Prof. Dr. Otmar Venjakob Dr. Michael Fütterer Milan Malčić

Algebraische Geometrie

2. Übungsblatt

29.04.2019

Aufgabe 1 (3 Punkte). Sei (X, \mathcal{O}_X) ein geringter Raum und $(\mathcal{F}_i)_{i \in I}$ eine Familie von \mathcal{O}_X -Moduln. In der Definition der direkten Summe $\bigoplus_i \mathcal{F}_i$ haben wir die definierende Prägarbe garbifiziert. Gib ein Beispiel an, welches zeigt, dass das wirklich nötig ist (wo also die definierende Prägarbe keine Garbe ist).

Aufgabe 2 (2+2+2=6 *Punkte*). Sei \mathcal{A} eine abelsche Kategorie und $f:A\longrightarrow B$ ein Morphismus in \mathcal{A} . Wir definieren das Bild von f als im $f:=\ker \operatorname{coker} f$ und das Kobild von f als $\operatorname{coim} f:=\operatorname{coker} \ker f$. Zeige:

(a) Ein Morphismus $i: B \longrightarrow C$ in $\mathcal A$ ist genau dann ein Monomorphismus, wenn gilt: Für jeden Morphismus $x: A \longrightarrow B$ gilt

$$i \circ x = 0 \iff x = 0.$$

- oder -

Ein Morphismus $p: B \longrightarrow C$ in $\mathcal A$ ist genau dann ein Epimorphismus, wenn gilt: Für jeden Morphismus $x: C \longrightarrow D$ gilt

$$x \circ p = 0 \iff x = 0.$$

(Beide Aussagen sind wahr, die Beweise sind im Wesentlichen identisch. Daher ist nur eine der beiden Aussagen zu zeigen. Welche, könnt ihr euch aussuchen!)

- (b) Ein Morphismus in $\mathcal A$ ist genau dann ein Isomorphismus, wenn er ein Monomorphismus und ein Epimorphismus ist.
- (c) f faktorisiert sich eindeutig als

$$A \xrightarrow{\operatorname{coim} f} Q \xrightarrow{f'} I \xrightarrow{\operatorname{im} f} B.$$

Aufgabe 3 (3+2=5 *Punkte*). Sei (X, \mathcal{O}_X) ein lokal geringter Raum und $\mathcal{F}, \mathcal{G}, \mathcal{H}$ seien \mathcal{O}_X -Moduln.

- (a) Zeige, dass $(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})_x = \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{G}_x$ für alle $x \in X$ gilt.
- (b) Überlege dir, welche universelle Eigenschaft das Tensorprodukt von \mathcal{O}_X -Moduln erfüllen sollte, und zeige, dass das in der Vorlesung definierte Tensorprodukt diese erfüllt.