
ON UNITARY GROUPS ASSOCIATED TO DIVISION

ALGEBRAS OF DEGREE THREE

KATHRIN MAURISCHAT

Abstract. We study rational points of unitary groups associated to involutions
of the second kind on central division algebras of degree three. We characterize
the torsion points and show that special unitary groups do not contain hermitian
or skew-hermitian elements. We give criteria for S-arithmetic points.
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1. Introduction

This paper is concerned with results on unitary groups which arise from involutions
of the second kind on division algebras of degree three over a number field. Those
are inner forms of special unitary matrix groups SU3(H) defined by a hermitian
matrix H ∈ GL3. Albert [1] proved that simple division algebras D of odd prime
degree over number fields carry an involution α of the second kind if and only if
they have a maximal subfield which is cyclic Galois not only over the center E but
over its subfield F fixed by the involution, and that these algebras are cyclic (see
section 2). Equivalently, D carries an involution of the second kind if and only if its
corestriction along E/F is trivial [6]. The unitary group U consists of those g ∈ D
such that α(g)g = 1, and the special unitary group SU consists of those elements
which additionally are of reduced norm one, Nrd(g) = 1.
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Although there exist far-developed theories for division algebras, like local-global
principles, cohomology theories, or Brauer-Severi varieties, they remain not to be
understood comprehensively apart from quaternion quaternion algebras. In par-
ticular, the structure of the unitary groups is rather unstudied. For example, it is
a non-trivial task to find explicit S-arithmetic points on the unitary groups for a
prescribed set of primes S.

Our results can be summarized in two groups. The first one is concerned with
points of finite order in unitary groups. It is a simple result that in arbitrary
odd degree the special unitary group SU does not contain elements of even order
(theorem 3.1). But consequently, reflections in special unitary groups of complex
vector spaces of odd dimension can never be realized as rational points on division
algebras. More precisely:

Corollary 1.1. Let d > 0 be an odd integer. Let H be a hermitian matrix in
Md(C), and let SUd(H) = {g ∈ SLd(C) | ḡ′Hg = H} denote the associated special
unitary group. Let r ∈ SUd(H) be a reflection. Then r is not contained in any global
division algebra (D,α) of degree d with involution α of the second kind such that for
some infinite place v, SUv ∼= SUd(H). Similarly, no hermitian or skew-hermitian
element of SUd(H) arises in this way.

Making the reasonable assumption that E is an imaginary quadratic extension over
the totally real field F , the elements of finite order in unitary groups of division
algebras of degree three can be characterized precisely. A unitary element g has
finite order if and only if it generates a cyclic extension F [g] over the ground field
F fixed by the involution (theorem 3.2). In particular, in case F = Q the special
unitary group SU will be torsion free as long as E is not Q(

√
−3) (corollary 3.3).

The second group of results is concerned with S-arithmetic subgroups of the special
unitary group. For this, the structure of the algebra D and its involution α must
allow an integral model. We use the special cyclic presentation of D

D = L⊕ Lz ⊕ Lz2 ,

where L is C6-Galois over the totally real field F , the center of D being an imaginary
quadratic extension E of F , and assume the cyclic presentation as well as the
involution is defined over oF . Then the special unitary group SU gives rise to a
group scheme SU defined over the integers oF . A criterion for this is given by
proposition 3.4. We also give a criterion for definiteness in proposition 3.5.
Arithmetic subgroups provide prototypes of discrete subgroups of the local groups
SU(Fp), which under mild assumptions, such as the compactness of SU(Fv) at some
infinite place v ([4], [5]), are known to be cocompact. While they arise at many
points in modern mathematics, there is no explicitly computed example of a discrete
cocompact global subgroup for the special unitary groups in question so far.
Searching for non-trivial points on SU(F ), the cyclic structure of D suggests a
number of simple choices. Unitary monomial elements lzj , l ∈ L× are discussed in
propositions 4.1 and 4.5. In particular, if S is a set of prime ideals p not dividing
2, which are inert in E but split in L, and such that Fp does not contain the third
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roots of unity, then the single unitary monomials with l ∈ oL(S) are the trivial ones
already contained in o×E . Prime ideals p satisfying this assumption lead to proper
special unitary groups SU3(Fp), i.e. non-split and non-isomorphic to SL3(Ep). The
assumption on Fp not containing the sixth roots of unity may seem artificial at a
first glance. But if E is chosen to be the Kummer extension F (ζ3), this is satisfied
for all inert primes. The result implies that non-trivial elements of the promising
S-arithmetic subgroups SU(oF (S)) belong to non-obvious subfields of D.
Results for unitary elements l0 + l1z + l2z such that the coefficients Lj are eigen-
vectors under the conjugation τ are discussed in proposition 4.2.
Let ρ be a generator of Gal(L/E). There is an obvious extension of ρ to D by
action on the coefficients, which coincides with conjugation by z. If the involution
is defined reasonably, the fixed points U(F )ρ and SU(F )ρ give rise to group schemes
themselves. By theorem 4.6, their S-arithmetic points are monomials, if S consists
of primes which are either inert or ramified in E such that Fp does not contain the
third roots of unity.

Our results give necessary criteria for the coordinates of rational unitary points
giving restrictions to their order and their denominators. We close with a concrete
example in section 4.3.

Acknowledgements. The author thanks Cristina Ballantine and Brooke Feigon
for their encouragement to publish the results in hand separately from the joint
work.

2. Involutions of the second kind

Let E/F be an extension of number fields of degree two, and denote by τ the non-
trivial Galois automorphism, which we often identify with conjugation τ(x) = x̄.
Let D be a central simple division algebra over E. An involution of the second
kind on D is an anti-automorphism α which restricted to the center E equals τ .
A division algebra carries an involution of the second kind if and only if the norm
algebra of D splits. In the special case that the algebra D has odd degree over
E, the exposition relies on the existence of a cubic subfield L ⊂ D such that its
discriminant is isomorphic to E [6, 19.14], or equivalently, such that M = Lτ is a
cyclic Galois extension of F . In particular, we will use the following explicit cyclic
presentation of D.

Theorem 2.1. [1] Let E/F be a quadratic extension of number fields and denote
by τ its non-trivial automorphism. Let D be a central simple division algebra over
E of degree three. Then D carries an involution of the second kind extending τ if
and only if the following two conditions are satisfied.

(i) There exists a maximal subfield L in D such that L/F is C6-Galois. Con-
sequently, a cyclic realization of D is given by

D = L⊕ Lz ⊕ Lz2,
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subject to the relations z3 = a ∈ E× and zl = ρ(l)z for all l ∈ L, where ρ is
a non-trivial element of Gal(L/E).

(ii) The norm equation NE/F (a) = NM/F (b) has a solution b ∈M = Lτ .

In this case, an involution α of the second kind is given by

α |L = τ and α(z) =
b

a
z2 .

Any other involution β of the second kind is conjugate to α by some element c ∈
M×,

β(d) = c−1α(d)c ,

for all d ∈ D, and in particular β(z) = c−1ρ2(c)α(z). Moreover, a cyclic algebra
as described in (i) is a division algebra if and only if a is not a norm of L, a 6∈
NL/E = NL/E(L×).

For the field extension L/F we have the following picture.

L

Lτ = M
2

<τ>

Lρ = E

<ρ>
3

F

3
<ρ>

<τ>

2

The structure constant a of D being unique up to factors NL/E(l) for l ∈ L, it
is always possible to choose a ∈ oE , the ring of integers of E. Notice that the
property a /∈ NL/E together with aā = NM/F (b) force a ∈ E \F . As otherwise a2 =

NM/F (b) ∈ NL/E , but then a = NM/F (b2a−1) belongs to NL/E , too. Throughout
this paper, we refer to a division algebra D with constants a ∈ oE \ oF and b ∈M
satisfying the special cyclic presentation of theorem 2.1.
We use the embedding of the cyclic algebra D = L⊕ Lz ⊕ Lz2 to the matrix ring
M3(L) defined by

L 3 l 7→

l ρ(l)
ρ2(l)

 , z 7→

 1
1

a

 .

We often identify g = l0 + l1z + l2z
2, lj ∈ L, with its image

(1) g = g(l0, l1, l2) =

 l0 l1 l2
aρ(l2) ρ(l0) ρ(l1)
aρ2(l1) aρ2(l2) ρ2(l0)

 .
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With respect to this embedding, the involution α is realized as

(2) α(g) =

 l̄0
ρ(ρ(b)ρ2(b)l̄2)

a
ρ2(ρ(b)l̄1)

a

ρ(b)l̄1 ρ(l̄0) ρ2(ρ(b)ρ2(b)l̄2)
a

ρ(b)ρ2(b)l̄2 ρ(ρ(b)l̄1) ρ2(l̄0)

 .

3. Unitary groups

Let D be a central division algebra with involution α of the second kind over E/F .
The involution α gives rise to a non-degenerate hermitian form h on D,

h : D ×D −→ D

(x, y) 7→ α(x)y .

That is, for all λ, µ, x, y ∈ D we have

h(xλ, yµ) = α(λ)α(x)yµ = α(λ)h(x, y)µ

as well as
α
(
h(x, y)

)
= α(y)x = h(y, x) .

The unitary group of this hermitian form is

U = {g ∈ D× | h(gx, gy) = h(x, y) for all x, y ∈ D} = {g ∈ D× | α(g)g = 1} ,
and the special unitary group

SU = {g ∈ U | Nrd(g) = 1}
is the subgroup of reduced norm one.

3.1. Elements of finite order. In case of odd degree we have the following simple
theorem, which has corollary 1.1 as a surprising consequence.

Theorem 3.1. Let D be a division algebra of odd degree with involution of the
second kind central over E/F .

(a) The unitary eigenvectors g ∈ U of the involution α belong to E× and are
forth roots of unity.

(b) The special unitary group SU does not contain elements of even order. In
particular, it does not contain reflections.

Proof of theorem 3.1. For (a), if 1 = α(g)g = ±g2, then the degree of the field E[g]
generated by g is at most two. But the degree must divide the odd degree of D.
So g belongs to E and satisfies g4 = 1.
For (b), if there is an element of finite even order, then there is an element of order
two. But the unique element g of order two in D× is −1 6∈ SU . Because, in the
subfield E[g] ⊂ D the equation g2 = 1 has the solutions g = ±1 ∈ E. �

The next result holds for imaginary quadratic extensions E/F . It is of particular
interest for definite algebras (see section 3.3 below).

Theorem 3.2. Let E be an imaginary quadratic extension of the totally real field
F . Let D be a division algebra of degree three with involution α of the second kind
central over E/F .
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(a) Let K ⊂ D be a C3-Galois extension field of F . An element x ∈ KE that
belongs to U has finite order.

(b) An element g ∈ U has finite order if and only if F [g]/F is a cyclic Galois
extension.

(c) An element g ∈ U has infinite order if and only if E[g]/F is S3-Galois or
non-Galois.

Proof of theorem 3.2. Concerning (a), the composition field KE is a C6-Galois ex-
tension of F . If Gal(K/F ) =< σ >, then (id, τ), (σ, τσ), and (σ2, τσ2) are the three
pairs of complex conjugate embeddings to the complex numbers, and α |KE= τ . If
α(x)x = 1 for an element x ∈ KE, then x is of absolute value one with respect to
each embedding. Being algebraic, x is a root of unity.
For (b), if ord(g) = n < ∞, then F [g]/F is a cyclotomic extension. The Galois
group is a subquotient of Gal(Q(µn)/Q), so cyclic. Conversely, if Gal(F [g]/F )
is cyclic, then by degree considerations it is either trivial, C2, C3, or C6. If
Gal(F [g]/F ) = 1, then g ∈ F ∩ U = {±1}. If Gal(F [g]/F ) = C2, then F [g] = E
is the unique degree two extension of F in D, and g ∈ E ∩ U is a root of unity. If
Gal(F [g]/F ) = C3, then E∩F [g] = F . The element g being unitary, the involution
α is an automorphism of F [g] which extends τ to E[g], which then is C6-Galois over
F . The order of g is finite by part (a). If Gal(F [g]/F ) = C6, then E[g] = F [g], and
we are again in the situation of part (a).
The extension F [g]/F is not cyclic if and only if E[g]/F is either non-Galois or
S3-Galois. So (c) is equivalent to (b). �

Corollary 3.3. In case F = Q, the elements of SU of finite order belong to E and
are third roots of unity. In particular, SU is torsion free unless E is Q(ζ3).

Proof of corollary 3.3. Let g ∈ SU be an element of finite order. The extension
Q[g]/Q is cyclotomic and of degree at most three. Because there aren’t any cubic
cyclotomic fields, Q[g] is contained in the unique quadratic extension E of Q con-
tained in D. If g is non-trivial, then its order is odd by theorem 3.1. This can only
be the case if E = Q[ζ3]. For all other choices of E there are no elements of finite
order apart from one. �

3.2. Integer-valued points. Let D be as in section 3, and let oD be the maximal
order of D given by its integral elements. We define a unitary group scheme U over
oF forcing its F -valued points to coincide with U ,

U(R) = {g ∈ oD ⊗oF R | α(g)g = 1}

for all extension rings R of oF . Similarly, we have the special unitary group scheme
SU such that SU(F ) = SU ,

SU(R) = {g ∈ oD ⊗oF R | α(g)g = 1, Nrd(g) = 1} .

Let the division algebra D of degree three with involution of the second kind over
E/F be given by the cyclic presentation of section 2. One may also define unitary
schemes over F , thereby giving in the notion of oF -valued points. For example,
one can use the embedding of D into M3(L) as L-algebra given by (1). But this
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is defined over oL if and only if a is a unit in oE . There is an extension of the
involution α on M3(L),

(3) α(

m00 m01 m02

m10 m11 m12

m20 m21 m22

) =

 m̄00 ρ(b−1)m̄10 ρ(b−1)ρ2(b−1)m̄20

ρ(b)m̄01 m̄11 ρ2(b−1)m̄21

ρ(b)ρ2(b)m̄02 ρ2(b)m̄12 m̄22

 ,

and a group scheme D defined over F as a subscheme of M3(L) such that D(F ) ⊂
M3(L) coincides with the image of D, and unitary group schemes with F -valued
points U , SU can be defined directly as subgroups of GL3(L). We will refer to these
schemes as the cyclic presentations associated to theorem 2.1. As long as we are
concerned with K-valued points, K an extension of F , the two notions coincide,
and we will make frequent use of the cyclic presentation. We can at least talk
about the set Λ of oL-points of D(F ) meaning those with matrix entries in oL,
Λ = oL ⊕ oLz ⊕ oLz

2. But notice that in case a /∈ o×E or b /∈ o×M the involution α
will neither act on M3(oL) nor on the oL-points Λ of D(F ).
In contrary, α acts on D(oF ) = oD, as for an integral element d ∈ oD, the minimal
polynomial f belongs to oE [X], and the polynomial with conjugate coefficients
f̄ ∈ oE [X] is a minimal polynomial for α(d). But if and only if oD coincides
with Λ, then D is already defined over oF , and thus is a matrix realization of the
group scheme given by the maximal order oD of integers in D, and the notions of
integral points of U and SU coincide with the notions of the oL-valued points of the
corresponding cyclic presentation group.

Proposition 3.4. The order Λ = oL + oLz + oLz
2 of D equals the maximal order

oD of integral elements if and only if a is a unit in oE.

Proof of proposition 3.4. First notice that Λ is contained in oD. By [8, 11.6], the
order Λ is maximal if and only if for all prime ideals p of oE the localization Λp

is a maximal order in Dp. Assume a ∈ oE \ o×E , and let p be a prime ideal of oE
which contains a. Because b ∈ M is chosen such that aā = NL/E(b), the element

b−1z2 ∈ D has minimal polynomial X3 − a
ā . Because vp(

a
ā) = 0, the element b−1z2

is an integer of Dp. But b−1 /∈ oLp . So the maximal order oDp is strictly larger than
Λp.
On the other hand, the discriminant of Λ is given by its generator

disc(Λ) = det(trrd(bjkbj′k′))

for the oE-basis bjk = ejz
k, j, k = 0, 1, 2, of Λ. Here ej , j = 0, 1, 2, is any Gal(L/E)-

invariant oE-basis of oL. Because trrd(lz) = 0 = trrd(lz
2) for all l ∈ L, we easily

compute

disc(Λ) = det

tr(ejek) 0 0
0 0 a tr(ejρ(ek))
0 a tr(ejρ

2(ek)) 0

 =
(
−a2 disc(oL)

)3
.

Because oL is the maximal oE-order (of integral elements) in L, the order oD of
integral elements is an oL-module, and the different D of oD is an oL-module, too.
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Consequently, the ideal norm N(D) of D is divisible by disc(oL). But by [8, 25.10],

disc(oD) =
(
N(D)

)3
,

and further, maximal orders belong to minimal discriminants and vice versa. So in
case a ∈ o×E is a unit, disc(Λ) is minimal, and consequently Λ = oD. �

3.3. Definiteness. Assume the ground field F to be totally real, and let E =
F (
√
−d), where d ∈ oF is square free and totally positive, be an imaginary quadratic

extension. The hermitian form h is called totally definite, if it is definite at all the
archimedean places, or equivalently, if the unitary group SU(Fv) is compact for all
v | ∞. At an archimedean place v we have Fv ∼= R and Ev ∼= C. So Lv ∼= C⊕C⊕C,
where the embedding L ↪→ C⊕C⊕C is given by the three embeddings of L to Ev,
which we again denote by ρj , l 7→ (ρ0(l), ρ(l), ρ2(l)). Using the cyclic presentation,
D(Fv) is isomorphic to M3(C) equipped with the involution (3). But on M3(C)
we have an obvious involution β of the second kind given by conjugate transpose,
β(m) = m̄′, and M3(C) being central simple, there exists H ∈ GL3(C) such that
α(m) = H−1β(m)H−1. Obviously, this is satisfied by

H =

ρ0(b)
ρ(b)

ρ2(b)

 ,

and m ∈M3(C) belongs to U(Fv) if and only if

m̄′Hm = H .

Thus, U(Fv) is isomorphic to the unitary group associated to the standard hermitian
form given by H. This is definite if and only if ρ0(b), ρ(b) and ρ2(b) have the same
sign. In view of NM/F (b) = NE/F (a) being positive for any embedding L ↪→ C, we
actually have εv = 1 for all v. That is, b must be totally positive. We have found
a simple criterion for definiteness.

Proposition 3.5. Assume the division algebra of theorem 2.1 is defined over an
imaginary quadratic extension E of a totally real number field F . Then the involu-
tion defined by the totally real number b is totally definite if and only if b is totally
positive.

4. Results on rational points of the unitary group

4.1. Points distinguished by the cyclic structure. In the situation of theo-
rem 2.1 we assume the field E to equal F (

√
−d), where −d is a square-free element

of oF . By the embedding (1), an element of D(F ) is given by the first row (l0, l1, l2)
of the corresponding matrix, l0, l1, l2 ∈ L. The unitary condition gα(g) = 1 with
respect to α given by (2) for such an element is

(4) l0 l̄0 + ρ(b)l1 l̄1 + ρ(b)ρ2(b)l2 l̄2 = 1

together with

(5) al̄0ρ(l2) + ρ(b)l̄1ρ(l0) + ρ(b)ρ2(b)l̄2ρ(l1) = 0.
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The determinant (reduced norm) condition is

(6) NL/E(l0) + aNL/E(l1) + a2NL/E(l2)− a trL/E(l0ρ(l1)ρ2(l2)) = 1.

So an element g = g(l0, l1, l2) satisfying (4) and (5) belongs to the unitary group
U = U(F ) defined by the involution α on the division algebra. If it additionally
satisfies (6), then it belongs to the special unitary group SU = SU(F ). We have
an action of Gal(L/E) =< ρ > on the cyclic algebra D(F ) = L ⊕ Lz ⊕ Lz2 by
automorphisms given by the action on the coefficients

ρ(l0 + l1z + l2z
2) = ρ(l0) + ρ(l1)z + ρ(l2)z2 ,

for all lj ∈ L. This coincides with the inner automorphism given by conjugation
with z, ρ(d) = zdz−1. The Gal(L/E)-fixed points of D(F ) obviously are those with
coefficients lj ∈ E.
We collect some simple properties.

Proposition 4.1. (a) If for an element g(l0, l1, l2) ∈ U(F ) one of the coeffi-
cients is zero, then g = lzj, l ∈ L, is monomial.

(b) The monomial elements g = lzj, j = 0, 1, 2, of U(F ) are given by those l ∈ L
satisfying the norm equation NL/M (l) = 1, ρ(b) NL/M (l) = 1, ρ(b)ρ2(b) NL/M (l) =
1, for j = 0, j = 1, j = 2, respectively.

(c) The monomial elements g of SU(F ) are the elements given by g = l ∈ L×
satisfying the norm equations

(7) NL/M (l) = 1 = NL/E(l) .

In particular, the Gal(L/E)-fixed monomial elements are given by the third
roots of unity contained in E.

Proof of proposition 4.1. If lk = 0, then by the unitary condition (5) a second
coefficient ln, n 6= k, is zero, too. So g = ljz

j for the remaining j 6= k, n. This is
(a).
Concerning (b), for a monomial element g = lzj the unitary condition (4) clearly
simplifies to the stated ones. Concerning (c), g = lzj ∈ SU(F ) must satisfy the
determinant condition (6), aj NL/E(l) = 1. Because a and a2 don’t belong to NL/E ,

we have j = 0, and hence (7). In the special case l ∈ E×, we have ll̄ = 1 = l3, i.e.
l is a third root of unity. �

By Hilbert 90 an element l ∈ L× satisfying the first condition of (7) in proposi-
tion 4.1 is of the form

l =
y0 +

√
−dy1

y0 −
√
−dy1

with y0, y1 ∈ M . In order to satisfy the second condition non-trivially, we may
assume y1 to be non-zero and normalize it y1 = 1. Then the second condition is
trL/E(y0ρ(y0)) = d.

Although conjugation of the coefficients lj ∈ L, l0 + l1z + l2z
2 7→ l̄0 + l̄1z + l̄2z

2,
does not define an algebra homomorphism, we can ask for elements of U(F ) and
SU(F ) whose coefficients are fixed under conjugation, respectively mapped to their
negative, i.e. lj ∈M for all j, respectively lj ∈

√
−dM for all j.
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Proposition 4.2. (a) The single element of SU(F ) given by a first row (l0, l1, l2)
such that l̄j = εlj, j = 0, 1, 2, with ε ∈ {±1}, is the identity.

(b) The elements of U(F ) given by a first row (l0, l1, l2) such that l̄j = lj,
j = 0, 1, 2, are g = ±1, g = lz if l ∈ M is a solution of ρ(b)l2 = 1, and
g = lz2 if l ∈M is a solution of ρ(b)ρ2(b)l2 = 1.

(c) The elements of U(F ) given by a first row (l0, l1, l2) such that l̄j = −lj,
j = 0, 1, 2, are g = l if l ∈

√
−dM is a forth root of unity, g =

√
−d · lz if

l ∈M is a solution of dρ(b)l2 = 1, and g =
√
−d · lz2 if l ∈M is a solution

of dρ(b)ρ2(b)l2 = 1.

Proof. Let ε ∈ {±1}. Let (l0, l1, l2) be the first row of an element g of U(F )
satisfying l̄j = εlj for j = 0, 1, 2. As a ∈ E \ F , condition (5) splits into two
conditions

l0ρ(l2) = 0 and l1ρ(l0) + ρ2(b)l2ρ(l1) = 0.

By the first one, l0 or l2 is zero. Then, by the second condition the other one or
l1 is zero, too. So g = lzk is monomial. The proposition now follows easily by
evaluation of condition (4). �

4.2. S-arithmetic points. We assume F to be totally real and E/F to be imagi-
nary quadratic. In working with integer valued points we have to take into account
the discussion of their definition in section 3.2. But even in the case of a ∈ E× or
b ∈ M× not being units in the corresponding rings of integers, to ask for possible
denominators of the coefficients of the F -valued points in the cyclic presentation is
interesting.
We answer this question in two special cases. First, for the case of monomial
elements. Second, notice that in case the quantity b defining the involution α can
be chosen to belong to F , the subgroups U(F )ρ and SU(F )ρ of Gal(E/F )-fixed
points in U(F ) and SU(F ), respectively, give themselves rise to group schemes over
F . They are associated to the unitary, respectively, special unitary group for the
hermitian form on E3 induced by the involution (3) restricted to the subalgebra
M3(E) of M3(L). We characterize the denominators of U(F )ρ and SU(F )ρ in this
case.

Definition 4.3. For a set S of prime ideals of the number field F we denote by
oF (S) the subring of F in which exactly the prime ideals in S are invertible.

Definition 4.4. (a) We say a prime ideal p of F satisfies Property A for the
extension L/E/F , if p does not contain two, and if p is inert in E but splits
in L.

(b) We say a prime ideal p of F satisfies Property B for the extension E, if
p does not contain two, and p is either inert or ramified in E such that Fp

does not contain the sixth roots of unity.

Proposition 4.5. Let S be a set of primes p of F satisfying Property A, and for
which the valuations vp(b) are zero. Then the monomial elements g = lzj ∈ SU(F )
with l ∈ oL(S) are the third roots of unity contained in E.
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Here oL(S) denotes oL(S) = oE(S)λ0 + oE(S)λ1 + oE(S)λ2 for any integral basis
λ0, λ1, λ2 of oL.

Proof of proposition 4.5. For p ∈ S let p1, p2, p3 be the prime ideals of oL above p,
so poL = p1p2p3oL. Recall the field M is the subfield of L fixed by conjugation.
Because p is unramified in E, the prime ideals pk are defined by their intersection
with M , pk = (pk ∩ oM ). For l ∈ oL(S), there are integers rk such that vpk(l) = rk,
k = 1, 2, 3. Let g = lzj satisfy the unitary condition (4), 1 = c(j, b) NL/M (l)

where c(0, b) = 1, c(1, b) = ρ(b), c(2, b) = ρ(b)ρ2(b) have pk-valuation zero. But
then vpk(NL/M (l)) = 2rk must be zero, so r1 = r2 = r3 = 0. Varying p in S we

obtain l ∈ o×L . Because M/F is totally real, the unit group o×M is isomorphic to
Z/2Z ⊕ Zr for some r ≥ 2. Let e1, . . . , er be generators of the non-torsion part.
Then o×L = o×E× < e1, . . . , er >. Accordingly, write l = ξes11 · · · esrr . Then the
unitary condition is

1 = c(j, b)ξξ̄ · e2s1
1 · · · e2sr

r .

In particular, when j = 0 this is satisfied only if s1 = · · · = sr = 0 and 1 = ξξ̄.
In case g = l ∈ SU(F ) the determinant condition 1 = NL/E(ξ) = ξ3 implies ξ is a
third root of unity. �

Theorem 4.6. For the division algebra of theorem 2.1 assume that for the structure
constant a ∈ oE the involution is given by some b ∈ F . Let S be a set of prime
ideals p of F satisfying Property B and for which the valuations vp(b) are zero.
Then, apart from the monomial solutions g = lzj, where l ∈ o×E with bjll̄ = 1, there
is no element in U(F ) given by coordinates (l0, l1, l2) with lj ∈ oE(S) for j = 0, 1, 2
in the cyclic presentation. In particular, the elements of SU(F )ρ of this kind are
the third roots of unity contained in E.

In the case of the coincidence of the maximal order of integer points oD with
the cyclic order Λ = oL ⊕ oLz ⊕ oLz

2, theorem 4.6 implies the triviality of the
oF (S)-valued points of SUρ. We formulate this in the Kummer case, i.e. in case
E = F (ζ3).

Corollary 4.7. For the division algebra of theorem 2.1 assume E = F (ζ3), and
assume the constants are a ∈ o×E and b ∈ o×F . Then for all sets S of prime ideals of
F ramified or unramified and non-split in E the group SU(oF (S))ρ of oF (S)-valued
points is {1, ζ3, ζ̄3}.

For the proof of theorem 4.6 we need the following lemma.

Lemma 4.8. Consider the system of equations

(8) l0 l̄0 + bl1 l̄1 + b2l2 l̄2 = 0,

(9) al̄0l2 + bl̄1l0 + b2 l̄2l1 = 0.

(a) Assume for a prime p and an integer n that pn ≡ 5 mod 6. Let a ∈ Fp2n \ Fpn
satisfy aā = b3 for some b ∈ F×pn. Then the above system of equations only has the
trivial solution (l0, l1, l2) = (0, 0, 0) for lj ∈ Fp2n, j = 0, 1, 2.
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(b) Let p be an odd prime and such that for some n the finite field Fpn does not
contain the third roots of unity. On the residue class ring R = Fpn [π]/(π2) let
conjugation be given by π̄ = −π. Let a ∈ R× \ F×pn and b ∈ F×pn satisfy the relation

aā = b3. Then the above system of equations with l0, l1, l2 ∈ R only has the solutions
(l0, l1, l2) ≡ (0, 0, 0) mod π.

Proof of lemma 4.8. For (a), if one of the lj is zero, then by (9) another one is zero.
But then by (8), the remaining one must be zero, too. So for a non-trivial solution
we have l0l1l2 6= 0. For (b), the same argument holds for a non-trivial solution
mod π. So in both cases we may assume without loss of generality l2 = 1, because
the equations are homogeneous. Then equations (8) and (9) simplify to

(10) l0 l̄0 + bl1 l̄1 + b2 = 0,

(11) al̄0 + bl̄1l0 + b2l1 = 0.

From (11) and its conjugate we obtain the following system of linear equations for
l1, l̄1, (

b2 bl0
bl̄0 b2

)(
l1
l̄1

)
=

(
−al̄0
−āl0

)
.

Multiplying by the adjunct

(
b2 −bl0
−bl̄0 b2

)
of the matrix involved we get

b2(b2 − l0 l̄0)

(
l1
l̄1

)
=

(
−ab2 l̄0 + ābl20
abl̄20 − āb2l0

)
.

Concerning case (a), there are two possibilities. First, assume b2 − l0 l̄0 6= 0. Then

the linear equation has the solution l1 =
ābl20−ab2 l̄0
b2(b2−l0 l̄0)

. Inserting

l1 l̄1 =
aāb2(l0 l̄0)2 − a2b3 l̄30 − ā2b3l30 + aāb4l0 l̄0

b4(b2 − l0 l̄0)2

into (10) yields

0 = (b3 − aa−1l30)(b3 − āa−1l30) .

Notice that the condition pn ≡ 5 mod 6 is satisfied only for primes p ≡ 5 mod 6
and odd n. Equivalently, there exists no primitive sixth root of unity in the finite
field Fpn . The last equation being equivalent to l30 = a2, we obtain (l0 l̄0)3 = (aā)2 =
b6, which is equivalent to l0 l̄0 = b2. This is a contradiction to the assumption.
Second, assume l0 l̄0 = b2. In this case the linear system above forces ābl20 = ab2 l̄0.
Inserting l0 l̄0 into (10) yields l1 l̄1 = −2b, and multiplying the original equation (11)
by āl0 yields

al̄0 l̄1 + āl0l1 = −b3.
These two equations imply

(l0l1 − a)(l0l1 − ā) = (l0 l̄0)(l1 l̄1)− (al0l1 + āl0l1) + aā = −2b3 + b3 + b3 = 0.

Equivalently, l0l1 = a. But if so, l0 l̄0l1 l̄1 = aā = b3, so l1 l̄1 = b. This is a
contradiction to l1 l̄1 = −2b.
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In case (b) exactly the same argument read modulo π runs through. So in neither
case we obtain a non-trivial solution satisfying the conditions of proposition 4.8. �

Proof of theorem 4.6. We notice that Property B for a prime ideal p is equivalent
to the condition that the étale extension Ep/Fp is a field extension, and such that
the residue class field κFp does not contain a primitive sixth root of unity. So
κFp
∼= Fpn , and either p = 3 or pn ≡ 5 mod 6.

Assume (l0, l1, l2) gives rise to an element g of U(F ) with lj ∈ oE(S), j = 0, 1, 2.
If actually each lj ∈ oE , then all the summands of condition (4) are non-negative.
For a suitably chosen embedding of F into R, we have l0 l̄0 = 0 or l0 l̄0 = 1. So
either l0 = 0 or l1 = l2 = 0. By (5), in the first case one of l1, l2 is zero, too.
So in order to satisfy condition (4), g must be monomial, g = lzj for an element
l ∈ o×E of norm one. Applying proposition 4.1, we only obtain the trivial solutions

(l0, l1, l2) = (ζk3 , 0, 0) in SU(F ).
For a non-trivial solution with lj ∈ oE(S), j = 0, 1, 2, and lj /∈ oE for at least one
j, there exists a prime ideal p ∈ S and an integer r > 0 such that prlj belongs
to the ring oEp of p-adic integers, j = 0, 1, 2. We assume r to be chosen minimal
with this property. Let π be a uniformizing element of the prime ideal in oEp . We
obtain a tuple (l′0, l

′
1, l
′
2) = πr(l0, l1, l2) which satisfies the two unitary conditions

(4), (5) for (l0, l1, l2) and leads to the two homogeneous conditions (8) and (9) of
lemma 4.8 (a) for (l′0, l

′
1, l
′
2) modulo (π), in case Ep/Fp is unramified. Respectively,

if Ep/Fp is ramified, (l′0, l
′
1, l
′
2) modulo (π2) satisfy the conditions (8) and (9) of

lemma 4.8 (b). Because b ∈ o×Fp
by assumption, lemma 4.8 applies. So (l′0, l

′
1, l
′
2)

must be zero modulo (π). This contradicts the minimal choice of r. �

The following restriction for the denominators of U(F )ρ is a consequence of the
proof of theorem 4.6.

Corollary 4.9. For the division algebra of theorem 2.1 assume b ∈ F . Let g(l0, l1, l2)
be an element of U(F )ρ. Then the denominators of lj ∈ E are not contained in
prime ideals p of E lying over prime ideals of F satisfying Property B such that
vp(b) = 0.

Proof of corollary 4.9. Let p be a prime satisfying the conditions above and consider
g(l0, l1, l2) as an element of U(Fp)

ρ. If g(l0, l1, l2) /∈ U(oFp)ρ, then there is an integer
r > 0 (again chosen minimally) such that πr(l0, l1, l2) = (l′0, l

′
1, l
′
2) satisfies (8) and

(9) modulo (π) , and by lemma 4.8, (l′0, l
′
1, l
′
2) ≡ (0, 0, 0) modulo π, contradicting

the minimal choice of r. �

The notion of oF (S)-valued points becomes relevant when there is a oF -structure
on the special unitary group SU. Then the group SU(oF (S)) is an arithmetic
subgroup of SU(Fp). In particular, if SU(Fv) is compact for some archimedean
place v, the quotient will be cocompact ([4], [5]). Any explicit description of
SU(oF (S)), or of some congruence subgroup allows to deduce properties of the quo-
tient SU(oF (S))\SU(F ). But the following example gives evidence that by choosing
a cyclic presentation, i.e. controlling the involution α, even the explicit detection
of non-trivial elements of SU(oF (S)) is sophisticated.
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4.3. Example. For simplicity we assume the ground field F to equal the rationals
Q, but this example generalizes to arbitrary totally real ground fields, when the
elements of finite order in D can be controlled. Let E = Q(

√
−3) = Q(ζ3), where

ζ3 = 1
2(−1 +

√
−3). Let M/Q be a totally real C3-Galois extension such that

L = EM be C6-Galois over Q. We assume that the norm of L/E is not surjective
on o×E (that is, L does not contain the ninth roots of unity). For example, one could
choose M to be generated by the polynomial f(X) = X3 − 13X + 13. Choose the

structure constant a = ζj3 of the division algebra D in theorem 2.1 to be a power
of ζ3, where j 6≡ 0 mod 3. Then a /∈ NL/M and D is indeed a division algebra.
Because aā = 1, we may choose the involution constant b = 1. So the involution
(2) written with respect to the cyclic presentation is

α :

 l0 l1 l2
aρ(l2) ρ(l0) ρ(l1)
aρ2(l1) aρ2(l2) ρ2(l0)

 7→
l̄0 āρ(l̄2) āρ2(l̄1)
l̄1 ρ(l̄0) āρ2(l̄2)
l̄2 ρ(l̄1) ρ2(l̄0)

 .

The unitary groups U and SU are defined over Z, and the different notions of integer
valued points coincide. At infinity the involution α : M3(C) → M3(C) is simply
given by the conjugate transpose, α(g) = ḡ′. In particular, U(R) and SU(R) are
compact (see proposition 3.5).
The subfield E(z) of D is isomorphic to Q(ζ9). Theorem 4.6, corollary 4.7 and
corollary 4.9 imply that for elements l0 + l1z + l2z

2 ∈ E(z) to belong to U(Q) it is
necessary that the primes p occurring in the denominators of l0, l1, l2 are split in E.
In particular, for a set S of primes p ≡ 5 mod 6, the subgroup SU(Z(S))ρ is given
by the third roots of unity 1, ζ3, ζ

2
3 in E. Notice that SU(Z(S))ρ is the intersection

of SU(Z(S)) with E(z)× Additionally, assume that the primes of S actually satisfy
Property A, that is Lp is a split algebra. Then by proposition 4.5 respectively
corollary 3.3, the intersection of SU(Z(S)) with L is {1, ζ3, ζ

2
3}, too:

In S-arithmetic subgroups (S satisfying Property A), the elements belonging to the
two obvious subfields L and E(z) of D are the trivial ones contained in o×E.
The meaning of Property A is the following. Let p be a prime such that Ep is
non-split and Lp is split. So Dp is split, and the embedding (1) identifies Dp =
D ⊗Z Qp with M3(Ep) by the isomorphism Lp ∼= Ep ⊕ Ep ⊕ Ep given by the three
embeddings ρj of L into Ep. Then SU(Qp) is isomorphic to SU3(Ep), the up to
equivalence unique special unitary group over Ep/Fp of degree three (see [9, 1.9]).
And the isomorphism is given by the above embedding. Then for S = {p} the group
SU(Z(S)) = SU(Z[1

p ]) is an arithmetic subgroup of SU3(Ep). Because SU(R) is

compact, SU(Z(S)) is cocompact in SU3(Ep) (see [4], [5]). For the resulting quotient
it is natural to study the action of the arithmetic subgroup on the affine Bruhat-
Tits tree, the quotients becoming finite graphs. In case p is ramified, this is the
(p+1)-regular SL3-tree, in case p is unramified, we obtain a (p+1, p3 +1)-bi-regular
tree. In view of lemma 4.10, the finite quotient graphs modulo SU0 ∩ SU(Z[1

p ]) will

be Ramanujan ([7]), respectively, bi-Ramanujan ([2]). The latter case was treated
in [3], and this article is in some sense its conceptional continuation.
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Lemma 4.10. In the cyclic presentation of the division algebra let E = Q(ζ3),

a = ζj3, (j 6≡ 0 mod 3), and b = 1. Then the special unitary group SU(Q) is the
direct product of µ3 =< ζ3 > with a torsion-free subgroup SU0.

Proof. By corollary 3.3, the elements of finite order are µ3 ⊂ E×. We have an exact
sequence

1 −→ µ3 −→ SU(Q) −→ SU0 −→ 1 ,

which splits because µ3 belongs to the center of D×. �
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