A(Uab)×

and
ΦB := (ΦG

Z )B ⊂ ∏
U∈S(G ,Z)

B(Uab)×

defined by conditions M1-M4 in loc. cit..
We denote the field F∆×U

∞ by FU and denote the field F [U,U ]
∞ by KU . Then KU/FU

is an abelian extension with Gal(KU/FU ) = ∆ ×Uab. Note that FNG U ⊂ FU and
Gal(FU/FNG U )∼= NG U/U =: WG U . We denote the Deligne-Ribet, Cassou-Nogues,
Barsky p-adic zeta function for the abelian extension KU/FU by ζU . It is an element
in A(Uab)×. Let ζ0 be the p-adic zeta function of the extension F∞/F∆×Zp

∞ . Recall
that we have fixed a finite set Σ of finite primes of F containing all primes which
ramify in F∞. Let ΣU denote the set of primes of FU lying above Σ . Let rU := [FU :Q]
and dU = [FU : F ]. If a group P acts on a set X , then we denote the stabiliser of x∈ X
by Px.

Let U ⊂V ⊂ G be two subgroups such that U is normal in V . Then we have the
map

σ
V
U : B(Uab)→ B(Uab),
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given by f 7→ ∑g∈V/U g f g−1. The map σ
NG U
U will simply be denoted by σU . Put

TV
U = im(σV

U |Λ(Uab)),

TV
U,S = im(σV

U |A(Uab)),

and
T̂V

U = im(σV
U ).

Put TU , TU,S and T̂U for T NG U
U , T NG U

U,S and T̂ NG U
U respectively.

For any U ∈ C(G ,Z), we choose and fix ωU to be a character of U of order
p. For any U ⊂ V ⊂ G subgroups, we denote by verV

U the transfer homomorphism
V ab→Uab. The induced maps

Λ(V ab)→Λ(Uab),

A(V ab)→ A(Uab)

and
B(V ab)→ B(Uab)

are also denoted by verV
U .

2 The strategy of Burns and Kato

Lemma 2.1 Let ρ be an irreducible Artin representation of G . Then there is a one
dimensional representation χ of G inflated from Γ such that ρ⊗χ is trivial on Z.

Proof: We use induction on the order of G /Z. By proposition 24 in [Ser77] either
a) ρ restricted to Z is isotypic (i.e. direct sum of isomorphic irreducible representa-
tions) OR
b) ρ is induced from an irreducible representation of a proper subgroup A of G
containing Z.

In case a) let ρ|Γ =⊕iχi Define χ = χ
−1
i for any i (note that χi|Z = χ j|Z for any

i, j). Then ρ⊗χ is trivial on Z.
In case b) Say ρ = IndG

A (η). Let r be such that image of A in Γ is Γ pr
. By

induction hypothesis we can find a χ inflated from Γ pr
such that η⊗χ is trivial on

Z. We may extend χ to χ̃ on Γ . Then

IndG
A (η⊗χ) = IndG

A (η)⊗ χ̃ = ρ⊗ χ̃.

Since η⊗χ|Z is trivial and Z is central, IndG
A (η⊗χ)|Z = (ρ⊗ χ̃)|Z is trivial. ut

Proposition 2.2 With the notations as above, the main conjecture is true for F∞/F
if and only if (ζU )U ∈ΦA.

Proof: Let f ∈ K′1(A(G )) be any element such that
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∂ ( f ) =−[C(F∞/F)].

Let θA( f ) = ( fU )U in ∏U∈S(G ,Z) A(Uab)×. Then ( fU )U ∈ ΦA by theorem 6.1 (i)
[Sch11]. Let uU = ζU f−1

U . As ∂ ( fU ) = ∂ (ζU ) = −[C(KU/FU )] (since the abelian
main conjecture is true, [Suj11] theorem 3.10) , we have uU ∈Λ(Uab)×. Moreover,
if (ζU )U ∈ ΦA, then (uU )U ∈ Φ . Then by theorem 4.1 [Sch11] there is a unique
u ∈ K′1(Λ(G )) such that θ(u) = (uU )U . Define ζ = ζ (F∞/F) = u f . We claim that
ζ is the p-adic zeta function satisfying the main conjecture for F∞/F . It is clear
that ∂ (ζ ) = −[C(F∞/F)]. We now show the interpolation property. Let ρ be an
irreducible Artin representation of G . Let σ be a one dimensional representation of
G given by the previous lemma i.e. such that ρ ⊗σ is trivial on Z. Then ρ ⊗σ =
IndG

U (η) for some U ∈ S(G ,Z) and a one dimensional Artin character η of U (by
[Ser77] theorem 16). We denote the restriction of σ to U by the same letter σ .
Hence ρ = IndG

U (η)⊗σ−1 = IndG
U (η⊗ (σ−1)). Then for any character χ of ∆ and

any positive integer r divisible by [F(µp) : F ], we have

ζ (χρκ
r
F) = ζU (χησ

−1
κ

r
FU
)

= LΣU (χησ
−1,1− r)

= LΣ (χρ,1− r)

Hence ζ satisfies the required interpolation property. ut
Hence we need to show the following

Theorem 2.3. The tuple (ζU )U∈S(G ,Z) in the set ∏U∈S(G ,Z) A(Uab)× actually lies in
ΦA i.e. it satisfies for all U ⊂V in S(G ,Z), the conditions
M1. νV

U (ζV ) = πV
U (ζU ) if [V,V ]⊂U.

M2. ζgUg−1 = gζU g−1 for any g ∈ G .
M3. verV

U (ζV )−ζU ∈ TV
U,S if [V : U ] = p.

M4. αU (ζU )−∏W∈Pc(U) ϕ(αW (ζW )) ∈ pTU,S if U ∈C(G ,Z).

Proposition 2.4 The tuple (ζU )U in the theorem satisfies M1. and M2.

Proof Let U ⊂V in S(G ,Z) be such that [V,V ]≤U . Then we must show that

ν
V
U (ζV ) = π

V
U (ζU )

in A(U/[V,V ]). Let ρ be an irreducible Artin representation of U/[V,V ] and let r be
any positive integer divisible by [F(µp) : F ]. Then for any character χ of ∆ , we have

ν
V
U (ζV )(χρκ

r
FU
) = ζV (χIndV

U (ρ)κ
r
FV
)

= LΣV (χIndV
U (ρ),1− r)

= LΣU (χρ,1− r).

On the other hand,
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π
V
U (ζU )(χρκ

r
FU
) = ζU (χρκ

r
FU
)

= LΣU (χρ,1− r).

Since both νV
U (ζU ) and πV

U (ζU ) interpolate the same values on a dense subset of
representations of ∆×U/[V,V ], they must be equal. This shows that the tuple (ζU )U
satisfies M1.

Next we show that the tuple (ζU )U satisfies M2 i.e. for all g ∈ G

g(ζU )g−1 = ζgUg−1

in gA(Uab)g−1 = A(gUabg−1). We let ρ be any one dimensional Artin representa-
tion of gUg−1 and r be any positive integer divisible by [F(µp) : F ]. Then for any
character χ of ∆ , we have

g(ζU )g−1(χρκ
r
FgUg−1

) = ζU (χgρg−1
κ

r
FU
)

= LΣU (χgρg−1,1− r)

= LΣ (χIndG
U (gρg−1),1− r).

On the other hand,

ζgUg−1(χρκ
r
FgUg−1

) = LΣU (χρ,1− r)

= LΣ (χIndG
gUg−1(ρ),1− r).

But IndG
U (gρg−1) = IndG

gUg−1(ρ). Hence g(ζU )g−1 and ζgUg−1 interpolate the same

values on a dense subset of representations of ∆ × gUabg−1 and so must be equal.
This proves that the tuple (ζU )U satisfies M2. ut

The rest of the paper is devoted to proving that (ζU )U satisfies M3 and M4.

3 Basic congruences

The congruence M4 is multiplicative and does not yield directly to the method of
Deligne-Ribet. In this section we state certain additive congruences which yield to
the Deligne-Ribet method as we show in the following sections. These congruences
are then used in the last section to prove M4.

Let p be the maximal ideal of Zp[µp].

Proposition 3.1 For every U ⊂V in S(G ,Z) such that [V : U ] = p, we have

verV
U (ζV )−ζU ∈ TV

U,S. (1)

Proposition 3.2 For every U ∈C(G ,Z) such that Pc(U) is empty
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ζU −ω
k
U (ζU ) ∈ pTU,S (2)

for all 0≤ k ≤ p−1.

Proposition 3.3 If U ∈C(G ,Z) is such that Pc(U) is non-empty, we have

ζU − ∑
V∈Pc(U)

ϕV (ζV ) ∈ TU,S. (3)

Proposition 3.4 If U ∈C(G ,Z) and V ∈ Pc(U), then

ζU −ϕV (ζV ) ∈ T NG V
U,S . (4)

ζ0−ϕZ(ζZ) ∈ pTZ,S. (5)

The congruence (1) is of course M3. Other congruences will be put together in
section 14 to prove M4. We prove the above propositions in section (13).

4 L-values

Let j ≥ 0. Let x ∈ ∆ ×Uab/Zp j
. Then we define δ (x) : ∆ ×Uab→ C to be the char-

acteristic function of the coset x of Zp j
in ∆ ×Uab. Define the partial zeta function

by

ζ (δ (x),s) = ∑
a

δ (x)(ga)
N(a)s , for Re(s)> 1,

where the sum is over all ideals a of OFU which are prime to ΣU , the Artin symbol
of a in ∆ ×Uab is denoted by ga and the absolute norm of the ideal a is denoted by
N(a). A well known theorem of [Kli62] and [Sei70] says that the function ζ (δ (x),s)
has analytic continuation to the whole complex place except for a simple pole at
s = 1, and that ζ (δ (x),1− k) is rational for any even positive integer k.

If ε is a locally constant function on ∆ ×Uab with values in a Q-vector space V ,
say for a large enough j

ε ≡ ∑
x∈∆×Uab/Zp j

ε(x)δ (x).

Then the special value LΣU (ε,1− k) can be canonically defined as

LΣU (ε,1− k) = ∑
x∈∆×Uab/Zp j

ε(x)ζ (δ (x),1− k) ∈V. (6)

If ε is an Artin character of degree 1, then LΣU (ε,1− k) is of course the value at
1− k of the complex L-function associated to ε with Euler factors at primes in ΣU
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removed. If ε is a locally constant Qp-values function on ∆ ×Uab, then for any
positive integer k divisible by [F(µp) : F ] and any u ∈Uab, we define

∆
u
U (ε,1− k) = LΣU (ε,1− k)−κ(u)kLΣU (εu,1− k), (7)

where εu is a locally constant function defined by εu(g) = ε(ug), for all g∈∆×Uab.

5 Approximation to p-adic zeta functions

We get a sequence of elements in certain group rings which essentially approximate
the abelian p-adic zeta functions ζU . These group rings are obtained as follows.
Recall that κ is the p-adic cyclotomic character of F . Let f be a positive integer
such that κ p−1(Z) = 1+ p fZp.

Definition 5.1 Let U ⊂V be in S(G ,Z) such that U is normal in V . Define the map

σ
V
U, j : Zp[∆ ×Uab/Zp j

]/(p f+ j)→ Zp[∆ ×Uab/Zp j
]/(p f+ j),

given by
x 7→ ∑

g∈V/U
gxg−1.

Put TV
U, j = im(σV

U, j) and denote T NG U
U, j simply by TU, j.

Lemma 5.2 For any U ∈ S(G ,Z), we have an isomorphism

Λ(Uab)
∼−→ lim←−

j≥0
Zp[∆ ×Uab/Zp j

]/(p f+ j).

If U ⊂V in S(G ,Z) are such that U is normal in V , then under this isomorphism TV
U

maps isomorphically to lim←−
j

TV
U, j.

Proof: We prove the surjectivity first. Given any

(x j) j ∈ lim←−
j≥0

Zp[∆ ×Uab/Zp j
]/(p f+ j),

we construct a canonical x̃ j ∈ Zp[∆ ×Uab/Zp j
] as follows: for every t ≥ j, let xt be

the image of xt ∈Zp[∆×Uab/Zpt
]/(p f+t) in Zp[∆×Uab/Zp j

]/(p f+t). Then (xt)t≥ j

forms an inverse system. We define x̃ j to be the limit of xt in Zp[∆ ×Uab/Zp j
]. The

tuple (x̃ j) j≥0 forms an inverse system. We define x to be their limit in Λ(Uab).
This is an inverse image of (x j) j≥0 in Λ(Uab). This construction also proves the
injectivity of the map.

To prove the second assertion we use the following exact sequence
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0→ Ker(σV
U, j)→ Zp[∆ ×Uab/Zp j

]/(p f+ j)→ TV
U, j→ 0.

Passing to the inverse limit over j gives

0→ lim←−
j

Ker(σV
U, j)→Λ(Uab)→ lim←−

j
TV

U, j→ 0.

Exactness on the right is because all the abelian groups involved are finite. Hence
TV

U
∼= lim←−

j
TV

U, j. ut

Proposition 5.3 (Ritter-Weiss) For any j ≥ 0, any positive integer k divisible by
[F(µp) : F ] and any U ∈ S(G ,Z), the natural surjection of Λ(Uab) onto Zp[∆ ×
Uab/Zp j

]/(p f+ j), maps (1−u)ζU ∈Λ(Uab) to

∑
x∈Uab/Zp j

∆
u
U (δ

(x),1− k)κ(x)−kx (mod p f+ j).

In particular, we claim that the inverse limit is independent of the choice of k. Also
note that since x is a coset of Z f+ j in ∆ ×Uab, the value κ(x)k is well defined only
modulo p f+ j.

Proof: Since ζU is a pseudomeasure, (1−u)ζU lies in Λ(Uab). We prove the propo-
sition in 3 steps: first we show that the sums form an inverse system. Second we
show that the inverse limit is independent of the choice of k. And thirdly we show
that it interpolates the same values as (1−u)ζU .

Step1: Let j ≥ 0 be an integer. Let

π : Zp[∆ ×Uab/Zp j+1
]/(p f+ j+1)→ Zp[∆ ×Uab/Zp j

]/(p f+ j),

denote the natural projection. Then

π

(
∑

x∈∆×Uab/Zp j+1

∆
u
U (δ

(x),1− k)κ(x)−kx
)

= ∑
y∈∆×Uab/Zp j

(
∑

x∈yZp j
/Zp j+1

∆
u
U (δ

(x),1− k)κ(x)−k
π(x)

)
(mod p f+ j)

= ∑
y∈∆×Uab/Zp j

(
κ(y)−ky ∑

x∈Zp j
/Zp j+1

∆
u
U (δ

(x),1− k)
)
(mod p f+ j)

= ∑
y∈∆×Uab/Zp j

∆
u
U (δ

(y),1− k)κ(y)−ky(mod p f+ j).

Here the second equality is because for any x ∈ ∆ ×Uab/Zp j+1
we have κ(x)k ≡

κ(y)k(mod p f+ j) if π(x) = y. This shows that the sums form an inverse system.
Step2: The inverse limit would be independent of the choice of k if we show that

for any two positive integers k and k′ divisible by [F(µp) : F ], we have
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∑
x∈ ∆×Uab

Z p j

∆
u
U (δ

(x),1− k)κ(x)−kx≡ ∑
x∈ ∆×Uab

Z p j

∆
u
U (δ

(x),1− k′)κ(x)−k′x(mod p f+ j).

Or equivalently that,

∆
u
U (δ

(x),1− k)κ(x)−k ≡ ∆
u
U (δ

(x),1− k′)κ(x)−k′(mod p f+ j), (8)

for all x ∈ ∆ ×Uab/Zp j
. Choose a locally constant function η : ∆ ×Uab→ Z×p such

that η [F(µp):F ] ≡ κ [F(µp):F ](mod p f+ j). Define the functions εk and εk′ from ∆×Uab

to Qp by

εk =
1

p f+ j η(x)−k
δ
(x),

and
εk′ =

1
p f+ j η(x)−k′

δ
(x).

Then the function (εkκk−1−εk′κ
k′−1) takes values in Zp. Hence the congruence (8)

is satisfied by [Del80], theorem 0.4.
Step3: Let

ζu = lim←−
j≥0

(
∑

x∈∆×Uab/Zp j

∆
u
U (δ

(x),1− k)κ(x)−kx(mod p f+ j)
)
∈Λ(Uab).

Let ε be a locally constant function on ∆ ×Uab factoring through ∆ ×Uab/Zp j
for

some j ≥ 0. Note that for every i≥ j

∑
x∈∆×Uab/Zpi

∆
u
U (δ

(x),1− k)ε(x)

= ∑
x∈∆×Uab/Zpi

LΣU (δ
(x),1− k)ε(x)− ∑

x∈∆×Uab/Zpi

κ(u)kLΣU (δ
(x)
u ,1− k)ε(x)

= ∑
x∈∆×Uab/Zpi

LΣU (δ
(x),1− k)ε(x)− ∑

x∈∆×Uab/Zpi

κ(u)kLΣU (δ
(u−1x),1− k)ε(x)

= ∑
x∈∆×Uab/Zpi

LΣU (δ
(x),1− k)ε(x)− ∑

x∈∆×Uab/Zpi

κ(u)kLΣU (δ
(x),1− k)ε(ux)

= LΣU (ε,1− k)−κ(u)kLΣU (εu,1− k)

= ∆
u
U (ε,1− k).

Then by definition of ζu, for any i≥ j, we have

ζu(κ
k
ε)≡ ∑

x∈∆×Uab/Zp j

∆
u
U (δ

(x),1− k)ε(x)(mod p f+i)

≡ ∆
u
U (ε,1− k)(mod p f+i).
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On the other hand, by definition of the p-adic zeta function or the construction
of Deligne-Ribet (see discussion after theorem 0.5 in [Del80]) we have

(1−u)ζU (κ
k
ε) = ∆

u
U (ε,1− k).

Hence (1− u)ζU = ζu because they interpolate the same values on all cyclotomic
twists of locally constant functions. This finishes the proof. ut

6 A sufficient condition to prove the basic congruences

Lemma 6.1 Let y be a coset of Zp j
in ∆ ×Uab. Then for any u ∈ Z and for any

g ∈ G , we have
∆

u
U (δ

(y),1− k) = ∆
u
gUg−1(δ

(gyg−1),1− k).

Proof: It is sufficient to show that ζ (δ (y),1− k) = ζ (δ (gyg−1),1− k) because of the
following:

∆
u
U (δ

(y),1− k) = ζ (δ (y),1− k)−κ
k(u)ζ (δ (y)

u ,1− k),

∆
u
gUg−1(δ

(gyg−1),1− k) = ζ (δ (gyg−1),1− k)−κ
k(u)ζ (δ (gyg−1)

u ,1− k).

But
δ
(y)
u = δ

(u−1y) and δ
(gyg−1)
u = δ

(u−1gyg−1) = δ
(gu−1yg−1).

Now to show that ζ (δ (y),1− k) = ζ (δ (gyg−1),1− k), note that for Re(s)> 1

ζ (δ (gyg−1),s) = ∑
a

δ (gyg−1)(ga)
N(a)s

= ∑
a

δ (y)(gag)

N(ag)s

= ζ (δ (y),s).

Since ζ (δ (gyg−1),s) and ζ (δ (y),s) are meromorphic functions agreeing on the right
half plane, we deduce ζ (δ (gyg−1),1− k) = ζ (δ (y),1− k), as required. ut

Proposition 6.2 To prove the congruence (1) in proposition (3.1) it is sufficient to
prove the following: for any j ≥ 1 and any coset y of Zp j

in ∆ ×Uab fixed by V and
any u ∈ Z

∆
up

U (δ (y),1− k)≡ ∆
u
V (δ

(y) ◦ verV
U ,1− pk)(mod pZp) (9)

for all positive integers k divisible by [F(µp) : F ].

Proof: By lemma 5.3 the image of (1−up)ζU in Zp[∆ ×Uab/Zp j
]/(p f+ j−1) is
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∑
y∈∆×Uab/Zp j

∆
up

U (δ (y),1− k)κ(y)−ky(mod p f+ j−1). (10)

And the image of (1−u)ζV in Zp[∆ ×V ab/Zp j−1
]/(p f+ j−1) is

∑
x∈∆×V ab/Zp j−1

∆
u
V (δ

(x),1− pk)κ(x)−pkx(mod p f+ j−1).

Let V ′ be the kernel of the homomorphism verV
U : V ab →Uab. Then V ′ ∩Z = {1}

which implies that the map

∆ ×V ab/V ′Zp j−1 → ∆ ×Uab/Zp j

induced by verV
U is injective. Moreover κk(V ′) = {1}. Hence the image of verV

U ((1−
u)ζV ) = (1−up)verV

U (ζV ) in Zp[∆ ×Uab/Zp j
]/(p f+ j−1) is

∑
x∈∆×V ab/V ′Zp j−1

∆
u
V (δ

(x),1− pk)κ(x)−pkverV
U (x)(mod p f+ j−1),

which can be written as

∑
y∈∆×Uab/Zp j

∆
u
V (δ

(y) ◦ verV
U ,1− pk)κ(y)−ky(mod p f+ j−1) (11)

because if y /∈ Im(verV
U ), then δ (y) ◦ verV

U ≡ 0 and if y = verV
U (x), then κ(y)k =

κ(x)pk. Subtracting (11) from (10) gives

∑
y∈∆×Uab/Zp j

(
∆

up

U (δ (y),1− k)−∆
u
V (δ

(y) ◦ verV
U ,1− pk)

)
κ(y)−ky(mod p f+ j−1).

(12)
If y is fixed by V then

(
∆ up

U (δ (y),1− k)−∆ u
V (δ

(y) ◦ verV
U ,1− pk)

)
κ(y)−ky≡ py≡

0(mod TV
U, j) under equation (9). On the other hand if y is not fixed by V , then the

full orbit of y under the action of V in the above sum is

∑
g∈V/U

(∆ up

U (δ (gyg−1),1− k)−∆
u
V (δ

(gyg−1) ◦ verV
U ,1− pk))κ(gyg−1)−kgyg−1

=
(

∆
up

U (δ (y),1− k)−∆
u
V (δ

(y) ◦ verV
U ,1− pk)

)
κ(y)−k

∑
g∈V/U

gyg−1

∈TV
U, j.

The equality is by lemma 6.1. Hence the sum in (12) lies in TV
U, j(mod p f+ j−1). By

lemma 5.2 (1−up)(ζU −verV
U (ζV )) ∈ TV

U . As u is a central element congruence (1)
holds. ut
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Remark 6.3 Proofs of following three propositions are very similar to the above
proof.

Proposition 6.4 To prove congruence (2) in proposition (3.2) it is sufficient to show
the following: for any j ≥ 0 and any coset y of Zp j

in ∆ ×U whose image in U/Z is
a generator of U/Z, and any u ∈ Z

∆
udU
U (δ (y),1− k)≡ 0(mod |(WG U)y|Zp), (13)

for all positive integers k divisible by [F(µp) : F ].

Proof: Let v = udU . Then by lemma 5.3 the image of (1− v)ζU −ωk
U ((1− v)ζU ) in

Zp[∆ ×U/Zp j
]/(p f+ j) is

∑
y∈∆×U/Zp j

∆
v
U (δ

(y),1− k)κ(y)−k(y−ω
k
U (y))(mod p f+ j). (14)

If the image of y in U/Z is not a generator of U/Z, then y−ωk
U (y) = 0. For y

whose image in U/Z is a generator of U/Z, we look at the P :=WG U orbit of y in
expression (14). It is

∑
g∈P/Py

∆
v
U (δ

(gyg−1),1− k)κ(gyg−1)−k(gyg−1−ω
k
U (gyg−1))(mod p f+ j)

=∆
v
U (δ

(y),1− k)κ(y)−k
∑

g∈P/Py

(gyg−1−ω
k
U (gyg−1))

which lies in pTU, j under equation (13) and then the sum in expression (14) lies in
pTU, j. Then by lemma 5.2 (1− v)(ζU −ωk

U (ζU )) ∈ pTU . As v is a central element
congruence (2) holds. ut

Proposition 6.5 To prove congruence (3) in proposition (3.3) it is sufficient to prove
the following: for any j ≥ 0 and any coset y of Zp j

in ∆ ×U, and any u ∈ Z

∆
udU
U (δ (y),1− k)≡ ∑

V∈Pc(U)

∆
udU /p

V (δ (y) ◦ϕV ,1− pk)(mod |(WG U)y|Zp), (15)

for all positive integers k divisible by [F(µp) : F ].

Proof: Let v = udU/p. By lemma 5.3 the image of (1− vp)ζU in Zp[∆×U/Zp j
]

(p f+ j−1)
is

∑
y∈∆×U/Zp j

∆
vp

U (δ (y),1− k)κ(y)−ky(mod p f+ j−1). (16)

And the image of (1− v)ζV in Zp[∆ ×V/Zp j−1
]/(p f+ j−1) is

∑
x∈∆×V/Zp j−1

∆
v
V (δ

(x),1− pk)κ(x)−pkx(mod p f+ j−1).
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Let V ′ be the kernel of the homomorphism ϕ : V →U . Then V ′ ∩Z = {1} which
implies that the map

∆ ×V/V ′Zp j−1 → ∆ ×U/Zp j

induced by ϕV is injective. Moreover, κk(V ′) = {1}. Hence the image of

∑
V∈Pc(U)

ϕV ((1− v)ζV ) = (1− vp) ∑
V∈Pc(U)

ϕV (ζV )

in Zp[∆ ×U/Zp j
]/(p f+ j−1) is

∑
V∈Pc(U)

∑
x∈∆×V/V ′Zp j−1

∆
v
V (δ

(x),1− pk)κ(x)−pk
ϕV (x)(mod p f+ j−1),

which can be written as

∑
y∈∆×U/Zp j

∑
V∈Pc(U)

∆
v
V (δ

(y) ◦ϕV ,1− pk)κ(y)−ky(mod p f+ j−1) (17)

because if y /∈ Im(ϕV ), then δ (y) ◦ϕV ≡ 0 and if y = ϕV (x), then κ(y)k = κ(x)pk.
Subtracting (17) from (16) gives

∑
y∈∆×U/Zp j

(
∆

vp

U (δ (y),1− k)− ∑
V∈Pc(V )

∆
v
V (δ

(y) ◦ϕV ,1− pk)
)

κ(y)−ky(mod p f+ j−1)

(18)
Now we take the orbit of y in the sum in (18) under the action of P =WG U . It is(

∆
vp

U (δ (y),1− k)− ∑
V∈Pc(U)

∆
v
V (δ

(y) ◦ϕV ,1− pk)
)

κ(y)−k
∑

g∈P/Py

gyg−1

which lies in TU, j(mod p f+ j−1) under equation (15) and then the sum in expression
(18) lies in TU, j(mod p f+ j−1). Then by lemma (5.2) (1−vp)(ζU−∑V∈Pc(V ) ϕV (ζV ))
lies in TU . As v is a central element congruence (3) holds. ut

Proposition 6.6 To prove congruence (4) in proposition (3.4) it is sufficient to prove
the following: for any j ≥ 0, any coset y of Zp j

in ∆ ×U and any u in Z

∆
updV
U (δ (y),1− k)≡ ∆

udV
V (δ (y) ◦ϕV ,1− pk)(mod |(NG V/U)y|Zp), (19)

for all positive integers k divisible by [F(µp) : F ].
To prove the congruence (5) in proposition (3.4) it is sufficient to show the fol-

lowing: for any j ≥ 1, any coset y of Zp j
in ∆ ×Zp and any u in Zp

∆
up|G /Z|
0 (δ (y),1− k)≡ ∆

u|G /Z|
Z (δ (y) ◦ϕZ ,1− pk)(mod p|G /Z|Zp), (20)

for any positive integer k divisible by [F(µp) : F ].
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Proof: We will only prove the first assertion. Proof of the second one exactly the

same. Let v = udV . By lemma 5.3 the image of (1− vp)ζU in Zp[∆×U/Zp j
]

(p f+ j−1)
is

∑
y∈∆×U/Zp j

∆
vp

U (δ (y),1− k)κ(y)−ky(mod p f+ j−1). (21)

And the image of (1− v)ζV in Zp[∆ ×V/Zp j−1
]/(p f+ j−1) is

∑
x∈∆×V/Zp j−1

∆
v
V (δ

(x),1− pk)κ(x)−pkx(mod p f+ j−1).

Let V ′ be the kernel of the homomorphism ϕV : V →U . Then V ′ ∩Z = {1} which
implies that the map

∆ ×V/V ′Zp j−1 → ∆ ×U/Zp j

induced by ϕV is injective. Moreover κk(V ′) = {1}. Hence the image of

ϕV ((1− v)ζV ) = (1− vp)ϕV (ζV )

in Zp[∆ ×U/Zp j
]/(p f+ j−1) is

∑
x∈∆×V/V ′Zp j−1

∆
v
V (δ

(x),1− pk)κ(x)−pk
ϕV (x)(mod p f+ j−1),

which can be written as

∑
y∈∆×U/Zp j

∆
v
V (δ

(y) ◦ϕV ,1− pk)κ(y)−ky(mod p f+ j−1) (22)

because if y /∈ Im(ϕV ), then δ (y) ◦ϕV ≡ 0 and if y = ϕV (x), then κ(y)k = κ(x)pk.
Subtracting (22) from (21) we get

∑
y∈∆×U/Zp j

(
∆

vp

U (δ (y),1− k)−∆
v
V (δ

(y) ◦ϕV ,1− pk)
)

κ(y)−ky(mod p f+ j−1). (23)

Now for a fixed y ∈ ∆ ×U/Zp j
we take the orbit of y in this sum under the action of

P = NG V/U . It is(
∆

vp

U (δ (y),1− k)−∆
v
V (δ

(y) ◦ϕV ,1− pk)
)

κ(y)−k
∑

g∈P/Py

gyg−1

which lies in T NG V
U, j (mod p f+ j−1) under equation (19) and then the sum in (23) lies

in T NG V
U, j (mod p f+ j−1). Then by lemma (5.2) (1−vp)(ζU −ϕ(ζV )) ∈ T NG V

U . As v is
a central element congruence (4) holds. ut
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7 Hilbert modular forms

In this section we briefly recall the basic notions in the theory of Hilbert modular
forms. Let L be an arbitrary totally real number field of degree r over Q. Let HL be
the Hilbert upper half plane of L. Let Σ be a finite set of finite primes of L containing
all primes above p. Let κ be the p-adic cyclotomic character of L. Let f be an integral
ideal of L with all its prime factors in Σ . We put GL+

2 (L⊗R) for the group of all
2×2 matrices with totally positive determinant. For any even positive integer k, the
group GL+

2 (L⊗R) acts on functions f : HL→ C by

f |k
(

a b
c d

)
(τ) = N (ad−bc)k/2N (cτ +d)−k f (

aτ +d
cτ +d

),

where N : L⊗C→ C is the norm map. Set

Γ00(f) = {
(

a b
c d

)
∈ SL2(L) : a,d ∈ 1+ f,b ∈D−1,c ∈ fD},

where D is the different of L/Q. A Hilbert modular form f of weight k on Γ00(f)
is a holomorphic function f : HL→ C (which we assume to be holomorphic at ∞ if
L =Q) satisfying

f |kM = f for all M ∈ Γ00(f).

The space of all Hilbert modular forms of weight k on Γ00(f) is denoted by
Mk(Γ00(f),C). Since f is invariant under the translation τ 7→ τ + b (for b ∈ D−1),
we may expand f as a Fourier series to get the standard q-expansion

f (τ) = c(0, f )+∑
µ

c(µ, f )qµ

L ,

where µ runs through all totally positive elements in OL and qµ

L = e2πitrL/Q(µτ).

8 Restrictions along diagonal

Let L′ be another totally real number field containing L. Let r′ be the degree of
L′ over L. The inclusion of L in L′ induces maps HL

∗−→ HL′ and SL2(L⊗R) ∗−→
SL2(L′⊗R). For a holomorphic function f : HL′ → C, we define the “restriction
along diagonal” RL′/L f : HL→ C by RL′/L f (τ) = f (τ∗). We then have

(RL′/L f )|r′kM = RL′/L( f |kM∗),

for any M ∈ SL2(L⊗R). Let f be an integral ideal of L, then RL′/L induces a map

RL′/L : Mk(Γ00(fOL′),C)→Mr′k(Γ00(f),C).
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If the standard q-expansion of f is

c(0, f )+ ∑
ν∈O+

L′

c(ν , f )qν

L′ ,

then the standard q-expansion of RL′/L f is

c(0, f )+ ∑
µ∈O+

L

(
∑

ν :trL′/L(ν)=µ

c(ν , f )
)

qµ

L .

Here O+
L and O+

L′ denotes totally positive elements of OL and OL′ respectively.

9 Cusps

Let AL be the ring of finite adeles of L. Then by strong approximation

SL2(AL) = Γ̂00(f) ·SL2(L).

Any M ∈ SL2(AL) can be written as M1M2 with M1 ∈ Γ̂00(f) and M2 ∈ SL2(L). We
define f |kM to be f |kM2. Any α in A×L determines a cusp. We let

f |α = f |k
(

α 0
0 α−1

)
.

The q-expansion of f at the cusp determined by α is defined to the standard q-
expansion of f |α . We write it as

c(0,α, f )+∑
µ

c(µ,α, f )qµ

L ,

where the sum is restricted to all totally positive elements of L which lie in the
square of the ideal “generated” by α .

Lemma 9.1 Let f be an integral ideal in L. Let f ∈ Mk(Γ00(fOL′),C). Then the
constant term of the q-expansion of RL′/L f at the cusp determined by α ∈ A×L is
equal to the constant term of the q-expansion of f at the cusp determined by α∗ ∈
A×L′ i.e.

c(0,α,RL′/L f ) = c(0,α∗, f ).

Proof: The q-expansion of f at the cusp determined by α∗ is the standard q-
expansion of f |α∗ . Similarly, the q-expansion of RL′/L f at the cusp determined by
α is the standard q-expansion of (RL′/L f )|α . But (RL′/L f )|α = RL′/L( f |α∗). ut
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10 A Hecke operator

Lemma 10.1 Let β ∈ OL be a totally positive element. Assume that f⊂ βOL. Then
there is a Hecke operator Uβ on Mk(Γ00(f),C) so that for f ∈ Mk(Γ00(f),C) the
standard q-expansion of f |kUβ is

c(0, f )+∑
µ

c(µβ , f )qµ

L .

Proof: The claimed operator Uβ is the one defined by
(

β 0
0 1

)
. Then

Γ00(f)

(
β 0
0 1

)
Γ00(f) = ∪bΓ00(f)

(
1 b
0 β

)
.

where b ranges over all coset representatives of βD in D and the union is a disjoint
union. Define

f |kUβ (τ) = N (β )k/2−1
∑
b

f |k
(

1 b
0 β

)
(τ),

where b runs through the set of coset representatives of βD in D. Then

f |kUβ (τ) = N (β )k/2−1
∑
b

f |k
(

1 b
0 β

)
(τ)

= N (β )k/2−1N (β )k/2N (β )−k
∑
b

f (
τ +b

β
)

= N (β )−1
∑
b

(
c(0, f )+∑

µ

c(µ, f )e2πitrL/Q(µ(β
−1τ+β−1b))

)
= c(0, f )+N (β )−1

∑
µ

c(µ, f )e2πitrL/Q(µτ/β )(∑
b

e2πitrL/Q(µb/β ))

The sum ∑b e2πitrL/Q(µb/β ) = 0 unless µ ∈ βOL. On the other hand, if µ ∈ βOL, then
∑b e2πitrL/Q(µb/β ) = N (β ). Hence we get

f |kUβ (τ) = c(0, f )+∑
µ

c(µβ , f )qµ

L .

ut

11 Eisenstein series

The following proposition is proven by Deligne-Ribet ([Del80], proposition 6.1).
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Proposition 11.1 Let LΣ be the maximal abelian totally real extension of L unram-
ified outside Σ . Let ε be a locally constant C-valued function on Gal(LΣ/L). Then
for every even positive integer k
(i) There is an integral ideal f of L with all its prime factors in Σ , and a Hilbert
modular form Gk,ε in Mk(Γ00(f),C) with standard q-expansion

2−rL(ε,1− k)+∑
µ

(
∑
a

ε(ga)N(a)k−1
)

qµ

L ,

where the first sum ranges over all totally positive µ ∈ OL, and the second sum
ranges over all integral ideals a of L containing µ and prime to Σ . Here ga is the
image of a under the Artin symbol map. N(a) denotes norm of the ideal a.
(ii) Let q-expansion of Gk,ε at the cusp determined by any α ∈A×L has constant term

Nk((α))2−rL(εg,1− k),

where (α) is the ideal of L generated by α and N((α)) is its norm. The element g is
the image of (α) under the Artin symbol map (see for instance 2.22 in Deligne-Ribet
[Del80]). The locally constant function εg is given by

εg(h) = ε(gh) for all h ∈ Gal(LΣ/L).

12 The q-expansion principle

Let f ∈ Mk(Γ00(f),Q)) i.e. c(µ,α, f ) ∈ Q for all µ ∈ O+
L ∪ {0} and all α ∈ A×L .

Suppose the standard q-expansion of f has all non-constant coefficients in Z(p) and
let α ∈ A×L be a finite adele. Then

c(0, f )−N(αp)
−kc(0,α, f ) ∈ Zp.

Here αp ∈ L⊗QQp is the pth component of α and N : L⊗QQp→Qp is the norm
map. This is the q-expansion principle of Deligne-Ribet (see [Del80] 0.3 and 5.13-
5.15).

Remark 12.1 Hence if u is the image in Gal(LΣ/L) of an idèle α under the Artin
symbol map, then using the equation N((α))kN(αp)

−k = κ(u)k, we get

c(0,Gk,ε)−N(αp)
−kc(0,α,Gk,ε) = 2−r

∆
u(ε,1− k),

for any positive even integer k.
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13 Proof of the sufficient conditions in section 6

Proposition 13.1 The sufficient condition in proposition (6.2) for proving proposi-
tion (3.1) holds. Hence M3 holds.

Proof: We must show that for any U ⊂ V in S(G ,Z) such that [V : U ] = p and
any j ≥ 0, any coset y of Zp j

in ∆ ×Uab fixed by V and any u in Z, we have the
congruence

∆
up

U (δ (y),1− k)≡ ∆
u
V (δ

(y) ◦ verV
U ,1− pk)(mod pZp),

for all positive integers k divisible by [F(µp) : F ]. Choose an integral ideal f of FV
such that the Hilbert Eisenstein series Gk,δ (y) and Gpk,δ (y)◦verV

U
, given by proposition

(11.1), on HFU and HFV respectively are defined over Γ00(fOFU ) and Γ00(f) respec-
tively. Moreover, we may assume that all prime ideals dividing f lie in ΣFV and
f⊂ pOFV . Define E by

E = RFU/FV (Gk,δ (y))|pkUp−Gpk,δ (y)◦verV
U
.

Let α ∈ A×FV
whose image in ∆ ×V ab under the Artin symbol map coincides with

u. Then by lemma 9.1 and remark 12.1

c(0,E)−N(αp)
−pkc(0,α,E)

= 2−rU ∆
up

U (δ (y),1− k)−2−rV ∆
u
V (δ

(y) ◦ verP′
P ,1− pk).

Note that the image of α∗ in ∆ ×Uab under the Artin symbol map is up. Since
2−rU ≡ 2−rV (mod p) it is enough to prove, using the q-expansion principle, that
the non-constant terms of the standard q-expansion of E all lie in pZ(p) i.e. for all
µ ∈ O+

FV

c(µ,E) = c(pµ,RFU/FV (Gk.δ (y)))− c(µ,Gpk,δ (y)◦verV
U
)

= ∑
(b,η)

δ
(y)(gb)N(b)k−1−∑

a

δ
(y)(gaOFU

)N(a)pk−1 ∈ pZ(p)

Here the pairs (b,η) runs through all integral ideals b of FU which are prime to ΣFU

and contains the totally positive element η ∈OFU and trFU/FV (η) = pµ . The ideal a
runs through all integral ideals of FV prime to ΣFV and contains µ . The group V/U
acts trivially on the pair (b,η) if and only if there is an ideal a such that aOFU = b
and η ∈ OFV . In this case

δ
(y)(gb)N(b)k−1−δ

(y)(gaOFP
)N(a)pk−1

=δ
(y)(gb)(N(a)p(k−1)−N(a)pk−1)

∈pZ(p).
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On the other hand, if V/U does not act trivially on the (b,η), then the orbit of (b,η)
under the action of V/U in the above sum is

∑
g∈V/U

(
δ
(y)(ggbg−1)N(bg)k−1

)
=|V/U |δ (y)(gb)N(b)k−1

∈pZ(p).

Here we use δ (y)(ggbg−1) = δ (y)(gb) because y is fixed under the action of V . This
proves the proposition. ut

Lemma 13.2 Let U ∈C(G ,Z) be such that Pc(U) is empty. Let N be a subgroup of
NG U containing U but different from U. Then the image of the transfer homomor-
phism

ver : Nab→U

is a proper subgroup of U.

Proof: Recall the definition of transfer map. Let g ∈ N. Let {x1, . . . ,xn} be the dou-
ble coset representatives of 〈g〉\N/U . Let m be the smallest integer such that gm ∈U .
Then a set of left coset representatives of U in N is

{1,g, . . . ,gm−1,x1,gx1, . . . ,gm−1x1, . . . ,xn,gxn, . . . ,gm−1xn}.

for all 0≤ i≤ m−1 and 1≤ j ≤ n, we define hi j(g) ∈U by

g(gix j) = gi′x j′hi j(g).

for a unique 0≤ i′ ≤ m−1 and 1≤ j′ ≤ n. Then

hi j(g) =
{

1 if i≤ m−2
x−1

j gmx j if i = m−1

Hence ver(g) = ∏
n
j=1 x−1

j gmx j. If g /∈U then gm is not a generator of U/Z because
Pc(U) is empty. Hence ver(g) is not a generator of U/Z and the image of ver is a
proper subgroup of U . On the other hand if g ∈U then

ver(g) = ∏
x∈N/U

x−1gx.

Since Z is central and both U/Z and N/Z are p-groups, the action of N/Z on the
subgroup of order p of U/Z is trivial. If pr is the order of g in U/Z, then N acts
trivially on gpr−1

(mod Z). Hence

ver(g)pr−1
= ∏

x∈N/U
x−1gpr−1

x = ∏
x∈N/U

gpr−1 ∈ Z.
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Hence ver(g) is not a generator of U/Z and hence the image of ver is a proper
subgroup of U . ut

Proposition 13.3 The sufficient condition in proposition (6.4) for proving proposi-
tion (3.2) holds.

Proof: We must show that for any U ∈ C(G ,Z) such that Pc(U) is empty and any
j ≥ 0, any coset y of Zp j

in ∆ ×U whose image in U/Z is a generator of U/Z and
any u in Z we have

∆
udU
U (δ (y),1− k)≡ 0(mod |(WG U)y|Zp),

for any positive integer k divisible by [F(µp) : F ]. Choose an integral ideal f of
OFNG U such that the Hilbert Eisenstein series Gk,δ (y) over HFU , given by proposition
(11.1), is defined on Γ00(fOFU ). Define

E = RFU/FNG U (Gk,δ (y)).

Then E is a Hilbert modular form of weight dU k on Γ00(f). Let α be a finite idèle of
FNG U whose image under the Artin symbol map coincides with u. Then by lemma
9.1 and remark 12.1, we have

c(0,E)−N(αp)
−dU kc(0,α,E) = 2−rU ∆

udU
U (δ (y),1− k).

Hence, using the q-expansion principle, it is enough to prove that the non-constant
terms of the standard q-expansion of E all lie in |(WG U)y|Z(p) i.e. for any µ ∈
O+

FNG U
,

c(µ,E) = ∑
(b,ν)

δ
(y)(gb)N(b)k−1 ∈ |(WG U)y|Z(p),

where (b,ν) runs through all integral ideals b of FU which are prime to ΣFU and
ν ∈ b is totally positive with trFU/FNG U (ν) = dU µ . The group (WG U)y acts on the
pairs (b,ν). Let V be the stabiliser of (b,ν). Then there is an integral ideal c of
FV := FV

U and a totally positive element η of OFV such that cOFU = b and ν = η . If
V is a nontrivial group then δ (y)(gb) = 0 by lemma (13.2). On the other hand, if V
is trivial, then the (WG U)y orbit of (b,ν) in the above sum is

∑
g∈(WG U)y

δ
(y)(ggbg−1)N(bg)k−1

=|(WG U)y|δ (y)(gb)N(b)k−1

∈|(WG U)y|Z(p).

Here we use δ (y)(ggbg−1) = δ (y)(gb) for any g ∈ (WG U)y. This proves the propo-
sition. ut
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Proposition 13.4 The sufficient condition in proposition (6.5) for proving proposi-
tion (3.3) holds.

Proof: We have to show that for any U ∈ C(G ,U) such that Pc(U) is non-empty,
any j ≥ 0, any coset y of Zp j

in ∆ ×U and any u in Z, we have

∆
udU
U (δ (y),1− k)≡ ∑

V∈Pc(U)

∆
udU /p

V (δ (y) ◦ϕV ,1− pk)(mod |(WG U)y|Zp),

for any positive integer k divisible by [F(µp) : F ].
Choose an integral ideal f of FNG U such that the Hilbert Eisenstein series Gk,δ (y)

and Gpk,δ (y)◦ϕV
, given by proposition (11.1), on HFU and HFV respectively are de-

fined over Γ00(fOFU ) and Γ00(fOFV ) respectively for every V ∈ Pc(U). We may as-
sume that all prime factors of f are in ΣFNG U and f⊂ dU OFNG U . Define

E = RFU/FNG U (Gk,δ (y))|dU kUdU − ∑
V∈Pc(U)

RFV /FNG U (Gpk,δ (y)◦ϕV
)|dU kUdU/p.

Then E ∈ MdU k(Γ00(f),C). Let α be a finite idèle of FNG U whose image under the
Artin symbol map coincides with u. Then by lemma 9.1 and remark 12.1

c(0,E)−N(αp)
−dU kc(0,α,E)

= 2−rU ∆
udU
U (δ (y),1− k)− ∑

V∈Pc(U)

2−rU/p
∆

udU /p

V (δ (y) ◦ϕV ,1− pk).

As 2−rU ≡ 2−rU/p(mod rU ) and rU ≥ |(WG U)y|,

2−rU ∆
udU
U (δ (y),1− k)− ∑

V∈Pc(U)

2−rU/p
∆

udU /p

V (δ (y) ◦ϕV ,1− pk)

≡2−rU
(

∆
udU
U (δ (y),1− k)−∑

V
∆

udU /p

V (δ (y) ◦ϕV ,1− pk)
)
(mod |(WG U)y|Zp).

Hence using the q-expansion principle it is enough to prove that the non-constant
terms of the standard q-expansion of E all lie in |(WG U)y|Z(p) i.e. for all totally
positive µ in OFNG U , we have

c(µ,E) = c(dU µ,RFU/FNG U (Gk,δ (y)))− ∑
V∈Pc(U)

c(dU µ/p,RFV /FNG U (Gpk,δ (y)◦ϕV
))

= ∑
(b,η)

δ
(y)(gb)N(b)k−1− ∑

V∈Pc(U)
∑
(a,ν)

δ
(y)(gaOFU

)N(a)pk−1 ∈ |(WG U)y|Z(p).

Here the pair (b,η) runs through all integral ideals b of FU which are prime to ΣFU

and η ∈ b is a totally positive element with trFU/FNG U (η) = dU µ . The pair (a,ν)
runs through all integral ideals a of FV which are prime to ΣFV and ν ∈ a is a totally
positive element with trFV /FNG U (ν) = dU µ/p. The group P := (WG U)y acts on the
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pairs (b,η) and (a,ν). Let W ⊂P be the stabiliser of (b,η). Then there is an integral
ideal c of FW := FW

U and a totally positive element γ in OFW such that cOFU = b and
η = γ . Then the P orbit of (b,η) in the above sum is

∑
g∈P/W

(
δ
(y)(ggbg−1)N(bg)k−1− ∑

W⊃V∈Pc(U)

δ
(y)(ggbg−1)N(bg)pk−1

)
=|P/W |δ (y)(gb)

(
N(b)k−1−N(b)pk−1

)
=|P/W |δ (y)(gb)

(
N(c)|W |(k−1)−N(c)|W |(pk−1)/p

)
∈|P|Z(p).

The second sum is 0 if W is trivial and in that case inclusion in the last line is
trivial. The first equality uses δ (y)(ggbg−1) = δ (y)(gb) as g ∈ P. The last inclusion
is because N(c)|W | ≡ N(c)|W |/p(mod |W |). This proves the proposition. ut

Proposition 13.5 The sufficient conditions in proposition (6.6) for proving propo-
sition (3.4) hold.

Proof: We just prove the sufficient condition for congruence (4). Proof of the other
sufficient condition in proposition (6.6) is similar. We must show that for any U ∈
C(G ,Z) and V ∈ Pc(U), for any j ≥ 0, any coset y of Zp j

in ∆ ×U and any u in Z

∆
updV
U (δ (y),1− k)≡ ∆

udV
V (δ (y) ◦ϕV ,1− pk)(mod |(NG V/U)y|Zp),

for any positive integer k divisible by [F(µp) : F ].
Choose an integral ideal f of FNG V such that the Hilbert Eisenstein series Gk,δ (y)

and Gpk,δ (y)◦ϕV
, given by proposition (11.1), on HFU and HFV respectively are de-

fined over Γ00(fOFU ) and Γ00(fOFV ) respectively. Moreover, we may assume that all
prime factors of f are in ΣFNG V and f⊂ pdV OFNG V . Define

E = RFU/FNG V (Gk,δ (y))|pdV kUpdV −RFV /FNG V (Gpk,δ (y)◦ϕV
)|pdV kUdV .

Then E ∈MpdV k(Γ00(f),C). Let α be a finite idèle of FNG V whose image under the
Artin symbol map coincides with u. Then by lemma 9.1 and remark 12.1

c(0,E)−N(αp)
−pdV c(0,α,E)= 2−rU ∆

updV
U (δ (y),1−k)−2−rV ∆

udV
V (δ (y)◦ϕV ,1− pk).

As 2−rU ≡ 2−rV (mod rU ) and rU ≥ |(NG V/U)y|,

2−rU ∆
updV
U (δ (y),1− k)−2−rV ∆

udV
V (δ (y) ◦ϕV ,1− pk)

≡2−rU
(

∆
updV
U (δ (y),1− k)−∆

udV
V (δ (y) ◦ϕV ,1− pk)

)
(mod |(NG V/U)y|Zp).

Hence using the q-expansion principle it is enough to prove that the non-constant
terms of the standard q-expansion of E all lie in |(NG V/U)y|Z(p) i.e. for all totally
positive µ in OFNG V we have
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c(µ,E) = c(pdV µ,RFU/FNG V (Gk,δ (y)))− c(dV µ,RFV /FNG V (Gpk,δ (y)◦ϕV
))

= ∑
(b,η)

δ
(y)(gb)N(b)k−1− ∑

(a,ν)

δ
(y)(gaOFU

)N(a)pk−1 ∈ |(NG V/U)y|Z(p).

Here the pairs (b,η) run through all integral ideals b of FU which are prime to ΣFU

and η ∈ b is a totally positive element with trFU/FNG V (η) = pdV µ . The pairs (a,ν)
run through all integral ideals a of FV which are prime to ΣFV and ν ∈ a is a totally
positive element with trFV /FNG V (ν) = dV µ . The group P := (NG V/U)y acts on the
pairs (b,η) and (a,ν). Let W ⊂P be the stabiliser of (b,η). Then there is an integral
ideal c of FW := FW

U and a totally positive element γ of OFW such that cOFU = b and
η = γ . First assume that W is a non-trivial group. Then the P orbit of (b,η) in the
above sum is

∑
g∈P/W

(
δ
(y)(ggbg−1)N(bg)k−1−δ

(y)(ggbg−1)N(bg)pk−1
)

=|P/W |δ (y)(gb)
(

N(b)k−1−N(b)pk−1
)

=|P/W |δ (y)(gb)
(

N(c)|V |(k−1)−N(c)|V |(pk−1)/p
)

∈|P/W |Z(p).

On the other hand if W is a trivial group then the P orbit of the pair (b,η) in the
above sum is

∑
g∈P

δ
(y)(ggbg−1)N(bg)k−1 = |P|δ (y)(gb)N(b)k−1.

In both cases the first equality uses δ (y)(ggbg−1) = δ (y)(gb) for g ∈ P. In the first
case we also use the fact that N(c)|W | ≡N(c)|W |/p(mod |W |). This proves the propo-
sition. ut

14 Proof of M4. from the basic congruences

We have proved the basic congruences in previous subsections. We want to deduce
M4 from these congruences. However, we cannot do it directly for the extension
F∞/F . We use the following trick: we extend our field slightly to F̃∞ ⊃ F∞ such that
F̃∞/F is an admissible p-adic Lie extension satisfying the Iwasawa conjecture and
Gal(F̃∞/F) = ∆× G̃ with G̃ ∼= H̃×G , where H̃ is a cyclic group of order |G /Z|. We
know the basic congruences for F̃∞/F which we use to deduce the M4 for F̃∞/F .
This proves the main conjecture for F̃∞/F and hence implies the main conjecture
for F∞/F .
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14.1 The field F̃∞

Choose a prime l large enough such that l ≡ 1(mod |G /Z|) and Q(µl)∩F∞ = Q.
Let K be the extension of Q contained in Q(µl) such that [K : Q] = |G /Z|. Define
F̃ = KF and F̃∞ = F̃F∞. Then

Gal(F̃∞/F) = Gal(F̃/F)×Gal(F∞/F) =: H̃×∆ ×G =: ∆ × G̃ .

14.2 A key lemma

We extend the field F∞ to F̃∞ as we need the following key lemma. For any U ∈
C(G̃ ,Z), define the integer iU by

iU = maxV∈C(G̃ ,Z){[V : U ]|U ⊂V}

Lemma 14.1 Let U ∈C(G̃ ,Z). If U 6= Z, then

TU ⊂ pi2UΛ(U).

And
TZ = |G̃ /Z|Λ(Z).

Similar statements hold for TU,S and T̂U .

Proof: Case 1: U/Z ⊂ H̃. Then iU = [H̃ : (U/Z)] and NG̃ U = G̃ acts trivially on
Λ(U). Hence

TU = [G̃ : U ]Λ(U) = |G /Z|[H̃ : (U/Z)]]Λ(U).

If U 6= Z, then |G /Z| ≥ piU . Hence the claim.
Case 2: U/Z * H̃. Let U/Z be generated by (h̃,h), with h̃ ∈ H̃ and h ∈ G /Z. By
assumption h 6= 1. Let V ∈C(G̃ ,Z) such that [V : U ] = iU . Let (h̃0,h0) be a generator
of V/Z such that h̃iU

0 = h̃ and hiU
0 = h. Now note that

H̃×〈h0〉 ⊂ NG̃ /Z(U/Z)

acts trivially on Λ(U). As U/Z ⊂ H̃×〈h0〉 this implies that
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TU ⊂
|H̃×〈h0〉|
|U/Z|

Λ(U)

=
|H̃||〈h0〉|
|U/Z|

Λ(U)

= |H̃|iUΛ(U)

⊂ pi2UΛ(U).

The last containment holds because |H̃| ≥ piU . The assertion about TZ is clear. ut

14.3 Completion of the proof

Lemma 14.2 For any U ∈C(G̃ ,Z) and any 0≤ k ≤ p−1, we have

ζU −ω
k
U (ζU ) ∈ p

TU,S

iU
.

Hence ζ
p

U/∏
p−1
k=0 ωk

U (ζU ) ∈ 1+ pTU,S/iU .

Proof: We use reverse induction on |U/Z|. When U/Z is a maximal cyclic subgroup
iU = 1 and the required congruence is proven in proposition 3.2. In general we use
the congruence in proposition 3.3 so that

ζU −ω
k
U (ζU )≡ ∑

V∈Pc(U)

(
ϕV (ζV )−ω

k
U (ϕV (ζV ))

)
(24)

= ∑
V∈Pc(U)

ϕV (ζV −ω
k
V (ζV ))(mod pTU,S), (25)

for appropriately chosen ωU and ωV . But by induction hypothesis

ζV −ω
k
V (ζV ) ∈ p

TV,S

iV
.

Now for any V ∈ Pc(U), note that

ϕV ( ∑
x∈NG̃ U/NG̃ V

xTV,Sx−1)⊂
TU,S

p
.

This finishes the proof of the first assertion noting that iU = piV . Hence

ζ
p

U/
( p−1

∏
k=0

ω
k
U (ζU )

)
∈ 1+pTU,S/iU .

But since it is invariant under action of the group Gal(Qp(µp)/Qp), we get
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ζ
p

U/
( p−1

∏
k=0

ω
k
U (ζU )

)
∈ 1+ pTU,S/iU .

ut
Using the above lemma

log(
ωk

U (ζU )

ζU
)≡ 1−

ωk
U (ζU )

ζU
mod (pT̂U/iU )2,

which implies

log
(

∏
p−1
k=0 ωk

U (ζU )

ζ
p

U

)
≡

pζU −∑
p−1
k=0 ωk

U (ζU )

ζU
(mod (pT̂U/iU )2).

Then

log
(

∏V∈Pc(U) ϕV (αV (ζV ))

ζ
p

U/∏
p−1
k=0 ωk

U (ζU )

)
≡ ∑

V∈Pc(U)

( pϕV (ζV )−∑
p−1
k=0 ωk

U (ϕV (ζV ))

ϕV (ζV )

)
−
( pζU −∑

p−1
k=0 ωk

U (ζU )

ζU

)
≡ ∑

V∈Pc(U)

( pϕV (ζV )−∑
p−1
k=0 ωk

U (ϕV (ζV ))

ϕV (ζV )

)
−∑

V

( pϕV (ζV )−∑
p−1
k=0 ωk

U (ζV )

ζU

)
≡ ∑

V∈Pc(U)

(pϕ(ζV )−∑
p−1
k−0 ωk

U (ϕV (ζV )))(ζU −ϕV (ζV ))

ζU ϕV (ζV )
(mod pT̂U ).

Here we use (pT̂U/iU )2 ⊂ pT̂U as implied by lemma 14.1. The second congruence
above uses congruence 25. Now note that

pϕV (ζV )−
p−1

∑
k=0

ω
k
U (ϕV (ζV )) ∈ pϕV (TV,S/iV ) (by lemma 14.2)

and
ζU −ϕV (ζV ) ∈ T

NG̃ V
U,S (by congruence (4) and (5)).

Hence

(
pϕV (ζV )−

p−1

∑
k=0

ω
k
U (ϕV (ζV ))

)(
ζU −ϕV (ζV )

)
∈ pϕV (TV,S)/iV ) ·T

NG̃ V
U,S ⊂ pT

NG̃ V
U,S .

Which in turn implies that
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∑
V∈Pc(U)

(
(pϕV (ζV )−

p−1

∑
k−0

ω
k
U (ϕ(ζV )))(ζU −ϕV (ζV ))

)
∈ pTU,S.

Hence

log
(

∏V∈Pc(U) ϕV (αV (ζV ))

ζ
p

U/∏
p−1
k=0 ωk

U (ζU )

)
∈ pT̂U .

As log induces an isomorphism between 1+ pT̂U and pT̂U , we have

∏V∈Pc(U) ϕV (αV (ζV ))

ζ
p

U/∏
p−1
k=0 ωk

U (ζU )
∈ 1+ pT̂U .

But by lemma 14.2 ∏V∈Pc(U) ϕV (αV (ζV ))

ζ
p

U/∏
p−1
k=0 ωk

U (ζU )
∈ 1+ pTU,S/iU and

1+ pT̂U ∩1+ pTU,S/iU = 1+ pTU,S.

Hence
∏V ϕV (αV (ζV ))

ζ
p

U/∏
p−1
k=0 ωk

U (ζU )
∈ 1+ pTU,S.

When U 6= Z, this is the required congruence M4. When U = Z, note that

p−1

∏
k=0

ω
k
Z(ζZ) = ζ0.

This can be seen either by interpolation properties of ∏
p−1
k=0 ωk

Z(ζZ) and ζ0. Hence
we get

∏V∈Pc(Z) ϕV (αV (ζV ))

ζ
p
Z /ζ0

∈ 1+ pTZ,S.

Now use the basic congruence (5) which says ζ0 ≡ ϕZ(ζZ)(mod p|G̃ /Z|). Note that
TZ,S = |G̃ /Z|Λ(Z)S. Hence

∏V∈Pc(Z) ϕV (αV (ζV ))

ζ
p
Z /ϕZ(ζZ)

∈ 1+ pTZ,S.

This is M4 for U = Z. This finishes proof of the main conjecture.
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