Congruences between abelian p-adic zeta
functions

Mahesh Kakde

This article is a reproduction of lectures in the workshop based on section 6 of
[Kak10] with a slight change in the notation to make it consistent with previous
articles in the volume. Let p be an odd prime. Let F be a totally real number field.
Let F., be an admissible p-adic Lie extension of F satisfying the Iwasawa conjec-
ture (see [Coall]). To prove the main conjecture (theorem 5.1 [Coall]) we need to
prove it (by virtue of the reductions [Sujl1]; more precisely theorems 3.3, 3.8, 3.15
and 3.17 in [Suj11]) only for admissible p-adic Lie extension F./F satisfying the
Iwasawa conjecture such that Gal(F./F) = A x ¢4, where ¢ is a pro-p p-adic Lie
group of dimension one and A is a finite cyclic group of order prime to p.

1 Notations

For a pro-finite group P and a ring O, we let

Ao(P) :=1im O[P/U],
U

where U runs through open normal subgroups of P. We denote AZ,, ] (P) simply by
A(P). Note that A(P) = Az, (A x P) (Warning: this notation is inconsistent with
[Coall]). We use results and notations from [Sch11]. The results in [oc. cit. are
proven for Ap(¥), where O is the ring of integers in a finite unramified extension
of Q,. It is easy to see that the statements and the proofs in loc. cit. extend easily
to A(Y) = Az, (4)(¢) because the ring Z,[A] decomposes into direct sum of rings
of integers in finite unramified extensions of Q. Let H := Gal(Foo/F“¢) and I" :=
Gal(F°/F). Then
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S:={feA¥):A9)/A(Y)fisafg Ag,(H)—module}

Then according to [Coa05] S is an Ore set in A (%) consisting of regular elements.
Hence we form the localisation A(¥) := A(¥)s as well as its Jac(Az,(H))-adic
completion

B(#%)=A9).

We fix an open central pro-cyclic subgroup Z of 4. Let S(¥,Z) be the set of all
subgroups U of ¢ such that Z C U and let C(¥,Z) be the set of all U € S(¥,Z) such
that U /Z is cyclic. For U € C(¥,Z) put

P(U)={W eC(¥,Z):[W:U] = p}.

We have a maps
6:K|(A(9)) — A(U)*

04 : K1(A(Y)) —

b

(Uab)x

and
65 : K| (B(¥4)) — B(U)~

defined in [Sch11]. Recall also the subgroups

=0 c [] AU,
UeS(9,2)

Pr=(@))ac ] AWUD)*
UeS(%.,2)

and
op:= (¥ ) [] BW™)*
UesS(¥.2)

defined by conditions M1-M4 in loc. cit..
[U,U]

We denote the field FA*U by Fy and denote the field Foo " by Ky. Then Ky /Fy
is an abelian extension with Gal(Ky /Fy) = A x U“ . Note that Fy,u C Fy and
Gal(Fy [Fn,u) = NgU /U =: WqU. We denote the Deligne-Ribet, Cassou-Nogues,
Barsky p-adic zeta function for the abelian extension Ky /Fy by {y. It is an element
in A(U%)*. Let { be the p-adic zeta function of the extension F,,/F2*%". Recall
that we have fixed a finite set X of finite primes of F' containing all primes which
ramify in Fi.. Let Xy denote the set of primes of Fy lying above X. Let ryy := [Fy : Q)
and dy = [Fy : F). If a group P acts on a set X, then we denote the stabiliser of x € X
by P.

Let U C V C ¥ be two subgroups such that U is normal in V. Then we have the
map

oy : B{U) — B{U®),
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given by f—Y.cv /v 8f, ¢~ !. The map GIIJV%U will simply be denoted by oy . Put
Ty = im((’z‘ﬂ/\(wb))»

le,s = im(GXlA(wb))»

and -
7Y =im(oy).

Put Ty, Ty s and Ty for T{]V U TLIX ?U and T(zjv U respectively.

For any U € C(¥,Z), we choose and fix @y to be a character of U of order
p. For any U C V C ¢ subgroups, we denote by verg the transfer homomorphism
V@ — U% . The induced maps

A(V?) = AU™),

A(VP) 5 A(UP)

and
B(V®) — B(U™)

are also denoted by verg.

2 The strategy of Burns and Kato

Lemma 2.1 Let p be an irreducible Artin representation of 4. Then there is a one
dimensional representation y of 9 inflated from I such that p ® x is trivial on Z.

Proof: We use induction on the order of ¢ /Z. By proposition 24 in [Ser77] either
a) p restricted to Z is isotypic (i.e. direct sum of isomorphic irreducible representa-
tions) OR
b) p is induced from an irreducible representation of a proper subgroup A of ¢
containing Z.

In case a) let p| = @;yx; Define y = xl-*l for any i (note that ;|7 = x|z for any
i,J). Then p ® x is trivial on Z.

In case b) Say p = Ind? (n). Let r be such that image of A in " is I'”". By
induction hypothesis we can find a y inflated from I'?" such that 1 ® ¥ is trivial on
Z. We may extend y to Y onI'. Then

Ind{(n@x)=Ind{(N)@F=p&F.

Since n ® x| is trivial and Z is central, Ind? (N ® )|z = (p ® % )|z is trivial. O

Proposition 2.2 With the notations as above, the main conjecture is true for Fo | F
if and only if (Cu)u € Pa.

Proof: Let f € K| (A(%)) be any element such that
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9(f) = —[C(F/F)].

Let 64(f) = (fu)u in HUEs(gZ)A(U“b)X. Then (fy)y € P4 by theorem 6.1 (i)
[Schl1]. Let uy = {ufy;'. As d(fy) = (&) = —[C(Ky/Fy)] (since the abelian
main conjecture is true, [Suj11] theorem 3.10) , we have uy € A (U ab ). Moreover,
if (§y)u € Pa, then (uy)y € ®. Then by theorem 4.1 [Schl1] there is a unique
u € Kj(A(%¢)) such that 6(u) = (uy)y. Define § = {(F./F) = uf. We claim that
¢ is the p-adic zeta function satisfying the main conjecture for F../F. It is clear
that d(§) = —[C(F»/F)]. We now show the interpolation property. Let p be an
irreducible Artin representation of ¢. Let ¢ be a one dimensional representation of
¢ given by the previous lemma i.e. such that p ® o is trivial on Z. Then p ® 6 =
Indf (n) for some U € S(¥,Z) and a one dimensional Artin character n of U (by
[Ser77] theorem 16). We denote the restriction of ¢ to U by the same letter ©.
Hence p = Ind,(n) @ 6~ = Ind}(n ®(c~")). Then for any character x of A and
any positive integer r divisible by [F(u,) : F|, we have

S(xprr) =Cu(xno'kg,)
=Ly, (xno ', 1-r)
=Ls(xp,1-7)

Hence { satisfies the required interpolation property. O
Hence we need to show the following

Theorem 2.3. The tuple (Cu)yes(y z) in the set HUes(gZ)A(U“b)X actually lies in
Dy i.e. it satisfies for allU CV in S(¥4,Z), the conditions

M1V} () = 7 (&) if V,V] C U.

M2. Coyp1 = glug~ ' foranyge 9.

M3. ver},(&v) — Cu € Tl}/,s if[V:U]=p.

M4. ay (Gu) —Twer.w) (aw(&w)) € pTy s if U € C(Y,2).

Proposition 2.4 The tuple ({y)y in the theorem satisfies M1. and M2.
Proof Let U C V in S(¢,Z) be such that [V,V] < U. Then we must show that

v (Gv) = m Q)
inA(U/[V,V]). Let p be an irreducible Artin representation of U /[V,V] and let r be
any positive integer divisible by [F'(1,) : F|. Then for any character ) of A, we have
Vi (&v) (xpxr,) = &y (xInd (p) K, )
= Ly, (xIndy(p),1-r)
=Ly, (xp,1-1).

On the other hand,
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my (Cu) (xpKE,) = Su(xpKr,)
=Ly, (xp,1-r).

Since both v}, ({y) and m);(&y) interpolate the same values on a dense subset of
representations of A x U /[V, V], they must be equal. This shows that the tuple ({y)u
satisfies M 1.

Next we show that the tuple ({y )y satisfies M2 i.e. for all g € 4

g(CU)g71 = CgUg*l

in gA(U%)g™! = A(gU%g~"). We let p be any one dimensional Artin representa-
tion of gUg™! and r be any positive integer divisible by [F (i) : F]. Then for any
character y of A, we have

r 1

g(Gv)e ™ (xpKt, ) = Cuxeps ' Kr,)
= LZU (Xgpg7] ) 1- V)
=Ly (xIndf (gpg™"),1 7).

On the other hand,

Covg (XPXE, ) =Lz, (2P, 1-7)

= Ly (xIndly;, 1 (p),1=7).

But Indg (gpg™ ') = Indzjg,1
values on a dense subset of representations of A x gU%g~! and so must be equal.
This proves that the tuple ({y)y satisfies M2. 0O

The rest of the paper is devoted to proving that ({y )y satisfies M3 and M4.

(p). Hence g({y)g~" and Coug-1 interpolate the same

3 Basic congruences

The congruence M4 is multiplicative and does not yield directly to the method of
Deligne-Ribet. In this section we state certain additive congruences which yield to
the Deligne-Ribet method as we show in the following sections. These congruences
are then used in the last section to prove M4.

Let p be the maximal ideal of Z, [u,,).

Proposition 3.1 ForeveryU CV in S(¥4,Z) such that [V : U] = p, we have

very (&v) — v € Ty s (1)

Proposition 3.2 For every U € C(¥,Z) such that P.(U) is empty
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Su—of(G) €pTys 2
forall0 <k<p-—1.

Proposition 3.3 IfU € C(¥,Z) is such that P.(U) is non-empty, we have

- Y ov(lv)elys. 3

VeP.(U)

Proposition 3.4 IfU € C(¥4,Z) andV € P.(U), then
G —ov(&r) €Ty 4)

Co—0z(8z) € pIzs. &)

The congruence (1) is of course M3. Other congruences will be put together in
section 14 to prove M4. We prove the above propositions in section (13).

4 L-values

Letj>0.Letxc A x U“b/ij. Then we define 8% 1 A x U — C to be the char-
acteristic function of the coset x of Z”’ in A x U?. Define the partial zeta function
by

(x)
g8, 5) = Y 6N(((j?) ; for Re(s) > 1,

where the sum is over all ideals a of O, which are prime to Xy, the Artin symbol
of ain A x U% is denoted by g, and the absolute norm of the ideal a is denoted by
N(a). A well known theorem of [Kli62] and [Sei70] says that the function & (5, )
has analytic continuation to the whole complex place except for a simple pole at
s =1, and that { (8™, 1 — k) is rational for any even positive integer k.

If € is a locally constant function on A x U with values in a Q-vector space V,

say for a large enough j
e= Y e(x)dW.

xeAxUab /zp!

Then the special value Ly, (€,1 — k) can be canonically defined as

Ly, (e,1-k)= Y e@)g(W,1-k)eV. (6)

xEAxUb /0!

If € is an Artin character of degree 1, then Ly, (g,1 —k) is of course the value at
1 — k of the complex L-function associated to € with Euler factors at primes in Xy
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removed. If € is a locally constant QQ,-values function on A x U @ then for any
positive integer k divisible by [F(u,) : F| and any u € U, we define

Al(e,1—k) =Ly, (e,1 —k) — k(u)* Ly, (€, 1 — k), (7

where €, is a locally constant function defined by &,(g) = €(ug), forall g € A x U.

S Approximation to p-adic zeta functions

We get a sequence of elements in certain group rings which essentially approximate
the abelian p-adic zeta functions {y. These group rings are obtained as follows.
Recall that k is the p-adic cyclotomic character of F. Let f be a positive integer
such that k?~1(Z) = 1+ p/Z,,.

Definition 5.1 Let U CV be in S(¥,Z) such that U is normal in V. Define the map
j oy j i
O LplA x U™ [ZV) [ (p") = Zp[A x U /2] [ (pT),

given by
X Z gxg_l.
gev/U

Put T,}/J- = im(O'b/j) and denote Tgffu simply by Ty ;.

Lemma 5.2 Forany U € S(¥,Z), we have an isomorphism

A(UP) 5 1im Z,[A x U /2] [ (p ),
Jj=0

IfU CV inS(9,Z) are such that U is normal in 'V, then under this isomorphism TL‘,/
maps isomorphically to lim Tl‘//, -
J

Proof: We prove the surjectivity first. Given any

(x1) € im Zy[4 x U 27} (),
iz

we construct a canonical £; € Z,[A x U% /ij] as follows: for every 7 > j, let X, be
the image of x; € Z,[A x U /ZP"| /(p! ™) in Z,[A x U /ZP"] /(p/+!). Then (%)

forms an inverse system. We define %; to be the limit of %, in Z,[A x U /ZP']. The
tuple (%;);>0 forms an inverse system. We define x to be their limit in A(U).
This is an inverse image of (x;);>0 in A(U%). This construction also proves the
injectivity of the map.

To prove the second assertion we use the following exact sequence
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0 — Ker(o}) ;) = Z,[A x U 2P|/ (p"*) = T ; — 0.
Passing to the inverse limit over j gives

0 — lim Ker(cr&j) — AU — lim TL‘,/J — 0.
J J
Exactness on the right is because all the abelian groups involved are finite. Hence
Ty =limT) ;. O
J

Proposition 5.3 (Ritter-Weiss) For any j > 0, any positive integer k divisible by
[F(up) : F] and any U € S(9,Z), the natural surjection of A(U%) onto Z,[A x
U< /zP1/(p'7), maps (1 —u)ly € A(U®) to

Y AW 1-k)k(x)x (mod p/T).
xEU“b/ZI’j
In particular, we claim that the inverse limit is independent of the choice of k. Also

note that since x is a coset of ZIFT in A x U, the value x(x)* is well defined only
modulo p'*J.

Proof: Since {y is a pseudomeasure, (1 —u){y lies in A (U??). We prove the propo-
sition in 3 steps: first we show that the sums form an inverse system. Second we
show that the inverse limit is independent of the choice of k. And thirdly we show
that it interpolates the same values as (1 —u){y.

Stepl: Let j > 0 be an integer. Let

T ZplA x U )20 ) () = Zy[A x U /20 (pT),

denote the natural projection. Then

n( Y ALY —k)K(x)_kx)

x€AxUab /zplT!

= Z ( Z AZ(5(X>7 1— k) K‘(x)fkn(x)> (mod pf+j)

yeAxUab [zl xeyzrl jzri T

= ¥ (0% X ayeY.1-0)(mod p )

yeAxUab jzp! xezr! jzrit!
= Y AEEBY 1-k)k(y) Fy(mod p/ ).
yeAxuab jzp!

Here the second equality is because for any x € A x U% /Z”j+1 we have x(x)* =

k(y)*(mod p/*/) if 7(x) = y. This shows that the sums form an inverse system.
Step2: The inverse limit would be independent of the choice of & if we show that
for any two positive integers k and k’ divisible by [F(u,) : F], we have
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Y ALY 1 —k)x(x) Fx = Y AL (W1 —K)x(x) ™ x(mod p/ ).
g xeAxU

xXe
zr! v

Or equivalently that,
AL (89,1 K)k(x) ™4 = A% (8,1~ K)k(x) ¥ (mod p/*), ®)

forallx € A x U4 /ij. Choose a locally constant function 1) : A x U% — Z, such
that nlFHp)F] = «lF(4p):F](mod pf+7). Define the functions & and &y from A x U%
to Q, by

_ 1 —k 5 (x)
& = Wn (x) 6™,
and {
- ¥ 5
& piti ) o
Then the function (g,k*~" — g k¥ 1) takes values in Z,. Hence the congruence (8)
is satisfied by [Del80], theorem 0.4.
Step3: Let
¢, = lim Y ANSW,1—k)K(x) Fx(mod pf+f)) cA(UD).
720" veaxuab zv!

Let £ be a locally constant function on A x U% factoring through A x U%/ 77 for
some j > 0. Note that for every i > j

Y ABGYW, 1-k)e(x)

xeAxUab jzp'

= Y L9 1-Rew) - Y k() Ly, (80,1 -k)e(x)
XEAXUD /7P x€AxUDb /77!

= Y Iy@Wi-ke- Y s Ly, (8", 1-ke()
XEAXUD /7P XEA XU /77

= Y LyYW1-kex) - Y x()fLs, (89,1 k)e(ux)
XEAXUD /7P XEA XU /77

=Ly, (g,1 —k) — k(u)*Ly, (4,1 — k)

=Ap(e,1—k).

Then by definition of §,, for any i > j, we have

Gikey= Y AB(SW,1—k)e(x)(mod p/ )
xEAxUb /Zp!
= Al (g,1—k)(mod p/ ).
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On the other hand, by definition of the p-adic zeta function or the construction
of Deligne-Ribet (see discussion after theorem (.5 in [Del80]) we have

(1- )Gy ('e) = Al (e,1 ).

Hence (1 —u)ly = §, because they interpolate the same values on all cyclotomic
twists of locally constant functions. This finishes the proof. O

6 A sufficient condition to prove the basic congruences

Lemma 6.1 Let y be a coset of ZP in A x U%. Then for any u € Z and for any
g €Y, we have

u u g |
ALY 1—k) =AY, (88 ) 1—k).

Proof: It is sufficient to show that {(8%), 1 —k) = C(S(gy(”, 1 — k) because of the
following:

AB(ED,1—k) = L(8Y),1— k) — W) (8,1 k),

Al (8@ 1y = 580 1 — k) — kA (W (81— k).

But
5L£Y) ) and 3&8%71) — s esh) — sleu v

Now to show that £(80),1—k) = £(8®@s™") 1 —k), note that for Re(s) > 1

clsts =g 2

a

8 (gas)

Since § (5<g3’g71>,s) and £ (80, s) are meromorphic functions agreeing on the right
half plane, we deduce C(5<gyg71)7 1—k)=¢(8W,1—k), as required. O

Proposition 6.2 1o prove the congruence (1) in proposition (3.1) it is sufficient to
prove the following: for any j > 1 and any coset y of ZP in A x U fixed by V and

anyucZz
AY (W1 —k) = A%(8Y) overy), 1 — pk)(mod pZ,) 9)

for all positive integers k divisible by [F () : F.

Proof: By lemma 5.3 the image of (1—uP){y in Z,[A x U /ZP']/(p/+i~ 1Y is
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Y Ay (Y, 1-k)k(y) *y(mod p/ ). (10)
yeAxuab jzp!

And the image of (1 —u){y in Z,[A x V“b/Zijl]/(pf‘”_l) is

Z A{}(S(XL 1 _pk)’((x)ipkx(mod pf+j71).

xeAxvab/zpi !

Let V' be the kernel of the homomorphism very, : V¥ — U%. Then V/NZ = {1}
which implies that the map

Ax V) zZP T A x Ut zP
induced by ver}, is injective. Moreover k*(V’) = {1}. Hence the image of very, (1 —
w)Gv) = (1—uP)vert;(§v) in Zy[A x U /2P| /(pT 1) is
)y AP (8,1 = ph)x(x) P very (x)(mod p/ /1),
xeAxvab y1zpi™!
which can be written as

Y AUSY over,1— pk)x(y) *y(mod p/ i1 (1)
yeAxUab /zp!

because if y ¢ Im(ver};), then ) overy, = 0 and if y = ver};(x), then k(y)* =
x(x)Pk. Subtracting (11) from (10) gives

Z (AF/P(&()’), 1—k) —A“}(s(y) overX,, 1 —pk)) K(y)_ky(mod pf+j—1).
yeAxUab /zv!
(12)

If y is fixed by V then (A;;”(w), 1—k) = AY(8D) overl), 1 — pk)) k(y) Ky = py =

0(mod TY j) under equation (9). On the other hand if y is not fixed by V, then the
full orbit of y under the action of V in the above sum is

Y (AY (8@ 1 k) — AR(E@E D overl), 1 - pk))k(gyve ") Fgvg™!

gev/u

(AP (SO) 1 1) AurSO) _ —k -1

—(AU (Y, 1—k)— Ay (oY overwl pk) Z gve
gev/u

€Ty .

The equality is by lemma 6.1. Hence the sum in (12) lies in TlKj(mod p/Ti=1). By

lemma 5.2 (1 —uP)(§y —very;(§v)) € TY . As u is a central element congruence (1)
holds. O
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Remark 6.3 Proofs of following three propositions are very similar to the above
proof.

Proposition 6.4 7o prove congruence (2) in proposition (3.2) it is sufficient to show
the following: for any j > 0 and any coset y of Z in A x U whose image in U/Zis
a generator of U/Z, and any u € Z

ALY (80),1— k) = 0(mod |(WyU),|Z,), (13)

for all positive integers k divisible by [F () : F].
Proof: Let v = u . Then by lemma 5.3 the image of (1 —v){y — of ((1—v)¢y) in
ZplA x U /Z7)/(p/ ) is

Y ALY 1—k)k(y)F (v — of (v)) (mod p/ ). (14)
yeAxU /zp’

If the image of y in U/Z is not a generator of U/Z, then y — @f(y) = 0. For y
whose image in U /Z is a generator of U /Z, we look at the P := WU orbit of y in
expression (14). It is

Y AE@E) 1~ k)x(gve ) Heve ™ — f (g ")) (mod p/H)
8EP/P,
=Ay (8 1-k)k() ™ Y (v —af(gvg™"))

gEP/Py

which lies in p7y ; under equation (13) and then the sum in expression (14) lies in
pTy,;. Then by lemma 5.2 (1 —v)(Sy — ©F(Sy)) € pTy. As v is a central element
congruence (2) holds. O

Proposition 6.5 7o prove congruence (3) in proposition (3.3) it is sufficient to prove
the following: for any j > 0 and any coset y of ZP' in A x U, and any u € Z

AU 1=k = Y A (89 0 gy, 1 — ph) (mod |(WyU)y|Z,),  (15)
VeP.(U)

for all positive integers k divisible by [F () : F].

j
Proof: Letv = MdU/P. By lemma 5.3 the image Of (1 - vp)CU in % iS
Y Ay (Y, 1—k)x(y) *y(mod p/ ). (16)
yEAXU JZP!

And the image of (1 —v){y in Z,[A xV zr’ p/ti=1) s
P

Y AY(EYW, 1 - pk)k(x) Phx(mod p/ ).
xeAxV jzp ™!
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Let V' be the kernel of the homomorphism ¢ : V — U. Then V' NZ = {1} which
implies that the map

AxV/V'zZr" " S Axu/zY

induced by ¢y is injective. Moreover, k*(V') = {1}. Hence the image of

Y aw((-m&)=0-") ¥ ev(&)

VeP(U) VeP(U)
in Z,[A xU/ZP )/ (pfHi~1) is

Z Z A“;(s(x>71—pk)K(x)*Pk(pv(x)(mOdprrjfl),

VEFR(U) xeaxv vz~

which can be written as

Y Y A8Yogy, 1 pk)k(y)Fy(mod p ) (17)
yeAxU jzr! VEPR(U)

because if y ¢ Im(q@y), then §©) o @y = 0 and if y = @y (x), then Kk(y)* = K(x)PX.
Subtracting (17) from (16) gives

Y (V-0 ¥ apEY ogv,1-pk))x(y) Fy(mod p i)
YEAXU /ZP! Ver(V)
(18)
Now we take the orbit of y in the sum in (18) under the action of P = Wy U. It is

(476 1-0— ¥ A8 ogy,1-pk) ) k()™ Y gve”!

VeP.(U) gEP/Py

which lies in Ty j(mod plti _1) under equation (15) and then the sum in expression

(18) lies in Ty j(mod p/*/~1). Then by lemma (5.2) (1 —v7)({u — Evep,v) 9v(Ev))
lies in Ty;. As v is a central element congruence (3) holds. O

Proposition 6.6 7o prove congruence (4) in proposition (3.4) it is sufficient to prove
the following: for any j > 0, any coset y of ZP in A x U and any u in Z
AYY (89,1 k) =AY (8% 0 @y, 1 — pk)(mod |(NgV /U),|Z,),  (19)

for all positive integers k divisible by [F(u,) : F).
To prove the congruence (5) in proposition (3.4) it is sufficient to show the fol-
lowing: for any j > 1, any coset y of Z"' in A x ZP and any u in ZP

uPl? /2| ul? /2|

AT (8D 1—k) = A5 (8Y) 0 9z, 1 — pk)(mod p|9 /Z|Z,),  (20)

for any positive integer k divisible by [F(u,) : F].
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Proof: We will only prove the first assertion. Proof of the second one exactly the

J
same. Let v = u?V. By lemma 5.3 the image of (1 —v?”){y in % i
Y A7 (Y, 1—kx(y) *y(mod p/TH). @1

yeAxU zr
And the image of (1 —v){y in Zp[A x v/zP ) (p ) s
Y AY(8Y, 1 - ph)x(x) Px(mod p/ ).
xeAxv jzri™!

Let V'’ be the kernel of the homomorphism @y : V — U. Then V' NZ = {1} which
implies that the map

AxV/V'ZV' S AxU/zY
induced by ¢y is injective. Moreover k*(V') = {1}. Hence the image of
ev((1=v)Gv) = (1=v")ov(Cv)
in Z,[A xU/ZV )/ (p/ 1) is
Y, AW, 1 ph)k(x) ey (x)(mod pTHTY),
x€AxV V/Zp 1
which can be written as

Y AYY oy, 1 - pk)k(y) Fy(mod p/ ) (22)
yEAXU [ZP’

because if y ¢ Im(@y), then §©) o @y = 0 and if y = @y (x), then k(y)F = x(x)P~.
Subtracting (22) from (21) we get

)y (Ai}p(cs(y), 1—k) =4y (8Y o gy, 1 - pk)) k(y) *y(mod p/i71). (23)
yeAxU /zr!

Now forafixedye A x U/ 7P we take the orbit of y in this sum under the action of
P=NgV/U.Ttis

(4 (89, 1-k) = 438 o gy, 1= ph) ) k(1) * X gvg”!
gEP/Py

which lies in Tlljvffv(mod pf +i ’1) under equation (19) and then the sum in (23) lies

in 77" (mod p/*/~1). Then by lemma (5.2) (1—v")({y — @(&v)) € T)*" . Asvis
a central element congruence (4) holds. O
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7 Hilbert modular forms

In this section we briefly recall the basic notions in the theory of Hilbert modular
forms. Let L be an arbitrary totally real number field of degree r over Q. Let $; be
the Hilbert upper half plane of L. Let X be a finite set of finite primes of L containing
all primes above p. Let k be the p-adic cyclotomic character of L. Let § be an integral
ideal of L with all its prime factors in X. We put GLQL (L®R) for the group of all
2 x 2 matrices with totally positive determinant. For any even positive integer k, the
group GL3 (L®R) acts on functions f : ), — C by

at+d
cT+d

f|k(?§’)(T)Zﬂ(ad—bc)k/zﬂ(07+d)kf( )

where A4 : L® C — C is the norm map. Set

Ino(f) = {(?Z) eSLy(L):a,del+fbec®D ! cecidl,

where D is the different of L/Q. A Hilbert modular form f of weight k on Igo(f)
is a holomorphic function f : $;, — C (which we assume to be holomorphic at oo if
L = Q) satisfying

fliM=f  forall M € Iy(f).

The space of all Hilbert modular forms of weight k on Ioo(f) is denoted by
My (oo (f),C). Since f is invariant under the translation 7 + T+ b (for b € D7),
we may expand f as a Fourier series to get the standard g-expansion

f(©) =c(0,/)+ Y c(u, /g,
u

where g1 runs through all totally positive elements in Oy and g = ¢*™"1/a( 2

8 Restrictions along diagonal

Let L' be another totally real number field containing L. Let #' be the degree of
L' over L. The inclusion of L in L’ induces maps $ % 9y and SLy (L®R) X
SLy(L’ ® R). For a holomorphic function f : ;; — C, we define the “restriction
along diagonal” Ry//, f : 51 — Cby Ry f(7) = f(7*). We then have

(R ye )M = Ry (f kM),
for any M € SLy(L®R). Let f be an integral ideal of L, then R;//; induces a map

RL’/L : Mk(l—bo(fOL’)7C) - M,/k(l—bo(f),((j).
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If the standard g-expansion of f is

C(O7f)+ Z c(V,f)qZ/,

veoz

then the standard g-expansion of Ry f is

0N+ Y (X ewhn)

peof “viry (v)=p

Here O{ and Ozr, denotes totally positive elements of Oy and Oy respectively.

9 Cusps

Let Ay be the ring of finite adeles of L. Then by strong approximation

—

SLy(Ar) =TIoo(f) - SLa(L).

—

Any M € SLy(Ay) can be written as MM, with M| € Igo(f) and M, € SL,(L). We
define f|M to be f|M>. Any o in A} determines a cusp. We let

fla=11c (6 01 )-

The g-expansion of f at the cusp determined by o is defined to the standard g-
expansion of f|y. We write it as

c(0,a,f)+ Y c(u, o, f)qh,
m

where the sum is restricted to all totally positive elements of L which lie in the
square of the ideal “generated” by «.

Lemma 9.1 Ler f be an integral ideal in L. Let f € My(Ioo(fO;/),C). Then the
constant term of the q-expansion of Ry f at the cusp determined by o € Al is
equal to the constant term of the g-expansion of f at the cusp determined by o* €
Afjie.

C(O7 OC,RL//Lf) = C(O7 Ot*,f).

Proof: The g-expansion of f at the cusp determined by a* is the standard g-
expansion of f|q+. Similarly, the g-expansion of Ry /1 at the cusp determined by
« is the standard g-expansion of (Ry//. f)|e But (Ryy/.f)|a = Rprjr(flar). O
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10 A Hecke operator

Lemma 10.1 Let B € Oy, be a totally positive element. Assume that § C BOr. Then
there is a Hecke operator Ug on Mi(Ioo(f),C) so that for f € Mi(Ioo(f),C) the
standard q-expansion of f|,Ug is

c(0,£)+ Y c(uB.f)d; -
n

Proof: The claimed operator Uy is the one defined by (g (1)) . Then

Ioo(f) (g (1)> Ioo(F) = UpToo () <(1)Z> :

where b ranges over all coset representatives of $D in © and the union is a disjoint
union. Define

() = BT 1 (o ) 0

where b runs through the set of coset representatives of B in ©. Then

I (®) = B T 1 (o ) 0
= B BN B) L)
b
= G/V(ﬁ)il Z (C(O7f) +ZC(,U7f)ezm"L/@(ﬂ(ﬁflT+[3*1b)))
b H

= c(0.f) + A (B) " L, )emratelPI (Y 2minalt/p)
u b

The sum ¥, ¢>%""/2#/B) — 0 ynless i € BOy. On the other hand, if yt € BO,, then
Y, 2T a(kb/B) — A (B). Hence we get

f|kUﬁ (T) = C(va) +ZC(#B>JC>‘1§
U

11 Eisenstein series

The following proposition is proven by Deligne-Ribet ([Del80], proposition 6.1).
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Proposition 11.1 Let Ly be the maximal abelian totally real extension of L unram-
ified outside X. Let € be a locally constant C-valued function on Gal(Ls /L). Then
for every even positive integer k

(i) There is an integral ideal § of L with all its prime factors in X, and a Hilbert
modular form Gy ¢ in Mi(Ioo(f), C) with standard q-expansion

27Le 1—k)+ ) (Ze(ga)N(a)"*l)qfa
m a

where the first sum ranges over all totally positive L € Oy, and the second sum
ranges over all integral ideals a of L containing L and prime to X. Here g, is the
image of a under the Artin symbol map. N(a) denotes norm of the ideal a.

(ii) Let g-expansion of Gy ¢ at the cusp determined by any o € A[ has constant term

N¥((@))27"L(gg, 1 — k),

where (@) is the ideal of L generated by o and N((a)) is its norm. The element g is
the image of (@) under the Artin symbol map (see for instance 2.22 in Deligne-Ribet
[Del80]). The locally constant function €, is given by

€ (h) = €(gh) forallh € Gal(Lg/L).

12 The g-expansion principle

Let f € Mi(Ioo(f),Q)) ie. c(u,a, f) € Q for all p € O U{0} and all @ € A[.
Suppose the standard g-expansion of f has all non-constant coefficients in Z,) and
let o € A/ be a finite adele. Then

c(0,f) — N(a,) *c(0,a, ) € Z).

Here a, € L®g Q) is the pth component of & and N : L&®g Q, — Q, is the norm
map. This is the g-expansion principle of Deligne-Ribet (see [Del80] 0.3 and 5.13-
5.15).

Remark 12.1 Hence if u is the image in Gal(Ly /L) of an idéle o, under the Artin
symbol map, then using the equation N((o))*N(a,) ™% = k(u)k, we get

¢(0,Gre) —N(0p) (0,0, Gre) =27"A%(e,1—k),

for any positive even integer k.
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13 Proof of the sufficient conditions in section 6

Proposition 13.1 The sufficient condition in proposition (6.2) for proving proposi-
tion (3.1) holds. Hence M3 holds.

Proof: We must show that for any U C V in S(¢,Z) such that [V : U] = p and

any j > 0, any coset y of Z” in A x U fixed by V and any u in Z, we have the
congruence

AY (89 1—k) = AL(SY) overl, 1 — pk)(mod PZp),

for all positive integers k divisible by [F(u,) : F]. Choose an integral ideal f of Fy
such that the Hilbert Eisenstein series G, 5, and G, 50)over)» given by proposition
(11.1), on $HH, and $HF, respectively are defined over Igo(fOr,) and Igo(f) respec-
tively. Moreover, we may assume that all prime ideals dividing § lie in X5, and

f C pOF,. Define E by
E= RFU/FV (Gk,g(y) ) |pkUP - kaﬁ(}')overx'

Let o € A;V whose image in A x V® under the Artin symbol map coincides with
u. Then by lemma 9.1 and remark 12.1

¢(0,E) — N(a,) P*¢(0,,E)

=27VAW (D) 1 —k) =27V AL(8Y) overh |1 — pk).
Note that the image of a* in A x U under the Artin symbol map is u”. Since
270 = 27"V(mod p) it is enough to prove, using the g-expansion principle, that
the non-constant terms of the standard g-expansion of E all lie in pZ,) i.e. for all
K€ O,

(W E) = c(Ph Ry 1, (Gy 50))) = (15 G g 501 over)
=Y 8Y(ge)N(b)* ' =Y 6" (ga0y, IN(a)™ " € pZ,)
(b,1) a

Here the pairs (b, 1) runs through all integral ideals b of F; which are prime to X,
and contains the totally positive element 1 € Op;, and t7g, /5, (N) = pit. The ideal a
runs through all integral ideals of Fyy prime to X, and contains f. The group V /U
acts trivially on the pair (b, 7) if and only if there is an ideal a such that aOp, = b
and N € O, . In this case

59 (g)N(0)* " = 8" (ga0y, )N (a)!
=8 (g6) (N ()P "1 = N(a)* ")
€PZ(p)-
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On the other hand, if V /U does not act trivially on the (b, 1), then the orbit of (b, 1)
under the action of V /U in the above sum is

Y (89 (gges " IN(¥) )
gev/u

=V /UI8Y) (g6)N(b)""!

GpZ(p).

Here we use 8 (ggpg~!) = 8©)(gp) because y is fixed under the action of V. This
proves the proposition. O

Lemma 13.2 Let U € C(¥,Z) be such that P.(U) is empty. Let N be a subgroup of
NgU containing U but different from U. Then the image of the transfer homomor-
phism

ver: N U

is a proper subgroup of U.

Proof: Recall the definition of transfer map. Let g € N. Let {x,...,x,} be the dou-
ble coset representatives of (g)\N/U. Let m be the smallest integer such that g” € U.
Then a set of left coset representatives of U in N is

m—

m—1 1 m—1
{1’g7""g 7‘x17g'x1""7g xl?""'xn’g'xr”"'?g xﬂ}'

forall0 <i<m—1and1< j<n, wedefine h;;(g) € U by

8(g'xj) = g xjhij(g).
foraunique 0 <i <m—1and 1< j <n. Then

1 ifi<m-—2
hij(g) = {x;lg’”xj ifi=m—1

Hence ver(g) =[T}_, xjfl g"x;. If g ¢ U then g™ is not a generator of U /Z because
P.(U) is empty. Hence ver(g) is not a generator of U/Z and the image of ver is a
proper subgroup of U. On the other hand if g € U then

Since Z is central and both U/Z and N/Z are p-groups, the action of N/Z on the
subgroup of order p of U/Z is trivial. If p” is the order of g in U/Z, then N acts

trivially on g” ' (mod Z). Hence

ver(g)"’ri1 = H x_lgprilx: H g"’ri1 eZ.
XeN/U XeN/U
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Hence ver(g) is not a generator of U/Z and hence the image of ver is a proper
subgroup of U. 0O

Proposition 13.3 The sufficient condition in proposition (6.4) for proving proposi-
tion (3.2) holds.

Proof: We must show that for any U € C(¢,Z) such that P.(U) is empty and any

Jj >0, any coset y of ZP in A x U whose image in U /Z is a generator of U/Z and
any u in Z we have

A" (89,1~ k) = 0(mod |(WyU)y|Z,),

for any positive integer k divisible by [F(u,) : F]. Choose an integral ideal | of
OFy,,, such that the Hilbert Eisenstein series G, g(,) over ), given by proposition
(11.1), is defined on Io(fOF, ). Define

E = RFU/FNgU (Gk_ﬁ(.\’) ) .

Then E is a Hilbert modular form of weight diyk on Iy (f). Let & be a finite idéle of
Fy,u whose image under the Artin symbol map coincides with u. Then by lemma
9.1 and remark 12.1, we have

c(0,E) — N(a)~ke(0, ., E) = 270 ALY (8) 1 — k).

Hence, using the g-expansion principle, it is enough to prove that the non-constant

terms of the standard g-expansion of E all lie in [(WyU),|Z,) i.e. for any p €

+
Fnyu°

c(WE)= Y, 8V (go)N(®)" € |(WyU)y|Z,),
(b,v)

where (b, V) runs through all integral ideals b of Fiy which are prime to Zr, and
Vv € b is totally positive with t7g, /szgu(v) = dy . The group (WzU), acts on the
pairs (b,Vv). Let V be the stabiliser of (b, V). Then there is an integral ideal ¢ of
Fy = Fl‘,/ and a totally positive element 1) of O, such that cOp, =band v =n.1If
V is a nontrivial group then §)(g,) = 0 by lemma (13.2). On the other hand, if V
is trivial, then the (WgU), orbit of (b, v) in the above sum is

Y 89 (ggeg IN(b)F!
ge(WgU)y
=| (WU )8 (gu)N ()"
E‘(WgU)y|Z(p).

Here we use 8 (ggpg ') = 8©)(gy) for any g € (WiU),. This proves the propo-
sition. 0O
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Proposition 13.4 The sufficient condition in proposition (6.5) for proving proposi-
tion (3.3) holds.

Proof: We have to show that for any U € C(¢,U) such that P.(U) is non-empty,
any j > 0, any coset y of Z”’ in A x U and any u in Z, we have

AEY (D 1=k = Y AYY (8 0 gy, 1 — pk)(mod |(Wel),|Z,),
VeP(U)

for any positive integer k divisible by [F(u,) : F].

Choose an integral ideal § of Fy,y such that the Hilbert Eisenstein series G, )
and G ok, 50)ogy given by proposition (11.1), on g, and §)p, respectively are de-
fined over I (fOr, ) and I (fOF, ) respectively for every V € P.(U). We may as-
sume that all prime factors of f are in ZFN% yand f Cdy OFN% y - Define

E = Ry /v, v (G so)laukUay = Y. Ry /iy, 0 (G 50100y kU /-
VeP.(U)

Then E € My, (Io(f),C). Let a be a finite idele of Fy,y whose image under the
Artin symbol map coincides with . Then by lemma 9.1 and remark 12.1

¢(0,E) — N(a,) "k c(0, . E)

—2 A (S 1 —k)— Y 2P AR (8D 0 gy, 1 ph).
VeP:(U)

As 270 =27"0/P(mod ryy) and ry > |(WeU)y),

27U AKY (8D 1 — k) — y 270/ ALY (D) 6 gy 1 — pk)
VeP(U)

21 (Agfv B 1—k) =Y A" (59 0 gy, 1 —pk)) (mod |(WyU)y|Z,).
\%4

Hence using the g-expansion principle it is enough to prove that the non-constant
terms of the standard g-expansion of E all lie in |(WgU),|Z,) i.e. for all totally
positive U in OFN(jU’ we have

C(/.i,E) = C(dUl’hRFu/FNgU (Gk75(y))) - Z C(dUl’l'/p7RFv/FN%U (G[)IQS('V)O(DV))
VeR(U)

= Y DN O = Y Y 69 (ga0,, IN(@)R ! € (W) 12
(b,m) VeP(U) (a,v)

Here the pair (b, 7) runs through all integral ideals b of F; which are prime to Zg,
and 1 € b is a totally positive element with trg, /g, (1) = dypt. The pair (a, V)
runs through all integral ideals a of Fy which are prir;le to X, and v € ais a totally
positive element with 17, [Fygu (v) =dyu/p. The group P := (WgU), acts on the
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pairs (b,1) and (a, V). Let W C P be the stabiliser of (b, 7). Then there is an integral
ideal ¢ of Fy := Fl‘}v and a totally positive element y in Op,, such that cOp, = b and
N = 7. Then the P orbit of (b,n) in the above sum is

Y (69eos V@ = Y 80 (ggeg ()
gEP/W WDOVeP.(U)
—[P/W|8) (g6) (N(8)* " = N(b)* ")
=|P/W|5%) (gp) (N(c)\W\(kfl) _N(c)\Wl(pkfl)/p)
€|P|Zp).

The second sum is 0 if W is trivial and in that case inclusion in the last line is
trivial. The first equality uses 8©)(ggpg ') = 80 (gp) as g € P. The last inclusion
is because N(¢) ! = N(c)"I/?(mod |W|). This proves the proposition. 0

Proposition 13.5 The sufficient conditions in proposition (6.6) for proving propo-
sition (3.4) hold.

Proof: We just prove the sufficient condition for congruence (4). Proof of the other
sufficient condition in proposition (6.6) is similar. We must show that for any U €
C(4,Z) and V € P.(U), for any j > 0, any coset y of Z”' in A x U and any u in Z

ALY (8D 1—k) = AV (89 0 @y, 1 — pk)(mod |(NgV /U ), |Z,),

for any positive integer k divisible by [F(u,) : F].

Choose an integral ideal § of Fy, v such that the Hilbert Eisenstein series G, g)
and ka’ 50ogy > given by proposition (11.1), on 5, and Hp, respectively are de-
fined over I (fOr, ) and Ig(fOF, ) respectively. Moreover, we may assume that all
prime factors of f are in 2p,_, and § C pdy Op,, . Define

E =Ry jry,y (G 500 | paykUpdy = Ry /B,y (G 5010y ) patv iUy

Then E € My,q,x(Ioo(f),C). Let « be a finite idele of Fi,y whose image under the
Artin symbol map coincides with u. Then by lemma 9.1 and remark 12.1

¢(0.E)—N(ay) P e(0,00,E) =277 4™ (89, 1—k) =27V A (50 0 gy, 1 pi).

As 27V =27"V(mod ry) and ry > [(NgyV /U)y

s

270 Al (80,1 k) — 27 A (8% 0 gy, 1~ ph)
v (A;;""V (69,1 — k) — A%V (8D 6 gy, 1 — pk)) (mod |(NgV /U )y|Z,).
Hence using the g-expansion principle it is enough to prove that the non-constant

terms of the standard g-expansion of E all lie in [(NgV /U ),|Z,) i.e. for all totally
positive U in OF/\@V we have
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c(u,E) = c(pdvu, RFU/FM,V(Gk 500)) = c(dviL R, 1y (G 50004, )
=Y 8% (go)N( Z 8 (2a0p, IN(@)P*" € [(NgV JU)y|Z )

Here the pairs (b, 1) run through all integral ideals b of F; which are prime to X,
and 1 € b is a totally positive element with trg, /FN¢V(n) pdy 1. The pairs (a, V)
run through all integral ideals a of Fyy which are prime to Xf, and v € a is a totally
positive element with 17, /FN@V( ) = dv . The group P := (NgV /U), acts on the
pairs (b,71) and (a, V). Let W C P be the stabiliser of (b,7). Then there is an integral
ideal ¢ of Fyy := FLEV and a totally positive element y of Op,, such that cOf, = b and
N = 7. First assume that W is a non-trivial group. Then the P orbit of (b,17) in the
above sum is

Y (89 (sgug V(04! — 80 (ggug N (%))
gEP/W

=1p /W[5 (g) (N(0)* ! V()" )
=|P/W|5%)(g6) (N(0) V16 — (o) V(P11
€|P/W‘Z(p)

On the other hand if W is a trivial group then the P orbit of the pair (b,7) in the
above sum is

Y 69 (ggog ™ IN(68) ! =P8V (g5)N(b)< .
g€eP

In both cases the first equality uses §©)(ggpg™') = 80 (gp) for g € P. In the first
case we also use the fact that N (c)"! = N(c)"I/?(mod |W/|). This proves the propo-
sition. 0O

14 Proof of M4. from the basic congruences

We have proved the basic congruences in previous subsections. We want to deduce
M4 from these congruences. However, we cannot do it directly for the extension
F../F. We use the following trick: we extend our field slightly to Fi. D F., such that
F../F is an admissible p-adic Lie extension satisfying the Iwasawa conjecture and
Gal(Fo /F) = A x4 with 9 = H x4, where H is a cyclic group of order |¥ /Z|. We
know the basic congruences for F../F which we use to deduce the M4 for Fi./F.
This proves the main conjecture for F,/F and hence implies the main conjecture
for Foo /F.
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14.1 The field F.,

Choose a prime [/ large enough such that / = 1(mod |¢/Z]|) and Q(1;) N F. = Q.
Let K be the extension of Q contained in Q(y) such that [K : Q] = |4 /Z|. Define
F =KF and F.. = FF... Then

Gal(F../F) = Gal(F /F) x Gal(FoJF) =-H x Ax 9 =1 A x 4.

14.2 A key lemma

We extend the field F.. to F., as we need the following key lemma. For any U €
C(¥,Z), define the integer iy by

iy =maxyccg z){lV :UlUCV}
Lemma 14.1 Let U € C(9,Z). IfU # Z, then
Ty C pit A(U).

And ~
T; =19/Z|A(Z).

Similar statements hold for Ty s and TZ

Proof: Case 1: U/Z C H. Then iy = [H : (U/Z)] and NyU = 9 acts trivially on
A(U). Hence

Ty =4 :UA(U) = |9/2|[f : (U/2)]A).

If U # Z, then |¢/Z| > piy. Hence the claim.

Case2: U/ZZ H.LetU/Z be generated by (h,h), with h € H and h € 4/Z. By
assumption 2 # 1. Let V € C(¥,Z) such that [V : U] = iy. Let (ho, ho) be a generator
of V/Z such that 716” =hand hf)U = h. Now note that

H x (hy) C Ng (U /Z)

acts trivially on A(U). As U/Z C H x {h) this implies that
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|H x (ho)|

/2]
Ao
=z W
= |H|iyA(U)

C pis A(U).

Ty C A(U)

The last containment holds because |[H| > piy. The assertion about T is clear.

14.3 Completion of the proof
Lemma 14.2 Forany U € C(?f, Z) and any 0 < k < p— 1, we have
Tt
Ly — ap(&u) € P%

Hence L/ TIVZ) @b (Cu) € 1+ pTy s/iv.

O

Proof: We use reverse induction on |U /Z|. When U /Z is a maximal cyclic subgroup
iy = 1 and the required congruence is proven in proposition 3.2. In general we use

the congruence in proposition 3.3 so that

G-ofG)= ¥ (ev(&)-of(ev(en))

VeP.(U)

= Y ov(&y —of(&y))(mod pTy.s),

VeP:(U)

for appropriately chosen wy and wy. But by induction hypothesis
Tys
Gy — oy (Gv) ep—=
iy
Now for any V € P.(U), note that

- Tys
(Pv( Z xTV7gx 1) Cc —.
xeNGU INZV p

This finishes the proof of the first assertion noting that iyy = piy. Hence
p—1
/(11 ol (L)) € 1+pTys/iv.

k=0

But since it is invariant under action of the group Gal(Q,(1,)/Q,), we get

(24)

(25)
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p—1
&b/ (TT @b (&) € 1+ pTusiv.
k=0

O
Using the above lemma

log( w’]jC(CU)) =1- col]j(gu)mod (pﬁ/i(/)z,
U Cu

which implies

(mod (pTy /iv)?).

log ( k= OwU(CU)) PgU*Zf;(;wz]}(CU)
& Cu

Then

og(HVGR (aV(CV»)
&/ - OwU (Sv)
y (P sl obov&)  orl =X joh(@))

Ver.(U) ov(&v) Cu

Pov (&)~ Xio @ (v (G))\ g (P9v(Ev) — i of ()
B VE§(U) ( ov(Lv) ) ; ( v )
_ v o) - e ev@) G -ev(&) o~
=2, (@) (mod o)

Here we use ( Ty Jiy)? C pTy as implied by lemma 14.1. The second congruence
above uses congruence 25. Now note that

Z of (ov(&y)) € pov(Tys/iv)  (by lemma 14.2)

and
Cv—ov(ly) € T;va (by congruence (4) and (5)).

Hence

(pov(&v)— Z o (ov (&) (Su —ov(&v))

€ pov(Tvs)/iv)- u’; CPTué :

Which in turn implies that
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Y ((oow(a) - Zwu —ou(&)) € plus.

VeEP.(U)

Hence

HVeP ov(ay(Cv)) —~
[ e( 1.
os( cU/nk Tl (&) ) <ty

As log induces an isomorphism between 1 + pTU and pi}?, we have
[ver.w) ov(owv(Sv))
CU/Hk =0 wU(CU)

[yep. ) ov (o (Gv))
/T o (G)

l—l—pi";.

But by lemma 14.2 € 1+ pTy s/iy and

1+ pTy N1 +pTys/iv=1+plys.
Hence
Iy (PV(O‘V(CV))
Cu/nk 0 wu(CU)
When U # Z, this is the required congruence M4. When U = Z, note that

€1+ plys.

p=l .
H w7(8z) =
k=0
This can be seen either by interpolation properties of Hf;é ®%(¢z) and &. Hence

we get
[Tver.(z) ov(ay (Gv))
&2 /%

Now use the basic congruence (5) which says §y = ¢z(z) (mod p|9/Z]). Note that
Tzs =9 /Z|A(Z)s. Hence

[ver.z) ov (o (Sv))
&/ 92(&2)

This is M4 for U = Z. This finishes proof of the main conjecture.

el +pszs.

el +pTZ,S~
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