Prof. Dr. Otmar Venjakob Dr. Michael Fütterer Milan Malčić

Algebraische Geometrie

10. Übungsblatt

25.06.2019

Aufgabe 1 (4 *Punkte*). Sei k ein alebraisch abgeschlossener Körper, $A = k[X, Y]/(X^2 - Y^3)$ und $V = \operatorname{Spec} A$. Die quasikohärente Garbe auf V, die zu dem A-Modul $\Omega_{A/k}$ gehört, wird mit $\Omega_{V/k}$ bezeichnet. Bestimme den Halm von $\Omega_{V/k}$ an jedem Punkt von V. Ist $\Omega_{V/k}$ lokal frei?

Aufgabe 2 (4 *Punkte*). Sei k ein (nicht notwendig algebraisch abgeschlossener) Körper, $B = k[T_1, \dots T_n]$ und $\mathfrak{m} \subseteq B$ ein maximales Ideal. Zeige, dass der kanonische Homomorphismus

$$\delta \colon \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega^1_{B/k} \underset{B}{\otimes} B/\mathfrak{m}$$

injektiv ist.

Aufgabe 3 (4 *Punkte*). Sei k ein algebraisch abgeschlossener Körper und B eine endlich erzeugte integre k-Algebra. In der Vorlesung wird die Äquivalenz der folgenden Aussagen gezeigt:

- (i) *B* ist ein regulärer Ring;
- (ii) B lässt sich schreiben als

$$B = k[T_1, \dots, T_n] / (f_1, \dots, f_m)$$

sodass die Gradienten ∇f_i linear unabhängig sind.

Zeige, dass diese Aussagen auch äquivalent sind zu

(iii) $\Omega_{B/k}^1$ ist ein projektiver *B*-Modul vom Rang dim *B*.

Erinnerung: Endlich erzeugte projektive Moduln sind lokal frei. Aussage (iii) bedeutet, dass die Lokalisierung $(\Omega^1_{B/k})_{\mathfrak{m}}$ frei vom Rang dim B ist, für jedes maximale Ideal $\mathfrak{m} \subseteq B$.

Aufgabe 4 (4 *Punkte*). Sei k ein algebraisch abgeschlossener Körper und B eine endlich erzeugte integre k-Algebra. Zeige, dass es ein $f \in B$ gibt, sodass B_f ein regulärer Ring ist.

Hinweis: Man könnte sich das Kriterium aus Aufgabe 3 zunutze machen.